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Abstract

A novel adversarial attack methodology for fooling deep neural network classifiers in image classification
tasks is proposed, along with a novel defense mechanism to counter such attacks. Two concepts are intro-
duced, namely the K-Anonymity-inspired Adversarial Attack (K-A?) and the Multiple Support Vector Data
Description Defense (M-SVDD-D). The proposed K-A? introduces novel optimization criteria to standard
adversarial attack methodologies, inspired by the K-Anonymity principles. Its generated adversarial exam-
ples are not only misclassified by the neural network classifier, but are uniformly spread along K different
ranked output positions. The proposed M-SVDD-D consists of a deep neural architecture layer consisting
of multiple non-linear one-class classifiers based on Support Vector Data Description that can be used to
replace the final linear classification layer of a deep neural architecture, and an additional class verification
mechanism. Its application decreases the effectiveness of adversarial attacks, by increasing the noise energy
required to deceive the protected model, attributed to the introduced non-linearity. In addition, M-SVDD-D
can be used to prevent adversarial attacks in black-box attack settings.

Keywords: K-Anonymity, Adversarial Defense, Adversarial Attack, Deep SVDD, Kernel Learning

1. Introduction

In image classification tasks (e.g., face/object
recognition), the term adversarial examples refers to
crafted images that appear to the human eye almost
imperceptibly similar to the training samples, while
being misclassified by the respective image classifier.
The attempt of crafting such examples to this end is
the so-called adversarial attack. Many classification
models, including the ones based on Convolutional
Neural Networks (CNN), have been found to be vul-
nerable to adversarial attacks [1, 2, 3]. Furthermore,

Preprint submitted to Elsevier

recent studies [4, 5, 6] have shown that adversarial
attacks have the property of transferability, i.e., care-
fully crafted adversarial examples may deceive vari-
ous classification methods at the same time, ranging
from similar deep architectures to even totally dif-
ferent classification methods, such as Support Vector
Machines or Random Forests.

The research community has been actively devel-
oping adversarial attack methodologies over the past
few years, as well as methodologies to anticipate these
attacks. Different types of adversarial attacks are
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specified in the literature, depending on the level of
information available to the adversary prior to the
attack. In most cases, a white-box attack is as-
sumed, i.e., the adversary has full knowledge about
the model architecture to be deceived, including ac-
cess to the values of the respective model weights.
Therefore, the adversary is allowed to form queries
to the model in order to backpropagate gradients for
the given inputs by employing appropriate loss func-
tions. In the black-box attack case, it is assumed that
the adversary has limited or no information about
the model architecture, other than its output clas-
sification labels. White-box attacks may be applied
to attack model architectures unknown to the ad-
versary, by employing intermediate/reference archi-
tectures (known to the adversary) and by exploit-
ing the property of transferability [4]. The design
of adversarial defense methods to repulse these at-
tacks seems to be a lot more challenging than initially
anticipated [7]. Recent adversarial defense methods
were based on obfuscating the model gradients [8] for
the given inputs, repulsing a number of known adver-
sarial attack methodologies in white-box adversarial
attack setups. However, it was later found that the
defenses relying on obfuscating gradients are signif-
icantly less effective against newer and stronger at-
tacks, or against transferability attacks generated by
employing similar undefended architectures and can
nowadays be easily overcome by the adversary [9].
In this paper, we consider that adversarial attacks
should not only be viewed in a negative way as meth-
ods for fooling deep neural networks, as they have
been used in other applications, notably in protect-
ing private data automated analysis by recognition
systems, that are typically used by service providers
in social media [10]. For example, adversarial attacks
have been employed to disable known automatic face
detection /recognition algorithms applied on visual
data uploaded by social media users [11], without
severely compromising image quality [12], while at
the same time, not hiding the person identities to hu-
man viewers. Moreover, adversarial attack methods
could potentially be used to protect data captured
from publicly installed cameras or even IoT sensors
(e.g., UAV /surveillance/car cameras). However, to
the best of our knowledge, unlike standard privacy

protection methods [13], adversarial attack method-
ologies do not incorporate privacy protection-related
constraints in their optimization process, therefore,
even if they are successful in disabling face detec-
tion/recognition against a specific algorithm, there
are no guarantees that adversarial attacks are effec-
tive for protecting people’s privacy, when employed
against automated classification systems to this end.

On the other hand, adversarial attacks could po-
tentially be used for malicious purposes against clas-
sification systems in sensitive applications, e.g., bio-
metrics, forensics, spam/fault detection systems, or
even copyright protection systems. Classification sys-
tems that are not robust against adversarial attacks
may be rendered unreliable for real-world deploy-
ment. In order to measure the potential threat, ad-
versarial attacks could be employed by the classifi-
cation system engineer as a measure to intuitively
expose innate classification model weaknesses e.g.,
over-fitting, since their application reveals the deci-
sion noise tolerance, which is directly related to the
amount of additive noise required to result in the
misclassification decision. However, in order to be
protected against adversaries, novel defense mecha-
nisms should be employed in such classification sys-
tems that not only hinder adversarial example craft-
ing, but also to increase the model’s tolerance to noise
and/or at least detect/prevent adversarial attacks as
last resort option. To this end, we argue that one-
class classification methods such as the Support Vec-
tor Data Description [14] can be used as an additional
mechanism to verify if the input samples belongs to
one of the training classes.

Motivated by the potential applications, we pro-
pose an extension of the use of adversarial attacks in
order to fool deep neural network classifiers in a pri-
vacy preserving manner, along with a novel defense
mechanism to counter them. Two concepts are intro-
duced, namely the K-Anonymity-inspired Adversar-
ial Attack (K-A3) and the Multiple Support Vector
Data Description [14] (M-SVDD) Defense. The novel
contributions of this work can be summarized as fol-
lows:

e A novel adversarial attack optimization problem
is proposed that exploits and extends well-known



adversarial attack methodologies, by modifying
the optimization conditions for generating the
adversarial examples. The proposed optimiza-
tion problem is inspired by K-Anonymity prin-
ciples, assuring that the initial identities of the
crafted adversarial examples are not only mis-
classified by the neural network decision func-
tion, but are uniformly spread along K different
ranked output positions.

e In order to minimize the introduced perturba-
tion by our adversarial attack, a visual similar-
ity loss is introduced, that guides the adversarial
attack towards image pixel value modifications
having minimal impact on the perceived image
quality. The CW-SSIM loss [15] is employed to
this end.

e A novel deep neural layer composed of a num-
ber of novel deep non-linear one-class classifiers
(SVDD layer), equal to the number of classes
supported by the model to be protected, is pro-
posed as an adversarial defense mechanism. The
parameters of the SVDD layer are trained by ex-
ploiting novel loss functions inspired by the Sup-
port Vector Data Description [14]. The SVDD
layer is thereby used to replace the standard
linear classification layer of a pre-trained refer-
ence deep neural architecture, introducing non-
linearity to the classifier decision function.

e In black-box attack settings, the proposed de-
fense mechanism acts as input verification mech-
anism, i.e., ensures that if an input data vector
does not belong to any of the training classes
(i.e., is classified as outlier by every SVDD clas-
sifier), it is an adversarial example. The pro-
posed defense mechanism can merely be a post-
processing step after model inference, and does
not hinder the application of other defense mech-
anisms at the same time.

2. Background information and related work

Let = € RP be a general data sample (e.g., a
facial image for face recognition) having a discrete

ground truth label y € Y = {{1,...,lc} represent-
ing one of the C classes corresponding to e.g., facial
image identities. Also let a neural network architec-
ture consisting of L layers, having a trainable param-
eter set W = {W;}L |, where W; contains the i-th
layer weights and also let a classifier decision function
f : RP — R that maps the input samples to deci-
sion values, corresponding to each class. The sample
x is classified correctly by the neural network classi-
fier if argmaz(f(x; W)) = y.

2.1. Adversarial attacks

Let £ =  + n denote an adversarial example that
is crafted by perturbing @. The general goal of ad-
versarial attacks is to determine a noise vector n that
is required to be added to @, in order to change the
classifier label, i.e.:

argmaz(f(z; W)) # v,

that is commonly determined by optimizing some ob-
jective function for the noise vector, e.g., minimizing
its Lo norm ||n||2. For example, the L-BFGS attack
[1] assumes access to the outputs of a continuous loss
function denoted by Ly : RE x Y — RT, associated
with the classifier function f to be deceived. The ad-
versary selects a target label ¢t # y € ) for the adver-
sarial example €. Then, the following optimization
problem is solved in iterative manner:

min: cnly + Ly(f@W).0). (1)
until the minimum n that satisfies
argmax(f(&; W)) = ¢ is obtained (or approxi-

mated for non-convex loss functions Ly). The
parameter ¢ > 0 controls the amount of perturbation
introduced per iteration step and is empirically set
using line search [1]. Fast Gradient Sign [2] is a
significantly faster alternative method that estimates
n in a single optimization step along the direction of
the gradient sign at each image pixel:

n = c-sign(VLy(f(@W),1)), (2)

at the expense of producing more noisy examples
than L-BFGS. DeepFool [16] is an un-targeted adver-
sarial attack method that produces adversarial ex-
amples containing less noise than L-BFGS, by ap-
proximating the decision boundaries of deep neural



networks with linear/affine classifiers, of the form
g(x) = wlz + b. The minimum perturbation n re-
quired to change the classifier label is estimated by
the orthogonal projection of the sample @ to the clos-
—9@) 4. An
N o : Ml

iterative optimization algorithm estimates this per-

turbation, as follows:

est decision boundary, namely n =

min: 3 )
s.t.: g(@) — Vg(@)Tn =0,

until the noise n is strong enough to change the clas-
sifier label. The above defined optimization problem
can be extended to the multiclass case [16].

One of the most powerful targeted attacks up to
date, that have been found to be effective against De-
fensive Distillation [8], as well as a number of other
defenses [9] is the Carlini-Wagner (C & W) attack [7].
Its optimization problem involves minimizing a gen-
eralized distance function D(x, &), e.g., the Ly, Lo
and L., norms, subject to a generalized classification
function such that C(&) = ¢, where t # y € ). More-
over, it is assumed that C(&) = ¢ if and only if an
objective function L(f(@;W)) < 0, where Ly may
be a combination of different loss functions associ-
ated with f. This method is the generalization of the
L-BFGS attack, having investigated different combi-
nations of loss functions, suitable image data map-
pings for avoiding limitations of the box constraint
x,Z € [0,1] and various gradient descend optimiza-
tion algorithms.

Finally, we should also mention that other adver-
sarial attack types have been proposed, such as the
Jacobian-based Saliency Map Attack [17], or even at-
tacks that modify only a single image pixel [18]. The
reader is referred to the review papers [19, 20, 21] for
more information.

2.2. Adversarial Defenses

Adversarial defenses are methodologies to protect
against adversarial attacks. They focus on optimizing
for achieving one of the two objectives:

e Adversarial attacks fail to @eceive the defendefl
model, i.e., argmax(f(&;W)) = y, where W

contains the weights of an appropriately mod-
ified deep neural network.

e The noise ||n||2 energy required to be added to
standard examples in order to deceive the clas-
sifier is increased beyond a level T, after a de-
fense has been applied, i.e., [|nllz > T, so that
argmax(f(x 4+ n;W)) # y.

Some adversarial defense methods modify the
neural network architecture by adding filter-
ing/transformation layers before the neural network
input layer [22, 23]. A recently proposed method [24]
defines an adversarial prototype over an outer convex
bound of a fixed size L., ball, limited by the applica-
tion of Rectified Linear Unit (ReLU) neural networks.
Therefore, the minimum error threshold required to
fool the classifier is related to the volume of the Lo,
ball. Perhaps the most straightforward approach to
protect a neural network classifier against adversar-
ial attacks without modifying the back-bone architec-
ture, is to train it using adversarial examples. That
is, adversarial examples are crafted from the train-
ing samples using e.g., one of the above mentioned
adversarial attack methods, and thereby used to fine-
tune the model weights with these examples and their
original labels [16]. However, this approach imposes
a significantly increased training complexity, mostly
related to crafting different adversarial examples in
each training epoch. An alternative approach is the
so-called adversarial training [2]. That is, in addition
to the standard classification objective functions, an
additional objective function inspired by adversarial
attack objectives is employed for training the classi-
fication model. To this end, Fast Gradient Sign ob-
jectives have been employed in the following manner

[2]:

Li(f(xs W), y) = aLs(f(x;W),y)+(1—a)Le(f(2; W), y),

(4)
where & = x +¢-sign(VL(f(z; W),y)) is an adver-
sarial example derived by employing the Fast Gradi-
ent Sign attack, and 0 < « < 1 is parameter that
controls the amount of regularization introduced to
the model by this attack, by determining the contri-
bution of FGS as a regularizer. A fixed value a = 0.5
within the training process could be considered as a



valid starting point before tuning this parameter, as
it has been shown to provide successful results [2].
This parameter could potentially be set to different
values or even tuned in an adaptive fashion, consid-
ering that a value o = 1 eliminates the regularization
effect introduced by the second term, thus degenerat-
ing adversarial training to standard training. Adver-
sarial training was proven to provide increased model
resistance to the Fast Gradient Sign attack, in terms
of the noise energy required to fool the model. As
a side effect, the model generalizes better over un-
seen test examples. However, there is no guarantee
that the final model is protected against all types of
adversarial attacks. Other defense methods employ
different adversarial training objectives that are more
suitable for defending against other attacks [25, 26],
or employ the standard adversarial training as a pre-
prossesing step [9]. In fact, some of the most effec-
tive adversarial defenses up to date employ adversar-
ial training using an ensemble of adversarial attacks
methods, generated by diverse models [27].

An alternative approach that was initially found
to dramatically decrease the success rate of adver-
sarial attacks is to the so-called defensive distillation
[8]. Distillation techniques [28] have been employed
for knowledge transfer from a parent network to a
distilled network having the exact same architecture.
Depending on the value of so-called distillation tem-
perature, the gradients of the distilled network van-
ish when calculated on the input samples, causing
all gradient-based attacks to fail. However, it was
shown that if an adversary is aware of the applica-
tion of this defense, it is possible to estimate the
distillation temperature using grid search [7]. This
way, all defense operations can be reversed, and gra-
dients can still be obtained for generating attacks
[7]. In fact, it was later shown that a number of de-
fenses, auto-encoder based, GAN-based, or even in-
put manipulation-based defenses [29, 30, 31, 32, 33]
ultimately rely on hiding/obfuscating the network
gradients on the input samples, thus providing lim-
ited or no security gains against stronger attack
methodologies [9, 34], or adversarial attacks exploit-
ing the property of transferability.

3. Privacy protection against deep neural net-
works

Let S = {X, Y} be an image classification domain
that a neural network classifier with trainable param-
eters W is very knowledgeable of, such that its deci-
sion function is able to map samples originating from
this domain to their corresponding label space. That
is, for any given sample x € X, the neural network
classifier is able to recover the label y € Y by its
decision function e.g., argmaxf(x; W) = y. Adver-
sarial attacks typically generate the perturbation as
a mapping to a space of similar characteristics i.e.,
X — X such that the ability of the classifier to map
to the correct label is disabled argmaz f(&; W) # y.
It should be noted that this objective is typically
achieved without taking into account any particular
privacy protection constraints.

For instance, perhaps one of the most influential
privacy protection concept is the K-Anonymity prin-
ciples [35]. K-Anonymity is a generic privacy protec-
tion concept that suggests that the maximum possi-
ble probability of identifying an individual in a spe-
cific set must be lower than 1/K [35]. Adherence to
this constraint can be achieved in many possible man-
ners, depending on the data structure to be protected
or the potential identifier. For example, in field struc-
tured data [36, 37, 38], the K-Anonymity concept is
generalized as follows. It is assumed that an indi-
vidual table record (e.g., record ID) may be identi-
fied by unique combinations of otherwise non distin-
guishing attribute tuples (e.g., sex, weight, age), the
so-called Quasi-identifiers. Thus, dataset anonymiza-
tion methods adhering to K-Anonymity principles,
mask the appropriate attributes (e.g., table columns
that act as Quasi-Identifiers) such that the remain-
der unique data combinations cannot be narrowed
down to less than K combinations. That is, the
maximum probability of identifying unique individ-
uals cannot exceed 1/K. In that field, the concept of
K-Anonymity is achieved regardless of the discrim-
ination abilities of the potential identifier, that can
be either human or machine. K-Anonymity is related
to data usability, since it essentially guides towards
the relevant methods to solutions that achieve the
K-Anonymity principles with the least possible data



manipulations.

In order to quantify privacy protection intro-
duced by Adversarial Attacks according to the K-
Anonymity principles, one might employ the class
identification probabilities (e.g., classification rate)
of a set of adversarial examples X against the clas-
sifier decision function argmazf(&; W) = y. How-
ever, this definition does not take into account the
whole neural network output layer. More specifically,
according to the perspectives of Label Ranking [39]
or Multi-Label Classification [40], the output acti-
vation values of a deep neural network for sample
f(x; W) encode an underlying strict ordered ranking
=2C Y x Y over the finite label set Y = {¢;,...,¢c},
where ¢; >, {; denotes that for a given data ex-
ample x, label ¢; is a more preferable output clas-
sification label than label ¢;. The ranking over Y
is obtained by a unique permutation 74(7) < To(j)
whenever ¢; =5 {;, i.e., T,(i) denotes the position
of /; in the ranking. For simplicity reasons, we de-
note the label ranked at position ¢ in the permuta-
tion with 7,(7), such that the output classification
label of sample x by the deep neural network model
is given by argmax(f(x; W)) = rg(1). We argue that
the ranking obtained for any sample & encodes un-
derlying data properties, that may be considered as
Quasi-identifiers to the class of interest.

Therefore, in order to preserve anonymity (in the
sense of hiding the true label) of every sample x €
X against the neural network, inspired by the K-
Anonymity principles, we argue that the appropriate
mapping X — X should achieve two conditions:

ra(1) #y, V&€ X,

(i) = P(rz(t)=y) <1/K ,Vie{l,...,C}
PRI=9 0 , otherwise,

(5)

(6)

where p(-) is the probability mass function of its argu-
ment, and K is a variable denoting the K —anonymity
protection level, e.g., 5-Anonymity. Condition (5) is
the Adversarial Attack objective, i.e., disabling cor-
rect classification. This constraint is commonly satis-
fied by almost every adversarial attack method. Con-
dition (6) is the novel K-Anonymity-inspired objec-
tive, that achieves anonymity in adversarial exam-

ples along the whole network output. Without it, we
argue that the network may still be used to classify
adversarial examples by exploiting rule-based reason-
ing, e.g., by exploiting an adversarial example de-
tector in the system. For instance, if an adversarial
attack has been detected, the example may still be
classified correctly using the same network, only us-
ing the output of e.g., the 2nd ranking position rz(2)
instead of the 1st rz(1). Condition (6) guarantees
that such simplified reasoning rules are impossible to
be devised for the adversarial examples, exploiting
the K-Anonymity concepts. In the next subsection,
we describe a methodology that achieves both objec-
tives (5) and (6) at the same time.

3.1. K-Anonymity-inspired Adversarial Attack

The proposed K-A? aims to generate the minimum
required perturbations m; to be added to samples
originating from domain § in order to form a set of
adversarial examples X = {#3N,, & = z; +n;. To
this end, along with optimizing for the adversarial at-
tack objective (i.e., fooling the classifier decision func-
tion) (5), it also requires that the adversarial sample
labels cannot be recovered by some specific sorted
ranking position (6), inspired by the K-Anonymity
principles. That is, the originating labels of the de-
rived adversarial set X must recovered by at least K
different positions in the sorted rankings, with prob-
ability no more than p(i) < 1/K,i=1,..., K at each
position.

Due to the increased optimization demands of the
proposed K-A3, it can be expected that increased
perturbation will be generated to the crafted adver-
sarial examples. To counteract this effect, we also
introduce a similarity-based loss function s(x, &) be-
tween the initial sample and the crafted adversarial
example, guiding the optimization problem towards
solutions that regulate the amount of noise generated
by the adversarial attack, according to some objec-
tive metric. The CW-SSIM metric [15] is employed
to this end. Thus, we introduce an additional con-
straint d — s(x, &) to the proposed objective function
to be minimized, where d = max(s) (i.e., d = 1 for
the CW-SSIM case).

Without violating the constraints (5) and (6), we
demand that the actual labels of exactly K data



groups, each containing N/K samples of dataset
X, cannot be retrieved by in at least k € K =
{2,..., K + 1} sorted ranking positions, relevant to
K. Assuming K = 5, then 5 data groups are formed,
demanding that the actual labels of the first group
cannot be retrieved by any of the ranking positions
r2(1),72(2), while the labels of the second set are not
retrieved in r4(1),75(2), 72 (3) etc., while the labels in
the 5—th group are not retrieved in any position of
re(i), Vi < 6. Maintaining the assumptions of white-
box attacks i.e., access to a continuous loss function
Ly associated with f, we propose the following opti-
mization problem:

k
min: - |nlly + (d = s(@, @) + Y Li(f([@W),r@)),

i=2
(7)

until the output ranking obtained for & by the neural
network architecture satisfies the constraint 7z (i) =z
y,Vi € K. In fact, instead of using the ranked label
positions, any k randomly selected target labels ¢; #
y € Y could be employed in the proposed method, as
well, without violating the constraint (6). However, it
should be also be noted that the variable k& € I must
be set to different value for every N/K sample groups,
(e.g., k =2 for group 1, k = K 41 for group K). For
instance, if the variable £ is set equal to some specific
value of K for every of the N adversarial examples to
be crafted (e.g., k = 5), then the constraint (6) will
be violated, since P(rz(5) =y) > 1/K.

The value of K should be carefully chosen by a
potential user, depending on the K-Anonymization
needs at hand. Although there is no optimal value
setting, there are some trade-offs between different
values of K that should taken into consideration.
Larger values of K indicate the requirement of more
confusing adversarial examples for the task classifier,
hence stronger attacks. In that sense, K-A?3 attacks
come at the expense of producing more noisy adver-
sarial examples, and perhaps accompanied with in-

1We assume that the network classification function does
not misclassify any of the initial samples & used to craft the
adversarial examples, i.e., 74(1) =y and rz () # y,Vi € K for
every ¢,y € S.

creased difficulty in convergence, thus slower adver-
sarial example production speed. Finally, as can be
observed in (7), for a given K =1 (i.e., k = 2 for all
training data) and by omitting the visual similarity
term, the proposed method degenerates to the stan-
dard L-BFGS method [1], with the only difference
being that in L-BFGS, the target label t is selected
by the adversary, instead of using the label retrieved
in the 2nd sorted ranking position rz(2). This is also
the case in two-class classification problems. There-
fore, K-A3 method can be viewed as a generalization
of L-BFGS, that respects and supports contraints in-
spired by the K-Anonymity principles, for the multi-
class classification case.

4. Multiple SVDD Defense

The proposed M-SVDD-D method assumes hav-
ing an undefended pretrained multi-class deep neural
network architecture with a parameter set W, con-
sisting of L layers, where its final layer W € R¢
involves inference with a linear multiclass classifier
layer, supporting C' classes. Our defense strategy
involves creating a modified architecture W, by re-
placing this linear classifier layer with C' non-linear
one-class classifiers, based on the SVDD method [14].
Each one-class classifier acts as a validator for the in-
puts belonging to each of the C' classes, while one ad-
ditional class is added to the model, for classifying all
unvalidated input (adversarial class). The proposed
defense architecture is depicted in Figure 1.

The novel SVDD classifiers operate in a space of
arbitrary dimensionality, which is approximated by
a subspace defined by trainable random projections.
After training each SVDD classifier, we develop a
multi-class classifier exploiting the outputs of every
SVDD model. Subsection 4.1 describes the proposed
novel variant that exploits negative examples in the
standard SVDD optimization process and it is solved
in its primal form. Subsection 4.2 described the addi-
tional novel components and properties that comprise
the proposed adversarial defense framework.

4.1. SVDD exploiting negative examples

The standard kernel SVDD method [14] aims at
generating the minimum bounding hypersphere in
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Figure 1: Conceptual diagram of the proposed M-SVDD-D. The baseline linear classifier layer is replaced by the proposed
SVDD Layer. If the given input is not verified by any of the SVDD classifiers, it is classified to the adversarial class (C+1).

a space H of arbitrary dimensionality, having cen-
ter a € H and radius R, which encloses the target
class training vectors. This methodology has been
extended to support training from negative [41] or un-
labeled examples [42]. In this Section, we refer to the
input data representations used to train the SVDD
classifier with the notation & € R!, which indicate
vectorial input data representations, for readability
purposes.

Let x,,p = 1,..., N, form a set of positive data
(belonging to the target class), and @,,,n =1,..., N,
a set of negative data, respectively, employed to train
the SVDD classifier. We assume that all training data
vectors have been mapped to the space of arbitrary
dimensionality by a function ¢(-) : R' + H, using
e.g., the RBF kernel function, introducing additional
non-linearity, regardless of the employed network ar-
chitecture. The primal SVDD optimization prob-
lem, exploiting negative examples in its optimization

problem is defined as follows [14]:

Np N,
min: R*+¢, E & +ep E &n (8)
R7£p7£n7a i— i=1

st [lo(zp) —all” < R* + &,

¢(zn) — al* > R - &,
§p 20,60 20,

where &, &, are the slack variables and cp, ¢, > 0 are
free parameters that allow some training error (i.e.,
soft margin formulation) for the positive and negative
data respectively, in order to increase the generaliza-
tion performance. After training, the decision value
of the SVDD for a sample  can be obtained by:

R? — ||¢(x) — al?, (9)
where @ is classified to the positive class if g() > 0
or considered as an outlier, otherwise.

Inspired by the standard SVDD method, we con-
sider training an equivalent neural network with the
same properties. To this end, employing traditional
Quadratic Programming solvers is sub-optimal, espe-
cially when a large number of data is used for training

g(x)



the network, since it would require massive amounts
of memory (in order to store a kernel matrix of size
N x N, where N is equal to the number of data em-
ployed to train the network, while the network output
is of significantly lower dimensionality [ < N). We
consider approximating the SVDD solution to this
end. By exploiting the Representer Theorem [43],
the hypersphere center a = ®u can be fully recon-
structed by a matrix ® € |F| x RY that contains
the data representations in the arbitrary dimensional
feature space, and an auxiliary vector w that con-
tains its reconstruction weights. Since N is large, an
approximation of the hypersphere center can be ob-
tained by using a subset of the training data o,, € R!,
m=1...,M, M < N [44], that are mapped in the
feature space using the same function ® € |F| x RM,
and the reconstruction vector @ € RM.

Therefore, we devise a neural network architecture
with trainable parameters R,u and O, correspond-
ing to a Radius R, a reconstruction vector u and a
matrix O, that contains trainable random projection
vectors, initiated by forward-passing a subset of the
training data from the neural architecture. Its deci-
sion function is defined as follows:

SVDD(z) = BR? — ki; + 2k"u — u" Ku, (10
where ki; = ¢(x;)T¢(x;) is the output of the ker-
nel function associated with H (k;; = 1 in the RBF
kernel case, for every training sample x), k € RMx1
is a vector that contains data similarity between the
training sample x; and the random projections O,
and finally K € RM*M g the kernel matrix of the
random projection vectors. Since the SVDD models
will be used to defend against adversarial examples,
an additional parameter 8 > 0 has been introduced
to manually adjust the classifier precision (8 = 1 is
assumed during training process).

By incorporating the constraints of (8), we pro-
pose the following hinge loss functions to be associ-
ated with the SVDD(x), that can be employed to
approximate the solution of the SVDD optimization
problem in its primal form:

L, = maz(0, kyp — 2kTu + uT Ku — R?),
Ly, = maz(0, R* = kpn + 2kTu — u" Ku),

(11)
(12)

for the positive and the the negative data, respec-
tively. The losses generated by the inference of pos-
itive and negative training samples to the SVDD
model can thereby be used for back-propagating gra-
dients to update the values of R, u and O.
Experimentally, we have found that each SVDD
should be trained by employing only positive data
for a number of epochs until it converges, using only
(11) as loss function, before both losses are imple-
mented, since the proposed loss functions produce
opposite gradient directions for the hyperphere ra-
dius R and the reconstruction vector u, e.g., positive
loss L,, promotes to increase the current value of the
hypershere radius, where negative loss L,, decreases
it. After converging to some values, then both loss
functions can be implemented at the same time.

4.2. M-SVDD Defense

Let W denote the weights of a modified neural net-
work architecture, where its final layer has been re-
placed by the proposed SVDD layer, formed by the
trained SVDD classifiers for each class. This archi-
tecture is the core component of the proposed ad-
versarial defense method. The outputs obtained by
each SVDD classifier are top-bounded to (—oo, R?],
where a value of SVDD(W(z)) = R? means that
the vectorial representation of the sample x obtained
by forward passing W, lies exactly at the learned
hypersphere center. To create a multi-class classi-
fication model, the outputs of the SVDD layer are
regularized by dividing with their respective radius
values R? to (—oo,1], corresponding to each class.
Let » = [r1,...,7¢|? be a vector that contains the
regularized SVDD layer responses for a sample «,
ri = SVDD;(W(z))/R?,i = 1,...,C, correspond-
ing to each class. Then, sample & can be classi-
fied using a standard multi-class decision function
fOV; &) = argmaz(r).

In order to improve inference performance, the
modified architecture weights W are thereby fine-
tuned for some epochs using the same training sam-
ples that have been employed for obtaining W, by
freezing the weights of the SVDD layer parameters.
Since this model is multiclass, a suitable loss function
(e.g., Cross-Entropy loss) associated with f is em-
ployed to this end. This training/fine-tuning proce-



dure introduces additional non-linearity to the archi-
tecture, imposed by the SVDD layer. Moreover, after
convergence, we slightly modify the architecture so as
to add a ReLU function r = max(0, SVDD(W (x))
right before the SVDD layer, and an additional
clamping function min(v,,7),v, > 0 right after it.
This procedure obfuscates gradient generation? for
any given input, since the decision values for a given
sample x of the defense architecture is now quantized
ri €{0,v,},i=1,...,C.

Finally, an additional input verification mechanism
is included. That is, all possible inputs to the model
are initially assumed to be adversarial examples un-
less verified by the respective SVDD classifier. One
additional class C' + 1 (adversarial class) is added to
the proposed multi-class classification model, having
a pre-specified output A(x) = v, for every possible
input, where 0 < v, < v,. Parameter v, essentially
introduces the concept of minimum acceptable acti-
vation value for a given input sample. Samples failing
to pass this threshold, are automatically classified to
the adversarial class. In our experiments, we have
set the minimum activation value v, = 0.001 with
successful results. This parameter may potentially
be set to larger/smaller values, tuning the proposed
M-SVDD Defense sensitivity to adversarial attacks.

The output classification label for sample x includ-
ing the input verification mechanism is given by:

f(W, x) = argmax(T), (13)
where 7 = [r1,...,7¢,v,]7 is the modified response
vector, that supports C classes and one adversarial
class. A sample x is classified to class c if the c-th
SVDD classifier is its unique verifier, or considered as
an adversarial example, otherwise. Here it should be
noted, that instead of a-priory assuming that every
given input imposes potential threats (i.e., belongs to
the adversarial class), an adversarial example detec-
tor could be used instead [45, 46], in order to trigger
this mechanism.

The final step of the defensive architecture train-

2This assumption holds only for the cases that the attacker
has no access to the source code of the defense architecture, in
order to remove these protective layers.
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ing process includes optimizing the parameter 5 de-
fined in equation (10) for each SVDD model, in order
to trim the learned hypersphere volumes, inducing
a more strict verification process, at the expense of
reducing the architecture generalization performance
for non-adversarial examples.

5. Experiments

In order to prove the concepts and evaluate the
performance of the proposed methods, we have per-
formed 2 sets of experiments, corresponding to the
adversarial attack and adversarial defense scenarios.
We have employed 4 publicly available image classifi-
cation datasets, namely the MNIST (digit classifica-
tion) [47], CIFAR-10 (object recognition) [48], Yale
(face recognition) [49] and GTS (Traffic Sign Clas-
sification) [50] datasets, consisting of 70000, 60000,
2452 and 39270 items, respectively. A total of 6 dif-
ferent architectures were trained until convergence in
the employed datasets. Three architectures were em-
ployed in MNIST dataset, a) a four layer neural archi-
tecture consisting of fully connected layers and rec-
tified linear units (MNIST-FC1), having an output
dimensionality [ = 100 and supporting 10 classes,
b) a CNN architecture, namely the LeNet5 (MNIST-
LeNet) [47] and finally, c¢) a recently proposed defen-
sive architecture [24], that has been especially trained
to increase the network robustness against Lo adver-
sarial perturbations (such as most of the employed
adversarial attacks, including the proposed ones). In
CIFAR-10 dataset, we have trained the MobileNetV2
architecture [51] (CIFAR-10-MobileNetV2). In Yale
dataset, we fine-tuned a 9-Layer LightCNN archi-
tecture [52], that had been pre-trained using more
than 1.5M facial images from CelebA dataset (Yale-
LightCNN). Finally, for GTS dataset, we have fine-
tuned an Imagenet pre-trained Resnetl8 architec-
ture [53], totaling 5 architecture-dataset combina-
tions. All conducted experiments were implemented
in PyTorch v0.4.

In our first set of experiments, we evaluate the per-
formance of the proposed K—A? method. The pro-
posed method was employed to attack each architec-
ture for different values of K = 1,5,9. For com-
parison reasons, we have also employed the L-BFGS



[1], DeepFool [16] and the C & W [54] attack with
Ly distance. All methods were implemented using
their default parameter settings. In the optimiza-
tion process, we have slightly tuned the learning rate
parameter of the optimizers (ADAM [55], SGD) in
each experiment, while keeping their settings equal
for all competing methods. The same target class la-
bels were assigned to L-BFGS and C & W attacks.
We have employed these methods to generate adver-
sarial datasets X by modifying the training samples
of each dataset. Adversarial examples generated by
the competing methods in (MNIST-FC1) and Yale-
Light CNN, as well as indicative images containing the
perturbation generated by each method, are shown in
Figures 2 and 3. As can be observed, the adversarial
attacks of almost all methods are hardly perceptible
to the human eye, producing useful images that can
not be classified correctly by the respective classifier.

The datasets obtained by each method were eval-
uated in terms of satisfying “the ranking anonymiza-
tion properties”, as have been defined in equation
(6) of this paper. That is, we have tried to retrieve
the original dataset labels using the architecture W
to obtain ranked label outputs for each adversarial
sample. We have determined the probability mass
functions p(i) for obtaining the ground truth label at
the i—th ranking position, plotted in Figure 4. As
can be observed, the datasets obtained by employing
L-BFGS, DeepFool, C & W, and the variant 1-A% of
the proposed method do not satisfy the constraint
(6), since P(rz(2) = y) > 1/K for every K > 1.
On the other hand, the probabilities of the adversar-
ial examples crafted by the proposed 5-A2 and 9-43
methods, satisty P(rg(j) =y) <1/5fori=2,...,6
and P(rz(j) =y) <1/9for j = 2,...,10 respectively
in almost every case, or lie really close.

In addition, all adversarial attack methods were
evaluated in terms of the introduced perturbation.
As evaluation metrics, we computed the average
Mean Squared Error (MSE)= ||z — Z||3 and average
Structural Similarity [15] (SSIM) for the adversarial
datasets crafted by each method. Reported SSIM val-
ues were scaled from [0, 1] to [0, 100], for readability
purposes. In CIFAR-10-MobileNet and GTS-Resnet,
the Multi-Scale Structural Similarity (MS-SSIM) in-
dex is reported instead of SSIM, which is more suit-
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able for RGB images. Higher MSE values denote that
the adversarial examples contain increased perturba-
tion, and high SSIM values denote that the adver-
sarial example & appears visually similar with the
training example x. Results of the evaluation are
drawn on the left side of Tables 2, 3 and 4, under the
”Undefended” category. The proposed 1 — A% gener-
ated the least amount of perturbation and generated
the most visually similar examples, in the light of
the selected evaluation metrics, especially when com-
pared to the standard L-BFGS attack, attributed to
employing the SSIM loss in its optimization process.
The introduced perturbation of the proposed 5 — A3
and 9 — A% was increased when compared to 1 — A3.
This was expected due to the demand of adherence
to the K-Anonymity-inspired constraint. However, it
should be noted that the visual similarity of the ad-
versarial examples generated by the proposed 5 — A3
and 9 — A? with the original images, have been found
to be very close, or even increased in some cases,
when compared to the similarity of adversarial exam-
ples generated by L-BFGS with the original images.
This effect should also be attributed to the exploita-
tion of the SSIM loss function.

In our second set of experiments, we evaluated the
proposed M-SVDD-D method. We have trained one
SVDD-based classifier for each class by exploiting the
pretrained architectures and the training data sam-
ples, for 20 — 50 epochs. The initial weights of the
architectures remained fixed during the SVDD classi-
fier training procedure. The number of trainable ran-
dom projections M was set to 512 in MNIST-FC1,
256 in MNIST-LeNet and MNIST-PR, and 128 in
CIFAR10-MobileNetV2, Yale-Light CNN and GTS-
Resnet, subject to computational and memory con-
straints, imposed by the size of the employed network
architectures, as well as the input image size. Then,
we have created modified architectures YW by replac-
ing the linear classifier layer, with the trained SVDD
classifiers (SVDD layer). We have fine-tuned the net-
work architectures with the SVDD layer for an ad-
ditional 15 epochs, by fixing the SVDD classifier pa-
rameters, this time. Here, it should be noted that the
initial linear classifier layer may be re-attached to the
network architecture, without affecting its generaliza-
tion performance, or even increasing it in some cases,



(c) C&W (d) DFool (e) 1-A®

Figure 2: Adversarial examples on MNIST Dataset. On the first row, top left (a) depicts the original image «, (b)-(g) are the
corresponding adversarial examples & derived by L-BFGS (b), C&W (c), DeepFool (d) and the proposed methods (e)-(g). The
second row depict the perturbation generated by each method, magnified 10 times for visibility purposes, i.e.,(a) || — x| and
(b)-(g) |l& — &||. The pattern is repeated for different samples in rows 3-4 and 5-6, respectively.



(a) X (b) FGS (c) C&W (d) DFool (e) 1-A3 (f) 5-A3 (g) 9-A3

Figure 3: Adversarial examples on Yale Dataset. Top left (a) depicts the original image, (b)-(g) are the adversarial examples
corresponding to each method. The second row depict the perturbation generated by each method (magnified by a scale of 10).

13



1 1
——L-BFGS —+—L-BFGS
——DeepFool —+—DeepFool
0.8 C&W 08 C&w
0.6 LA >0.6 A
I —5.a3 [ —+5.A3
= A3 = 9-A>
Fo4 A Fo.4
o a
0.2 0.2
ol e I ZSEN . Shas SR =
0 2 4 6 8 10 0 2 4 6 8 10
J J
(a) MNIST-FC1 (b) MNIST-LeNet
1 1
—+— L-BFGS ——L-BFGS
—+— DeepFool 08 —+—DeepFool
C&W : cC&W
—o—1.A% —_ —e—1-A3
A3 >
—e—5 A3 i 0.6 —egp3
9-A — 9 A3
Eo.4
a
0.2 _ :
L M I 0 f%—Me—@—e
g 10 0 2 4 . 6 8 10
j J
(c) MNIST-PR (d) CIFAR-MobileNetV?2
1
——L-BFGS +IE)-BFGFS |
—+— DeepFool 0.8 Ci?’\j.'voo
caw .
LA >0.6 5 ;:ia
—e—g_p3 I 3
3 = 9-A
9-A [
=04
0.2
=% 0= Mvii 0
15 20 0 5 10 15

(e) Yale-Light CNN

(f) GTS-ResNet

Figure 4: Probability mass functions of recovering the original labels y in the j-th sorted ranking position P(rz(j) = y) obtained
by exploiting the undefended architecture W, for each adversarial dataset X generated by L-BFGS, DeepFool, C & W, and the
proposed methods, corresponding to each image classification dataset. As can be seen, L-BFGS, DeepFool, C & W, and the
variant 1-A3 of the proposed method do not satisfy the K-Anonymity-inspired objective (6), since in most cases, the original
label y can be recovered by retrieving the label ranked 2nd. 14



as shown in Table 1. For instance, in MNIST-PR,
since the model was already optimized for defense
purposes, the application of the proposed method in-
creased its generalization performance significantly.

Table 1 reports the test accuracy of the employed
architectures, using the following settings. W-LC
refers to the default architecture before the appli-
cation of SVDD, W-LC refers to the modified ar-
chitecture, having re-attached the Linear Classifier
Layer, W-SVDD(8 = O.) refers to the defense ar-
chitecture where all parameters 8 are have been op-
timized for classification purposes, and finally W-
SVDD(8 = Og) refers to the architecture where the
parameters 3 have been optimized for defense pur-
poses. As can be observed, the modified architec-
ture W-LC does not have reduced classification ac-
curacy, when compared to W-LC. This could poten-
tially mean that the use of SVDD classifiers may act
as regularizer to the network parameters, thus provid-
ing increased neural network generalization abilities,
but this statement has to be confirmed in a different
evaluation scenario, which is outside of the scope of
this work. In almost every case, the performance of
the M-SVDD network, especially for the cases where
parameters 3 have been optimized for classification
purposes (i.e., 8 = O.), closely matches the perfor-
mance of the standard architecture.

We have employed the adversarial attack methods
to attack the M-SVDD-D defense architectures, by
exploiting the transferability property of adversarial
attacks, using W-LC as the intermediate architecture
(white-box attack). We assumed that a potential at-
tacker has access to the original architecture and the
modified weights by the proposed defense architec-
ture with the linear classifier (W-LC), while has no
access to the source code of the SVDD models and
the corresponding parameters. This scenario assumes
that the proposed M-SVDD-D defense is employed as
an additional input verification mechanism. Results
are reported on the right side of Tables 2, 3 and 4,
under the "defended” column. As can be observed,
examples produced by W-LC contain more pertur-
bation for almost all the employed adversarial attack
methods, when compared to the perturbations gen-
erated by W-LC as depicted on the left columns, in
terms of MSE and SSIM, in almost every case. The
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Table 1: Classification accuracy of the employed architectures

MNIST-FCI_MNIST-LoNot_MNIST-PR_CIFAR-10-MobileNetV2_ Vale LightCNN TS Resuct
2 729 5705 07.25 93.10

0532 99.12 0118 88.14 98.16 9474

W-SVDD( = 0.) 98.14 96.62 97.61 §7.47 96.33 8219
W-SVDD( = O4) 95.19 95.00 9347 86.36 93.68 T7.25

only case where W-LC seemed to decrease the in-
troduced perturbation is when the architecture was
already optimized for defense purposes (i.e., MNIST-
PR).

Finally, we report the adversarial attack success
rates (ASR%). Adversarial attacks are considered
successful if fONV;x) # y, failed (F) if fOV;z) =y
and prevented/detected (D) if f(W;x) = v,, where
v, denotes the label of the adversarial class. As can
be observed, using a value of § = 0.85 leads to pre-
venting over 95% of attacks in MNIST-FC1, while
only sacrificing 3% of test accuracy. On the other
hand, just the application of the M-SVDD-D leads to
failure 48% of 1-A? attacks in Yale-Light CNN exper-
iments. In almost every case, ASR rates drop signif-
icantly from the 100% on undefended architectures,
when the M-SVDD-D is implemented. Even for the
case where the architecture was already optimized for
defense purposes (MNIST-PR), the proposed defense
decreased the ASR% rates dramatically.

Therefore, M-SVDD-D is a promising adversarial
defense mechanism. However, it should be noted that
if an adversary is provided access to the SVDD layer
source code, then the defense could be potentially re-
verse engineered. In such case, the success rates of
his adversarial attacks against the defended network
architecture will be similar to the undefended archi-
tecture, close to 100%, given appropriate parameter
settings. However, it should also be expected that
the generated adversarial examples will still contain
similar perturbation with the one reported for the
defended architecture in Tables 2, 3 and 4.

6. Conclusion

In this paper, an adversarial attack method was de-
veloped, that supports and respects the proposed K-
Anonymity-inspired requirements. In addition, the
defense mechanism proposed in this paper can be
used to: a) increase adversarial attack failure rates,
b) increase the noise energy required to be added to



Table 2: Experimental Results in MNIST dataset.

Experiment MNIST-FC1

Undefended Defended
Attack Method/Metric || SSIM | MSEx10? | ASR% || SSIM | MSEx 103 ASR%, =1 ASR%, 8 =0.85
L-BFGS 60.30 26.25 99.75 30.67 36.39 83.04 (F=06.21, D=10.74) | 26.43 (F=00.02,D=73.54)
DeepFool 70.74 12.96 98.70 57.30 4.73 76.10 (F=22.57, D=01.32) | 04.42 (F=00.00, D=95.56)
C&W 59.40 27.27 99.99 58.85 3.81 62.61 (F=21.96, D=15.42) | 00.21 (F=02.89, D=96.89)
1-A43 76.76 13.70 100 29.38 274.04 17.94 (F=05.31 D=76.74) 04.19 (F=0.00, D=95.80)
5-A3 63.92 34.10 100 59.90 23.48 75.07 (F=12.34 D=12.58) 02.66 (F=0.00, D=97.31)
9-A3 58.85 53.51 100 43.74 47.93 84.80 (F=12.68 D=02.50) 01.46 (F=0.00, D=98.53)
FExperiment MNIST-LeNet

Undefended Defended
Attack Method/Metric || SSIM | MSEx10% | ASR% || SSIM | MSEx10° ASR%, =1 ASR%, 8 =0.97
L-BFGS 73.75 2.42 99.98 38.30 10.56 72.59 (F=9.42, D=17.98) | 54.09 (F=05.82, D=40.08)
DeepFool 80.35 1.57 99.92 78.36 1.71 33.93 (F=55.21, D=10.84) | 19.91 (F=51.77, D=28.30)
C&W 80.12 1.45 99.93 79.91 1.34 35.70 (F=46.94, D=17.35) | 20.24 (F=41.41, D=38.34)
1-A3 84.64 1.87 100 45.35 8.15 78.17 (F=7.00, D=14.82) | 61.69 (F=04.96, D=33.33)
5-A3 72.72 5.37 100 50.86 13.56 63.67 (F=7.02, D=29.30) | 39.29 (F=03.80, D=56.90)
9-A3 61.69 15.15 100 44.77 23.25 61.37 (F=5.84, D=32.77) | 32.27 (F=02.85, D=64.87)
FExperiment MNIST-PR

Undefended Defended
Attack Method/Metric || SSIM | MSEx102 | ASR% || SSIM | MSEx10? ASR%, 5 =1.10 ASR%, =1
L-BFGS 18.73 7.63 98.28 46.97 0.61 29.12 (F=06.60, D=64.25) | 10.74 (F=01.62, D=87.63)
DeepFool 82.25 0.56 92.46 73.63 0.12 03.59 (F=63.06, D=33.33) | 00.32 (F=28.61, D=71.07)
C&W 37.46 10.54 98.61 39.92 11.21 00.00 (F=00.00, D=100.0) | 00.00 (F=00.00, D=100.0)
1-A3 63.12 1.19 99.81 48.78 0.68 07.35 (F=04.55, D= 88.09) | 01.75 (F=14.26, D=83.30)
5-A3 41.88 4.10 95.13 45.68 0.77 14.80 (F=07.23, D=77.96) | 03.91 (F=02.63, D=93.44)
9-A3 38.08 4.75 95.20 48.78 0.27 13.74 (F=25.03, D=61.22) | 02.43 (F=01.51, D=95.69)

Higher SSIM values indicate increased visual similarity between the crafted adversarial set and the initial set.
Higher MSE values are associated with increased perturbation.

“D” indicates Detected attacks and “F” Failed attacks.

Table 3: Experimental Results in CIFAR10-MobileNetV2 and Yale-Light CNN

Experiment CIFAR10-MobileNetV2

Undefended Defended
Attack Method/Metric || MS-SSIM | MSEx10° | ASR% || MS-SSIM | MSEx10* ASR%, =1 ASR%, 8 =0.95
L-BFGS 99.84 5.35 98.53 99.33 41.05 94.26 (F=03.41, D=02.32) | 71.71 (F=00.28, D=26.99)
DeepFool 99.99 2.04 99.74 99.93 3.03 70.69 (F=28.93, D=00.37) | 59.07 (F=05.98, D=34.93)
C&W 99.99 3.65 99.96 99.84 0.45 62.69 (F=27.65, D=09.38) | 24.34 (F=03.18, D=72.47)
1-A3 99.99 1.65 99.95 99.63 23.93 92.99 (F=01.40, D=05.60) | 48.22 (F=00.09, D=51.67)
5-A3 99.99 4.96 99.77 99.36 81.26 78.84 (F=00.60, D=20.54) | 19.73 (F=00.03, D=80.22)
9-A3 99.98 8.08 99.85 99.02 45.12 56.34 (F=00.32, D=43.33) | 11.04 (F=00.03, D=88.91)
Experiment Yale-Light CNN

Undefended Defended
Attack Method/Metric SSIM MSEx10® | ASR% SSIM MSEx 107 ASR%, 8 =1.04 ASR% , =1
L-BFGS 93.89 5.97 99.23 93.30 6.26 43.44 (F =19.36, D=37.19) | 10.96 (F=08.81, D=80.22)
DeepFool 97.87 1.71 100 97.77 1.94 41.49 (F=47.43, D=11.06) | 17.36 (F=37.85, D=44.77)
C&W 94.21 5.16 99.94 92.82 5.59 29.91 (F=24.64, D=45.44) | 06.91 (F=12.70, D=80.37)
1-A3 98.05 1.59 99.43 98.06 1.63 41.59 (F=48.82, D=09.57) | 18.08 (F=38.11, D=43.80)
5-A3 95.17 7.52 96.26 94.55 7.74 42.82 (F=18.80, D=38.37) | 11.52(F= 12.09, D=76.38)
9-A43 93.17 4.36 91.34 92.52 5.98 29.50 (F=15.47, D=55.02) | 06.40(F=08.65, D==84.93)

Higher SSIM values indicate increased visual similarity between the crafted adversarial set and the initial set.
Higher MSE values are associated with increased perturbation.
“D” indicates Detected attacks and “F” Failed attacks.
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Table 4: Experimental Results in GTS-Resnet

Experiment GTS-Resnet
Undefended Defended

Attack Method/Metric || MS-SSIM | MSEx10° | ASR% || MS-SSIM | MSEx10° ASR%, g =1.01 ASR%, = 1.00
L-BFGS 99.59 4.90 99.72 98.82 6.75 79.48 (F=05.85, D=14.67) | 49.98 (F=04.60, D=45.42)
DeepFool 99.73 0.20 98.97 98.96 0.45 61.39 (F=31.30, D=07.30) | 34.70 (F=38.35, D=26.95)
C&W 98.64 8.74 59.63 96.24 211.37 52.88 (F=41.75, D=05.37) | 16.20 (F=56.07, D=27.73)
1-A3 99.91 0.79 99.72 99.16 3.81 81.53 (F=11.78, D=06.69) | 47.92 (F=12.12, D=39.96)
5-A43 99.65 3.87 98.13 99.14 4.34 84.09 (F=04.81, D=11.10) | 54.05 (F=06.98, D=38.97)
9-A3 99.48 6.04 98.31 98.88 6.79 82.87 (F=03.51, D=13.62) | 50.83 (F=05.81, D=43.36)

Higher SSIM values indicate increased visual similarity between the crafted adversarial set and the initial set.

Higher MSE values are associated with increased perturbation.
“D” indicates Detected attacks and “F” Failed attacks.

standard examples in order to be deceived, c) pre-
vent adversarial attacks. Moreover, it was shown
that the optimization problem of the SVDD classi-
fier can be effectively solved in its primal form, using
both positive and negative examples. The solution in
the arbitrary dimensional space is approximated by a
Neural Network architecture and randomly projected
vectors.

Future research may focus towards the imple-
mentation of K-A% objectives across other modali-
ties (e.g., sound), or in different adversarial attack
methodologies, for privacy protection. Moreover,
findings from applying proposed SVDD layer for de-
fending against adversarial attacks, suggest that this
methodology could be used in a more generic Neural
Network training process. For example, slight mod-
ifications of the methodology could inspire the de-
velopment of novel loss functions based on SVDD or
other one-class classifiers in multi-class and one-class
classification tasks, as well as in retrieval tasks.
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