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Continuous Drone Control using Deep Reinforcement Learning for
Frontal View Person Shooting

Nikolaos Passalis - Anastasios Tefas

Abstract Drones, also known as Unmanned Aerial Vehicles (UAVs), can be used to aid various
aerial cinematography tasks. However, using drones for aerial cinematography requires the co-
ordination of several people increasing the cost and reducing the shooting flexibility, while also
increasing the cognitive load of the drone operators. To overcome these limitations we propose a
deep reinforcement learning (RL) method for continuous fine-grained drone control, that allows
for acquiring high-quality frontal view person shots, is proposed. To this end, a head pose image
dataset is combined with 3D models and face alignment/warping techniques to develop an RL
environment that realistically simulates the effects of the drone control commands. An appropriate
reward-shaping approach is also proposed to improve the stability of the employed continuous RL
method. Apart from performing continuous control, it was demonstrated that the proposed method
can be also effectively combined with simulation environments that support only discrete control
commands, improving the control accuracy, even in this case. The effectiveness of the proposed
technique is experimentally demonstrated using several quantitative and qualitative experiments.

Keywords Deep Reinforcment Learning - Continuous Control - Aerial Cinematography - Drone
Control

1 Introduction

The wide availability of drones, which are also known as Unmanned Aerial Vehicles (UAVs), led to
the development of versatile autonomous systems that can be used to aid several challenging tasks,
ranging from promptly responding to medical emergencies [7], to detecting fires in forests [21], and
protecting the wildlife [15]. The high versatility of drones and their ability to capture spectacular
aerial shots make them especially suitable for performing aerial cinematography tasks [27]. However,
flying a drone in this setting requires the coordination of several people. A pilot has to control each
drone, while a camera operator has to control the shooting camera on each drone. At the same
time, the director has to coordinate several pilots and camera operators, if multiple drones are used,
and ensure the quality of the captured shots. This situation increases the cost of using drones for
aerial cinematography and severely limits the shooting flexibility by putting a significant cognitive
load on the director and drone/camera operators.
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The aforementioned limitations led to the development of various techniques for assisting drone-
based cinematography, ranging from techniques for automated planning for multi-view drone shoot-
ing [27], and crowd avoidance for complying with drone legislation [43], to autonomous drone con-
trol systems [11], and various techniques for steering drone video shooting [32]. These techniques
automate various parts of the shooting process, reducing the cost of aerial cinematography and
the cognitive load of human operators. At the same time, the computationally complexity of the
developed methods must be taken into account, since drones usually have limited computational
resources (processing power and memory), leading to the development of various approaches to
lower the computational requirements of the aforementioned methods [29,48].

Currently, we are still far from developing fully autonomous drones that would be able to
automatically shot professional-grade footage according to a predefined plan, as designed by the
director, while detecting salient events for performing opportunist shooting. Instead, this paper
focuses on automating part of the shooting process. More specifically, we aim to appropriately
control the height and the relative position of the drone with respect to the person of interest to
acquire a clear frontal shot. To this end, a framework for developing deep reinforcement learning
(RL) methods, that are able to learn accurate control policies for the continuous fine-grained control
of a drone from raw pixel inputs, is presented. Note that even though deep RL has been applied
for solving several challenging and delicate control tasks [8,14,47], that would usually require the
difficult and laborious fine-tuning of traditional control methods [3], little work has been done for
developing deep RL techniques for cinematography-oriented drone control.

The contributions of this paper are briefly summarized below. First, a realistic simulation envi-
ronment is developed using the Head Pose Image Database (HPID) [13]. However, the HPID only
contains a discrete number of poses for each person, supporting only discrete control commands.
To overcome this limitation and effectively simulate the effect of continuous control commands,
the simulation environment is combined with 3D models, along with the face alignment and warp-
ing technique proposed in [50]. This allows for training RL methods that will perform continuous
fine-grained control. Then, an appropriate reward-shaping approach is proposed to improve the
stability of the employed continuous RL method. Apart from performing continuous control, it
is demonstrated that the method introduced in this paper can be also effectively combined with
simulation environments that support only discrete control commands, improving the control ac-
curacy. Finally, the proposed approach is compared both to an RL method that performs discrete
control, as well as to a traditional controller that directly uses the output of a deep model that
performs pose estimation. It is experimentally demonstrated that the proposed approach improves
the control accuracy over these methods.

This paper is an extended version of our previous work [33], where a method capable of perform-
ing drone control in discrete steps for frontal view shooting was proposed. This paper significantly
extends our previous work by proposing a method capable of performing continuous fine-grained
drone control using deep RL. The proposed method is called “Continuous Drone Control” (CDC)
through the rest of this paper. First, the limitations of the simulation environment that was used
in [33] and in [49] are lifted by using an advanced 3D modeling method that can simulate the effect of
continuous control commands [50]. This allows for developing novel fine-grained continuous control
methods for frontal view shooting using deep RL. Second, the proposed approach is appropriately
extended and evaluated using a policy gradient method, instead of Q-learning, allowing for directly
performing continuous control without the need of discretizing the action space. Finally, CDC can
be also readily used in simulation environments that only support discrete action spaces. Indeed, it
is experimentally demonstrated that CDC can improve the control accuracy over control methods
that perform discrete control, even when environments that only support discrete control are used.
To further boost RL research, that critically relies on the availability of simulation environments,
we provide an open-source implementation of the developed simulation environments as well as of
the developed techniques at https://github.com/passalis/continuous_drone_frontal_rl.
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The rest of the paper is structured as follows. The related work is briefly discussed and com-
pared to the proposed approach in Section 2. Then, CDC is introduced and described in detail in
Section 3. The experimental evaluation is provided in Section 4. Finally, future work is discussed
and conclusions are drawn in Section 5.

2 Related Work

Several approaches can be used to appropriately control a drone/camera according to a specific
cinematography-oriented objective. Perhaps the most widely used approach is to project a set of
known 2D landmark points, e.g., nose, eyes, mouth, etc., into the 3D space and solve the corre-
sponding Perspective-n-Point (PnP) problem to estimate the pose of the head of the person of
interest [19,30]. Then, a PID controller can be used to appropriately control the drone to acquire
the desired frontal shot [1,34]. However, this approach requires accurately detecting several 2D fa-
cial landmark points, which can be especially difficult if a low-resolution image input is used. Note
that this is usually the case, since drones frequently use a low-resolution video feed for performing
the on-board processing tasks, even when high resolution cameras are available, due to their limited
processing power and memory. Apart from these, careful calibration of the system is required and
it is non-trivial to extend this approach for estimating the pose of other objects, since the landmark
points have to be appropriately redefined and a corresponding detector must be developed.

Some of the aforementioned drawbacks can be addressed by using deep pose estimation algo-
rithms that are directly trained to estimation the pose of various objects using a training set of data
that contains images along with their pose annotations [12,36,41]. Even though such deep learning
approaches have been shown to increase the pose estimation accuracy and lead to more robust
pose estimators, there is no guarantee that they will be optimal for performing control tasks, while,
on the other hand, developing optimal control algorithms has a long history in various engineer-
ing fields [5,20]. Quite recently, it was shown that combining the great learning capacity of deep
learning models with reinforcement learning (RL) techniques can indeed lead to the development of
robust control policies, that can work under stochastic and noisy environments, producing spectac-
ular results, that often outperform humans on sophisticated control tasks [24,26,44]. This also led
to the development several recent deep RL approaches for various robotics applications [9,10,22,33,
38]. However, using a deep RL approach for learning accurate control policies from raw pixel inputs
is not straightforward, requiring the development of the appropriate simulation environments along
with the careful encoding of the problem objective into a reward function. Apart from that, reward
shaping can be also required to ensure that the method will indeed perform as it was intended and
ensure the stable convergence of the learning process [28]. To the best of our knowledge, this is the
first work where deep RL is used to perform accurate continuous fine-grained drone control from
raw pixel input for frontal view shooting using a dedicated simulation environment that employs
an advanced 3D modeling method that can simulate the effect of continuous control commands.

3 Proposed Method

The proposed CDC method is presented in this Section. First, a brief introduction to RL is provided
along with the used notation. Then, the developed simulation environments are presented. Finally,
the proposed reward shaping scheme, as well as the complete methodology for developing a deep RL
agent for continuous drone control are derived and discussed in detail. Note that the term agent in
this paper refers to parameterized software agents that learn to individually perform various actions
in order to maximize the reward obtained from the environment and should not be confused with
multiagent systems [51].
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3.1 Deep Reinforcement Learning

Given an environment for which the Markov property is satisfied (the future state depends only on
the current state and the selected action), RL can be modeled using Markov Decision Processes
(MDPs). A MDP can be defined as a tuple (S, A, P(-), R(-), ), where:

1. S is the set of possible states for the environment.

2. A={a1,a2,...,an,} is the set of possible actions, where N, is the number of possible actions.
Note that the action space can be continuous: A C R™, where m is the number of controls.

3. P(st+1|st,ar) is the probability that the environment will transit from the state s; to the state
s¢+1 given that the action a; has been performed.

4. R(st,at,,st+1) = Te41 is the immediate reward that the agent receives when performing the
action a¢y1 and transitioning from state s; to state s¢41.

5. ~ is a discount factor that defines the importance of immediate rewards versus future rewards,
where typically 0 < v < 1. For v = 0 the agent is short-sighted, while higher values increase the
importance of future rewards.

An agent starts at state so and selects the next action according to a policy w(s) that defines
the action that the agent will perform. Note that the policy 7(-) can be stochastic and it is usually
described as a probability distribution over the available actions: 7 : S — P(A). The agent’s behav-
ior defines a sequence of state-action-rewards sg,a1,71,s1,a2,72, 82, as, s, S3, ..., s7 that describes
the history of the agent for a given episode that ends after T steps. The discounted accumulated
return for an episode consisting of T steps is defined as:

T
R=Y"~"'r, (1)
t=1

where each action is selected according to the policy m(s). RL aims to learn the optimal policy 7*
that provides the maximum expected return:

7% = arg max E[R|7]. (2)
™

Several approaches have been proposed for tackling this problem [37]. For example, Q-learning
aims to learn the optimal action-value function Q*(s,a), which is used to express the expected
reward of performing the action a from the state s, given that an optimal policy is then followed.
Then, the optimal policy can be directly derived as:

" (s) = arg max Q" (s,a). (3)

Even though simple look-up tables can be used to represent and store the optimal values (Q-
values), this approach quickly becomes impractical as the size of the state set S increases. To
overcome this limitation, deep neural networks can used to approximate the action-value function
(deep Q-learning). The neural network is updated after each time-step using stochastic gradient
descent [17], to minimize an appropriately defined loss function £(-) that measures the error between
the current estimation Q(s¢, at, W¢) and the updated estimation, where Wy denotes the parameters
of the neural network after ¢ optimization steps. The difference between the current estimation and
the updated estimation is defined as:

6 = Q(st,at, Wt) — (1 + ymazaQ(st+1,a, Wt))), (4)

and can be minimized using any appropriate loss functions, e.g., the squared loss £(§) = 0.562.
Even though deep Q-learning can provide state-of-the-art solutions to several RL problems it

is not easy to directly adapt it for solving continuous control problems, while it does not directly

optimizes the policy of the agent (instead it indirectly learns the optimal policy by estimating the
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Q-values). Such continuous control problems can be more efficiently solved using a different kind of
RL algorithms, the policy gradients methods [24,25], that directly learn the policy of the agent. A
special category of these methods work by using two different estimators: the first one, called actor,
is directly trained to estimate the optimal policy, while the second one, which is called critic, is
used to estimate the advantage that a state/selected action provides and then used to appropriately
train the actor. Again, deep neural networks can be used to implement the actor and critic models.
It is worth noting that usually the critic model is trained similarly to the Q-learning approach by
observing the rewards/punishment the agent obtains. Next, the actor is appropriately updated to
increase the probability of selecting the actions that lead to maximizing the expected reward. A
recently proposed deep RL method that can be used to train agents to performs continuous control,
the Deep Deterministic Policy Gradient method [24], is employed for the experiments conducted
in this paper. The interested reader is also referred to [2,23,37], for a more in-depth review of RL.

3.2 Proposed Drone Simulation Environment

The Head Pose Image Database [13], abbreviated as “HPID” thereof, was used to develop the
simulation environment. HPID contains 2,790 face images of 15 subjects in various poses taken in
a constrained environment. More specifically, for each person face images with various head tilts
(vertical angle) and pans (horizontal angle) were taken. For the tilt, head photos at —90°, —60°,
—30°, —15°, 0°, 15°, 30°, 60°, and 90° were taken, while for the pan images that depict the head
at —90°, —75°, —60°, —45°, —30°, —15°, 0°, 15°, 30°, 45°, 60°, 75° and 90° were used. The full
pan range exists only for the images with tilt angles between —60° and 60°. Therefore, we restrict
the available tilt angles used in the simulator to the aforementioned range.

The developed environment for discrete control supports 5 different actions (assuming that the
drone moves on the sphere):

1. stay: do not perform any action (to be used when a clear frontal view has been obtained),

2. left: move the drone left by 15° — pan decreases by 15°,

3. right: move the drone right by 15° — pan increases by 15°,

4. up: move the drone upwards by 15°/30° (depending on the available annotations) — tilt de-
creases by 15°/30°, and

5. down: move the drone downwards by 15°/30° (depending on the available annotations) — tilt
increases by 15°/30°.

During these movements, we assume that the camera is appropriately controlled to keep the face
centered, e.g., using a PID controller [34]. This is a quite realistic assumption, since deep face
detection algorithms are able to successfully detect faces with high accuracy, while even simple
PID-based control approaches work quite well for this task [34]. If an agent requests a control
command that exceeds the limits of the simulator, e.g., an angle larger than 90°, then the simulator
remains at its last valid state. The developed simulator uses these images to simulate the movement
of a drone in a part of a sphere defined by the center of the head of the subject. Some example
face images of one person are shown in Fig. 1. This environment can be directly used to simulate
the movement of a drone in discrete steps: 15° steps for the pan and in 15°/30° steps for the tilt.

Furthermore, this environment can be also used in pseudo-continuous mode by translating the
continuous control commands into multiple discrete steps. In this work, we assume that a maximum
of three consecutive discrete steps can be performed in one continuous control step. Therefore, the
continuous control output of the agent is quantized into 4 regions: no action, one control step,
two control steps (the same action is repeated twice), and three control steps (the same action is
repeated three times). This allows to significantly reduce the number of controls that the agent
has to handle, since instead of having an agent that can perform 49 (7 actions per control axis)
different combinations of actions (when the tilt and pan are simultaneously controlled), only two
continuous control outputs are needed (one for the tilt and one for the pan).
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) Face images at —30° tilt (pan varies from —90° to 90° in steps of 15°)
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(b) Face images at 0° tilt (pan varies from —90° to 90° in steps of 15°)
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(c) Face images at 30° tilt (pan varies from —90° to 90° in steps of 15°)

Fig. 1: Discrete Simulation environment: The drone moves in a sphere (approximately) centered
at the face of the subject. The control commands (left/right/up/down) are simulated using the
appropriate images from HPID.
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Fig. 2: Continuous Simulation Environment: Some of the 3D generated images for pan that ranges
from —30° to —30° using steps of 3° (note that the simulator resolution is 1°). Tilt was set to 0°.

However, the approach described above cannot be used to perform fine-grained continuous
control, since it is still limited by the available face poses. To overcome this limitation and provide a
more realistic simulation environment, the face alignment and warping technique proposed in [50],
was used to obtain 3D generated images of each person for various pans/tilts. To this end, we
directly used an open-source implementation of this technique, provided by the authors of [50],
available at https://github.com/junyanz/FaceDemo. One frontal image from each person, which was
randomly selected from the two frontal images provided by the HPID dataset, was used to generate
the texture for the 3D model. In the developed continuous control environment the pan ranges from
—45° to 45° in 1° steps (this can be assumed to be the control accuracy), while the tilt ranges
from —20° to 20° in 1° steps. One face at various pans, as provided by the developed simulation
environment for continuous control, is depicted in Fig. 2. Note that only the cropped face is fed to
the RL agent. This can be easily ensured in a real application using face detection methods [42,
45,46], and then appropriately cropping the part of the image that contains the face. It is worth
noting that an agent trained on the discrete/pseudo-continuous environment can be used to perform
coarse-grained control and approximately center the face image, while the agent trained on the fine-
grained environment can be then employed to fine-tune the drone position accordingly and make
small corrections. All the developed environments (discrete, pseudo-continuous and continuous)
are OpenAl Gym-compatible [4] and provided at https://github.com/passalis/continuous_drone_
frontal_rl.
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3.3 Continuous Drone Control with Deep Reinforcement Learning

The complete pipeline of the proposed deep RL technique for drone control is described in this
subsection. The RL agent interacts with the developed environment and observes its state (acquired
shot) as shown in Fig. 1 and 2. To simplify the learning process, a face detector can employed to
detect and crop the face image [42] (or face annotations can be used if they are available). After
appropriately cropping the image, it was resized to 64 x 64 pixels. Therefore, the RL agent at the
t-th time step observes a tensor x; € R®4X64%3 that corresponds to the cropped face image.

Defining a meaningful reward function is critical for the fast and stable convergence of RL
algorithms. Even though RL can deal, to some extent, with sparse and time-delayed rewards, we
experimentally found out that rewarding (or punishing) the agent after each action can significantly
speed up the learning process. The reward of the agent is related to the current control error. The
control error at the ¢-th step is defined as:

1 ze \° zp \°

— t p

ﬁ‘z((x;ﬂ) () ) “
where 2 is the current tilt (in degrees) and ), is the current pan (in degrees), while z7* and a3’
is the absolute maximum tilt/pan that can be observed. Note that it is trivial to modify this error
function to acquire non-frontal shots around the desired tilt /pan range. Then, the reward function

is defined as:
G (6)

However, this reward function provides a small positive rewards even for the wrong control move-
ments. Therefore, a threshold e;,,..s can be used for rewarding the agent, leading to a thresholded
reward function:
rt(thres) _ 0, if e; > t’fthres (7)
1—et/eihres, Otherwise

If etpres is set to 1, then the agent is rewarded at every time-step. Again, note that even though
the reward is proportional to the control error e, this can slow down the learning process. In the
conducted experiments the agent was rewarded only when it was near to acquiring a correct frontal
shot, i.e., epres Was set to 0.2. Then, to further boost the learning process, an extra small reward
ar or punishment ap can be provided whenever the agent makes a correct or wrong movement:

—ap, ifer>ei—1
b .
rt( onus) _ ar, ife; <er_1 - (8)

0, otherwise

Using a higher penalty for wrong actions ensures the stability of the control process and discourages
control oscillations. The optimal values for these parameters can be chosen by performing cross-
validation. In the conducted experiments it was established (by performing a simple line search)

that the best control accuracy is obtained for ap = 0.4 and a, = 0.2. Finally, the reward function

is defined as the sum between the raw reward rt(””"es)

bonus .
the “bonus” reward rt( onus) , that encourages correct and stable control actions:

, which depends on the control error e;, and

T)gshaped) _ Tgthes) + Tgbonus)' (9)

Three different agents were trained in this work: a) an agent capable of performing discrete
control (baseline), b) an agent capable of performing pseudo-continuous control, and ¢) an agent
capable of performing continuous control. The Double Q-learning approach was employed for train-
ing the first agent (discrete control) [16], while the Deep Deterministic Policy Gradient (DDPG)
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Table 1: Neural network architecture. The size of the final output layer depends on the RL method
that is used.

Layer Type Activation Function Output Shape
Input - 64 x 64 X 3
Convolutional (5 x 5, stride 2) - 30 x 30 x 16
Batch Normalization relu 30 x 30 x 16
Max Pooling (2 x 2) - 15 x 15 x 16
Convolutional (3 x 3) relu 13 x 13 x 32
Batch Normalization - 13 x 13 x 32
Max Pooling (2 x 2) - 6 x 6 x 32
Convolutional (3 x 3) relu 4x4x64
Batch Normalization - 4 x4 x64
Max Pooling (2 x 2) - 2Xx2x64
Dense relu 128
Dense relu 64
Dense -/tanh/- 1/2/5

method was used for training the other two agents [24]. The neural networks used for approximating
the action-value function in Q-learning and the networks used for implementing the actor and critic
in the DDPG method use the same architecture, which is shown in Table 1. Only the output layer
of the networks is appropriately modified to accommodate the needs of each method, i.e., 5 output
neurons are employed for the network used in the Q learning method (each neuron corresponds to
the Q-value of the corresponding action for the given state), 1 output neuron is used for the network
that implements the critic, while 2 output neurons (equipped with a tanh activation function) are
used for the actor network (the output of each of the neurons is used to directly control the pan
and tilt). Batch normalization is used after each convolutional layer [18], while the relu activation
function is used for all the convolutional and dense layers (except from the final one). Also, note
that the critic receives the output of the actor in its penultimate fully connected layer and predicts
the Q-value of the action selected by the actor for the given input state, while the actor and critic
share the same layers up to the first layer after the last convolutional layer. The latter allows to
share the knowledge encoded between the actor and critic, while speeding up the learning process.

Learning Hyper-Parameters The size of the experience replay buffer is set to Ny.¢piqy = 5,000 samples
when the discrete/pseudo-continuous environment is used and to Ny.¢pjq, = 10,000 samples for the
continuous environment. We used the smaller replay buffer size that allowed the models to converge
smoothly. Using larger sizes is not expected to significantly affect the learning process. Batches of
128 samples were used for the optimization, while the target model was updated with a rate of
0.001 after each iteration. The Huber loss function was employed for training the critic network,
as well as the network used in Q-learning;:

56° if 6 <0
(6) _ {05 ) 1 < Othres (10)

|6]—0.50¢p05, oOtherwise

where ¢ is the temporal difference error defined in Eq. (4). Huber loss is used instead of squared loss,
since it is more robust to outliers, providing smoother gradients and stabilizing the learning process
(8¢nres was set to 1). This is especially important when the total episode reward can accumulate to
relatively large values, as in the conducted experiments. For updating the weights of the network,
the RMSProp optimizer was used [40]. The learning rate was set to n = 0.0001 for the Double
Q-learning method, while the learning rate for the actor was set to n, = 0.00001 and to n. = 0.01
for the critic. Setting the learning rates to the appropriate values were of crucial importance in
order to ensure the stable convergence of the training process. To explore the solution space a
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linear exploration policy was used. For the Q-learning method exploration starts with an initial
rate of 1 and linearly decreases to 0.1 during the first 95,000 training steps. For the DDPG method
a Gaussian process with mean 0 was used. The standard deviation of the process was linearly
decreased from 0.5 (0.2 for the continuous environment) to 0.01 during the initial 95,000 steps
(45,000 steps for the continuous environment). The agents were trained for 100,000 training steps
for the discrete/pseudo-continuous environments and for 50,000 training steps for the continuous
environment. The number of steps for each episode was set to 50. For each episode a random initial
position was used for the drone. For training, head images from 10 persons of the HPID were used,
while for the evaluation images from the rest 5 persons were used. The discount factor was set 0.95
for the discrete agents, but it was reduced to 0.5 for the continuous agents, since larger values led to
stability issues during the training process. The keras-rl library was used to implement CDC [35].

4 Experimental Evaluation

The experimental evaluation is provided in this Section. For evaluating the method 500 random
episodes were used, where for each episode the agent was allowed to perform 20 control actions. The
discrete control method is abbreviated as “D-RL”, the pseudo-continuous drone control method
as “P-CDC”, while the continuous drone control method as “CDC”. The learned agents were also
compared to two other strategies: a) using a dummy agent that does not perform any control
action (abbreviated as “Stay”) and b) using a deep CNN to perform pose regression and then
appropriately control the drone (abbreviated as “Pose Regressor”). The Pose Regressor network
use the same architecture as the CNN used for estimating the Q-values (Table 1) and it was trained
to directly regress the tilt and pan of a face image using the same train/test setup, leading to a
mean tilt error of 16.67° and a mean pan error of 13.71° (evaluation on the test set).

The evaluation results for the discrete and pseudo-continuous environments are reported in
Table 2. Note even though these environments have different action spaces, they have identical
states, since the same states are observed by the agents. Therefore, the results obtained with the
D-RL and P-CDC are directly comparable, since the observations, rewards and control limits are
the same. Both the simple (“raw”) and the appropriately shaped (“shaped”) reward functions are
compared. Several conclusions can be drawn from the results reported in Table 2. First, using
RL to train the agents leads to significantly better results than the “Stay” baseline agent, which
corresponds to a dummy agent that does not perform any control action (the drone remains at its
initial position). The deep pose regressor also leads to higher error, demonstrating the importance
of learning optimal controllers for the task at hand instead of relying on hand-crafted methods to
perform control. Furthermore, the proposed reward shaping approach always significantly improves
the control accuracy, regardless the used RL method. The proposed pseudo-continuous control
approach also leads to overall better results than the discrete control approach, reducing the mean
control error from 6.23° to 5.12° (test evaluation). Finally, note that the agents are especially prone
to overfitting (the P-CDC method learns to almost perfectly control the drone during the training).

These improvements are also demonstrated in the qualitative evaluation shown in Figures 3, 4,
and 5. The first row corresponds to the D-RL method, while the second one to the P-CDC method.
The P-CDC method manages to obtain a fontral view of the subjects significantly faster, since it
is capable of adaptively and simultaneously controlling both axes (pan and tilt). For example, in
Figure 3 the P-CDC method obtains a frontal view of the subject in just two control steps, while
the D-RL method needs 7 control steps and it is more prune to oscillations around the center
position. Similar behavior can be also observed in the other two figures, confirming the superior
behavior of CDC for pseudo-continuous control.

The results for the fully continuous environment are shown in Table 3. Again, the shaped
reward function leads to significantly better control accuracy than training with the raw reward
function, highlighting the importance of using correctly designed reward functions. Note that the
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Table 2: Drone control evaluation for frontal view person shooting using the discrete and pseudo-
continuous environments. Both the simple (“raw”) and the appropriately shaped (“shaped”) reward
functions are compared. The absolute mean tilt and pan error (to obtain a perfectly frontal shot)
are reported.

Method Eval. Type | Mean Absolute Tilt Error (°) Mean Absolute Pan Error (°)
Stay Train 29.94 48.24
Pose Regressor Train 6.87 7.44
D-RL (raw) Train 8.82 13.32
D-RL (shaped) Train 1.47 2.58
P-CDC (raw) Train 9.24 6.96
P-CDC (shaped) Train 0.00 0.03
Stay Test 29.37 48.93
Pose Regressor Test 14.07 12.18
D-RL (raw) Test 25.26 19.08
D-RL (hint) Test 9.09 3.36
P-CDC (raw) Test 12.81 5.88
P-CDC (hint) Test 6.12 4.11

Fig. 3: Qualitative drone control evaluation: Comparing the D-RL approach (first row) to the P-
CDC approach (second row). The state after each of the first 8 control actions are depicted. The
test set was used for the evaluation. D-RL achieves 30°/45° tilt/pan error after two control steps
(best achieved in 7 control steps), while P-CDC achieves 15°/15° tilt/pan error after two control
steps (best achieved in 4 control steps).

Table 3: Drone control evaluation for frontal view person shooting using the continuous environ-
ment. Both the simple (“raw”) and the appropriately shaped (“shaped”) reward functions are
compared. The absolute mean tilt and pan error (to obtain a perfectly frontal shot) are reported.

Method Eval. Type | Mean Absolute Tilt Error (°) Mean Absolute Pan Error (°)
Stay Train 10.00 23.41
CDC (raw) Train 2.62 6.86
CDC (shaped) Train 0.18 0.72
Stay Test 10.28 23.48
CDC (raw) Test 3.25 5.75
CDC (shaped) Test 0.51 2.00




Continuous Drone Control using Deep Reinforcement Learning for Frontal View Person Shooting 11

Fig. 4: Qualitative drone control evaluation: Comparing the D-RL approach (first row) to the P-
CDC approach (second row). The state after each of the first 8 control actions are depicted. The
test set was used for the evaluation. D-RL achieves 0°/75° tilt/pan error after two control steps
(best achieved in 7 control steps), while P-CDC achieves 0°/0° tilt/pan error after two control
steps (best achieved in 2 control steps).

Fig. 5: Qualitative drone control evaluation: Comparing the D-RL approach (first row) to the P-
CDC approach (second row). The state after each of the first 8 control actions are depicted. The
test set was used for the evaluation. D-RL achieves 30°/30° tilt/pan error after two control steps
(best achieved in 5 control steps), while P-CDC achieves 15°/15° tilt/pan error after two control
steps (best achieved in 3 control steps).

agent learns to almost perfectly center the subjects using fine control commands, both during the
training and the testing. This behavior is also confirmed in the test control sequences depicted in
Fig. 6. The agent correctly controls the drone to obtain a clear frontal view, while usually small or
no oscillations around the center are observed.

Learning Stability The rewards and mean Q-values during the training process are plotted in Fig. 7.
Both the mean Q-value and reward steadily increase during the training process. However, note
that the rewards fluctuate during the training process. The stochasticity of the training process
greatly contributes to this behavior, since the environment is randomly initialized before starting
each training episode. This behavior can be also attributed to the quite unstable nature of deep
RL algorithms, as also discussed in [24,26], which often require several heuristics, such as using a
replay buffer, target network updates, etc., in order to ensure the smooth convergence of the training
process. As a result, this observation led us to fully evaluate the learned agent every few training
iterations (instead of just relying on the reward obtained on one specific episode). The evaluation
results are shown in Fig. 8. Note that the behavior of the agent can vary significantly during the
training process (especially when the DDPG method is used), even though a) the convergence
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Fig. 6: Qualitative drone control evaluation using the continuous environment for six different test
settings. The state after each of the first 11 control actions are depicted.

seems to be smooth and the evaluation was performed using (multiple episodes of) the training
set (on which the agent was optimized). Therefore, to avoid using a sub-optimal model, the agent
was evaluated every 5,000 training iterations and the best model (measured using the training set)
was chosen as the final model. This process ensured that the best model that was found during the
training process will be used. Indeed, it was experimentally confirmed that this process can increase
the accuracy both for training and test evaluation, even though the best model was selected using
the training set.

5 Conclusions

A method for developing deep RL agents for continuous fine-grained drone control to acquire
high-quality frontal view person shots was presented in this paper. First, a realistic simulation
environment was developed using the HPID. This environment was extended using 3D models,
along with a face alignment and warping technique, to allow for simulating the effects of continuous
control commands, overcoming the restrictions arising from the limited number of facial poses
contained in this dataset. An appropriate reward-shaping approach was also proposed to improve
the stability of the employed continuous RL method. Apart from performing continuous control, it
was demonstrated that CDC can be also effectively combined with simulation environments that
support only discrete control commands, improving the control accuracy, even in this case. Finally,
the proposed approach was compared both to an RL agent that performs discrete control, as well
as to a traditional controller that directly uses the output of a deep model that performs pose
estimation. It was experimentally demonstrated that the proposed approach improves the control
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Fig. 7: Convergence plots depicting the mean Q-value and the reward per training episode for the
discrete control agent. The convergence of the D-RL agent using the shaped reward (first row) and
the P-CDC agent using the shaped reward (second row) are depicted.
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Fig. 8: Validation error during the training for the D-RL (shaped reward) and P-CDC (shaped
reward).

accuracy over these methods, highlighting the importance of learning optimal controllers instead
of relying on hand-crafted control techniques.

Several interesting future research directions exist. First, the impressive performance of the pro-
posed technique paves the way for several other deep RL-based control methods for autonomous
drone-based cinematography. However, it it worth noting that we are currently still far away from
being able to directly deploy the developed methods in real world applications. In fact, even though
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in our work we employed datasets with real images, instead of computer generated graphics, it is
likely that much larger datasets should be created in order to ensure the successful deployment
of these methods in real applications. Furthermore, CDC can be applied to more dynamic en-
vironments, e.g., moving targets can be used, and more sophisticated deep architectures, e.g.,
recurrent networks [6], can be used to accurately predict the movement of the target and con-
trol the drone. Furthermore, the use of end-to-end trainable systems, that simultaneously perform
camera and drone control, can be developed and evaluated. Finally, the development of transfer
learning techniques for RL [31,39], that can combine the use of real datasets and simulators, which
use computer-generated graphics, will allow for training RL techniques under a wider range of
scenarios, while ensuring that they can be directly deployed in real-world applications.
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