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3D Object Pose Estimation using Multi-Objective
Quaternion Learning

Christos Papaioannidis and Ioannis Pitas, Fellow, IEEE

Abstract—In this work, a framework is proposed for object
recognition and pose estimation from color images using con-
volutional neural networks (CNNs). 3D object pose estimation
along with object recognition has numerous applications, such as
robot positioning vs a target object and robotic object grasping.
Previous methods addressing this problem relied on both color
and depth (RGB-D) images to learn low-dimensional viewpoint
descriptors for object pose retrieval. In the proposed method,
a novel quaternion-based multi-objective loss function is used,
which combines manifold learning and regression to learn 3D
pose descriptors and direct 3D object pose estimation, using only
color (RGB) images. The 3D object pose can then be obtained
either by using the learned descriptors in a Nearest Neighbor
(NN) search, or by direct neural network regression. An extensive
experimental evaluation has proven that such descriptors provide
greater pose estimation accuracy compared to state-of-the-art
methods. In addition, the learned 3D pose descriptors are almost
object-independent and, thus, generalizable to unseen objects.
Finally, when the object identity is not of interest, the 3D
object pose can be regressed directly from the network, by
overriding the NN search, thus, significantly reducing the object
pose inference time.

Index Terms—3D object pose estimation, convolutional neural
networks, multi-objective learning, object recognition, quater-
nion.

I. INTRODUCTION

OBJECT recognition and 3D pose estimation is a very
challenging computer vision task. It has been heavily

researched recently, due to its importance in robotics and
augmented reality applications. However, there is still a large
room for improvement, as occlusion, background clutter, scale
and illumination variations highly affect object appearance,
and, hence, reduce pose estimation accuracy.

3D object pose estimation typically derives object orienta-
tion in a camera coordinate system (Oc, Xc, Yc, Zc), e.g. in a
form of a quaternion q ∈ R4. The rotation R ∈ R3×3 between
the object coordinate system (Oo, Xo, Yo, Zo) and the camera
coordinate system can be defined by a unit quaternion, as
shown in Fig. 1. The 3D object pose estimation problem can be
considered as a regression problem, if q is continuous over R4

[1]–[3] or as a classification problem, if the 3D pose space has
been quantized in a predefined number of orientation classes
[4]–[6]. An alternative approach to 3D object pose estimation
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is transforming the 3D object pose regression problem into a
nearest neighbor (NN) one, by matching hand-crafted [7] or
extracted [8]–[11] image descriptors with a set of orientation
class templates via NN search. It has to be mentioned that the
3D object pose estimation problem addressed by this work
is a sub-case of 6D object pose estimation, where both the
rotation R ∈ R3×3 and translation T ∈ R3 between the
object coordinate system and the camera coordinate system
are estimated. Also note that, in this paper, we focus on
rigid object pose estimation, and articulated objects are not
considered (e.g., human body) [12].

Both classification and regression are typical machine learn-
ing problems. Deep learning and especially Convolutional
Neural Networks (CNNs) [13] showed remarkable perfor-
mance in such computer vision tasks, e.g. object detection
[14]–[16], recognition [17], [18] and instance segmentation
[19]. Deep CNNs were also successfully used for 6D object
pose estimation [20]–[24], where both the 3D rotation and 3D
translation of the object are estimated. CNNs usually require a
huge amount of training data, and there is limited availability
of object images annotated with their ground truth 3D pose,
due to the inherent difficulty in estimating such a ground
truth. However, 3D object models, if available, can be used
to create large amounts of synthetic object images along with
their ground truth poses for CNN training [8]–[11], [25]. In the
proposed method, a lightweight CNN model is trained using
both real and synthetic color object images.

Since most pose estimation methods rely on deep network
architectures and/or RGB-D data, our goal is to offer a
lightweight and reliable RGB only-based 3D object pose
estimation method, which can be utilized in embedded sys-
tems. Inspired by [10], the proposed method utilizes siamese
and triplet CNNs to calculate 3D object pose features. By
combining manifold learning and regression, the CNN learns
to produce pose features from which both the object identity
and 3D pose can be inferred. However, in contrast to [10],
the proposed CNN model is forced to learn features, whose
distance in the feature space is proportional to the correspond-
ing quaternion distance. To this end, a novel quaternion-based
multi-objective loss function is proposed, which combines
the strengths of both manifold learning and regression. The
trained CNN model demonstrates state-of-the-art 3D object
pose estimation accuracy along with object classification. In
addition, the object identity and 3D pose are estimated in real
time, hence, rendering it suitable for embedded computing
in autonomous robotic systems, such as drones. In drone
cinematography [26]–[34], 3D target (object) pose estimation
is essential for autonomous navigation and visual drone control
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to achieve the desired cinematography planning objectives,
e.g., to get object views from various view angles (poses).

To summarize, this paper offers the following novel contri-
butions:
• introduction of a novel loss function that utilizes quater-

nions and forces the CNN to learn robust pose features
along with direct 3D pose regression;

• improvement in 3D object pose estimation accuracy com-
pared to state-of-the-art (SoA), while using only color
images as input (without depth information);

• demonstration of the generalization ability of the pro-
posed method by performing experiments with previously
unseen objects;

• examination of various quaternion distance metrics that
resemble the real 3D pose differences, to be used in the
proposed loss function.

Previous pose estimation methods are reviewed in section
II. The proposed QL object pose estimation method and its
advantages over previous work are presented in section III.
The experimental setup and the extensive evaluation of the
proposed method compared to SoA methods can be found in
section IV. Finally, conclusions are presented in section V.

II. RELATED WORK

Object recognition and 3D pose estimation have been very
active research topics. Early methods were based on sparse
feature matching [35] or used 3D point clouds and Point-to-
Point matching [36], [37] for 3D object recognition. By using
depth information, good 3D object pose estimation results
have been achieved for textureless objects [7], [9], [38]–
[43]. A template matching framework for object detection and
pose estimation from RGB-D images was presented in [7].
However, it was sensitive to occlusions. This approach was
later extended to be used in heavily cluttered and occluded
scenes by employing Latent-Class Hough Forests [40]. In
another direction, random forests were used to estimate the
3D coordinates and the labels of every pixel of the input
image, in order to subsequently retrieve the 3D pose [41]. This
was extended in [42], by exploiting the uncertainty over pixel
3D coordinates and labels with an auto-context framework to
improve 3D pose estimation accuracy.

Recently, CNNs were used to accurately estimate the 3D
pose of specific objects. Pre-trained object classification CNNs
have been further trained to perform object recognition along
with pose estimation from RGB-D images [43]. Pre-trained
CNNs were also used in [3] to estimate the camera pose and
location from RGB images in an end-to-end manner, while
using a quaternion representation for 3D rotations. Also, a
pre-trained VGG-M [44] network on ImageNet was used as a
base network, coupled with a trained pose estimation network
in [45] to perform 3D pose regression. However, a separate
pose network for each object of interest is needed in this
case. Convolutional auto-encoders were used in [9] to regress
descriptors of locally-sampled RGB-D patches for 6D pose
estimation.

More recent deep learning methods utilize state-of-the-art
object detection [14], [15] and instance segmentation [19]
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Fig. 1. 3D object pose definition.

network architectures to the 6D object detection problem.
A 6D object pose estimation pipeline was introduced in
[21]. Two separate CNNs perform object segmentation and
estimation of the 2D location of the 3D object bounding
box projections, given the segmentation. The 6D object pose
can then be computed using a PnP algorithm [46]. A similar
method was used in [23] to regress the 6D object pose using
the estimation of the 2D location of the 3D bounding box
projections and a PnP algorithm, without the extra CNN
segmentation. A different pipeline was used in [22] where
a CNN regresses the 2D bounding box of the object. Based
on that, it further predicts the object depth, which is used to
calculate the object 6D pose. In contrast, the 6D object pose
can be directly regressed [20], by extending the Mask-RCNN
[19] network architecture by a pose estimation branch. Another
interesting approach is introduced in [24], where the SSD [14]
object detector is used to detect objects in an image, and then,
an Augmented Autoencoder is employed on the detections to
learn image features that represent rotations. At test time, the
calculated image features are matched with a precomputed
codebook using a NN search and the corresponding 3D object
poses are returned as estimations.

A different approach for 3D object pose estimation using
lightweight CNNs was introduced in [8], where a framework
involving siamese [47], [48] and triplet networks [49] was
utilized to learn discriminative features. A NN search is then
used on the learned features, in order to obtain the 3D object
pose and the object identity label. Later, a dynamic margin was
employed in the loss function to improve the robustness of the
resulting low-dimensional features [11]. In another approach,
the ground truth 3D object poses were used in the optimization
process [10] to learn more discriminative features for simul-
taneous 3D object pose estimation and object recognition. By
enforcing a direct relationship between the learned features
and the real pose label differences, the model yielded pose
features that greatly improved the 3D object pose estimation
performance compared to [8]. However, all aforementioned
methods rely mostly on RGB-D images to achieve high 3D
object pose estimation accuracy. Furthermore, 3D object pose
estimation in [8], [10], [11], exclusively employs NN search,
which can be slow as the number of objects increases. As depth
sensors, in contrast to color cameras, are not always available,
e.g. in drones operating outdoors primarily due to cost and
weight considerations, a reliable RGB-based 3D object pose
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(a) quaternion Euclidean distance (b) 3D cosine distance (c) inverse cosine distance

Fig. 2. The three different quaternion distances plotted against d(Ri,Rj).

estimation method is needed.

III. 3D OBJECT POSE ESTIMATION

Let an input image x ∈ RD (where D = H ×W × C is
the number of elements in a vectorized form, with height H ,
width W and color channels C) depict an object at a specific
pose. The objective of 3D object pose estimation methods
is to learn a function φ(x,w), in order to map x to the
3D pose space. The function φ(x,w) can be a continuous
differentiable CNN function equipped with parameter vector
w. To this end, three approaches can be considered. The most
obvious one is to train a CNN to regress an object image to its
pose, without employing any additional information about the
object identity. Alternatively, the same goal can be achieved
by classification, if the 3D pose space is quantized to represent
3D pose classes. Finally, another approach is to obtain the pose
implicitly, by employing the same CNN architecture as feature
extractor, while discarding the regression or classification layer
completely. That is, the focus is shifted towards learning lower
dimensional 3D pose features, which are then matched with a
set of precomputed image database features via NN search
[8], [10], [11]. By following this pipeline, besides the 3D
object pose, the identity of the object can also be predicted at
the same time: the estimated object identity and 3D pose are
the ones associated with the retrieved closest image from the
database.

A. Unit quaternions and quaternion distance

All possible 3D object orientations in space can be described
by the Special Orthogonal Group SO(3), where each rotation
is represented by an orthonormal matrix R ∈ R3×3,

R =
[

cosφ cosψ cosφ sinψ sin θ − sinφ cos θ cosφ sinψ cos θ + sinφ sin θ
sinφ cosψ sinφ sinψ sin θ + cosφ cos θ sinφ sinψ cos θ − cosφ sin θ
− sinψ cosψ sin θ cosψ cos θ

]
,

where φ, θ, ψ are the so-called Euler angles that describe 1D
rotations around axes X,Y, Z, respectively. Matrix R satisfies
RTR = I3,det(R) = 1. A geometrically meaningful distance
metric between two rotation matrices Ri,Rj can be defined
as follows [50]:

d(Ri,Rj) = ‖ log(RT
i Rj)‖2, (1)

where log(R) is the matrix logarithm and ‖ · ‖2 is the
Frobenius norm. This distance metric measures the length of
the shortest path between two points (Ri,Rj) on the SO(3)
[50]. However, using rotation matrices to represent rotations
in embedded systems has some drawbacks. A rotation matrix
R ∈ R3×3 consists of 9 variables which are not independent
and have only 3 degrees-of-freedom, making the training
process difficult. Also, each rotation matrix requires 9 floating
point numbers, which can be problematic when limited storage
space is available. In addition, estimating rotation matrices
can result in matrices that are no longer orthonormal [50], i.e.
RTR 6= I3, due to estimation errors. Training the CNN to esti-
mate the Euler angles (φ, θ, ψ) can also be problematic, as the
Euler angle representation suffers from the gimbal lock [51]
problem, which can cause ambiguity problems during CNN
training [2]. Alternatively, every rotation can be determined by
its unit rotation axis u ∈ R3, u = [ux, uy, uz]

T and its rotation
angle θ ∈ R. Using this so-called axis-angle representation,
unit quaternions can be defined. A unit quaternion q ∈ R4,
q = [q0, q1, q2, q3]T = ±[cos θ2 ,u

T sin θ
2 ]T , ‖q‖2 = 1, also

represents a rotation of angle θ around the rotation axis u.
Unit quaternions offer a preferable alternative for rotations
representation, as they offer a more compact representation
compared to rotation matrices. Moreover, although estimation
errors can also cause a unit quaternion to have magnitude
different than 1, it is more straightforward to re-normalize it to
unity in comparison to re-normalizing a noisy rotation matrix
[50] via SVD. Unit quaternion representation is also preferred
over Euler angle representation as it avoids the gimbal lock
problem. It has to be noted that unit quaternions double-cover
the SO(3) as q and −q represent the same rotation. However,
by enforcing q0 ≥ 0, there is a one-to-one correspondence
between rotation matrices and quaternions [52].

In this work, the unit quaternion rotation representation
is used, due to its advantages (compact, numerically sta-
ble). Therefore, a need for a distance metric that uses
unit quaternions is obvious. Three different quaternion dis-
tances are examined to find the best approximation of (1),
a) the squared Euclidean distance dE = ‖qi − qj‖22, b)
the 3D cosine distance, which is simplified to the squared
Euclidean distance between Full-Angle Quaternions qfaq ,
dC = ‖qfaqi − qfaqj‖22 [53] and c) the inverse cosine
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distance, dIC = 2 arccos(|qTi qj |) [11], [50]. Ideally, a linear
relationship between the quaternion distance metric and (1) is
desirable.

All three quaternion distance metrics are plotted against
(1) in Fig. 2. The squared Euclidean distance between unit
quaternions cannot be used as a rotation distance metric due
to the highly non-linear relation to d(Ri,Rj). The 3D cosine
distance offer a better rotation distance metric using quater-
nions but can also be problematic, especially in small pose
differences. The inverse cosine distance offers a quaternion
distance that best resembles the distance between rotation
matrices (1) and thus, is the one used in the proposed method.

B. Previous state-of-the-art pose feature learning methods

The pose feature learning approach offers significant ad-
vantages over direct 3D pose regression or classification, as it
only requires a lightweight CNN architecture and is scalable
to the number of objects [11]. In this case, in order to obtain
discriminative and robust pose features, a manifold learning
loss function is needed for CNN training. The learned features
can then be used in the NN search for 3D object pose and
identity retrieval. The overall loss function can be defined as
follows:

L = Ld + λ‖w‖22, (2)

where Ld focuses on feature learning, λ is a regularization
parameter and ‖w‖2 is the L2-norm of the network parameter
vector. This framework is based on a training dataset with each
sample si being of the form si = {xi, ci,pi}, i = 1, . . . , N ,
where xi is the input object image, ci is the object identity
label and pi is the 3D object pose. Then, different training
samples form sets of pairs P = {si, sj} and triplets T =
{si, sj , sk}, which are used in (2) to train the CNN to learn
features f , from which the 3D object pose and identity class
can be retrieved.

Previous work [8], [10], [11] followed this framework by
utilizing siamese and triplet networks to learn features for
3D object pose estimation. Manifold learning for 3D pose
estimation was first introduced in [8], by employing the overall
loss function:

L = Lpairs + Ltriplets + λ‖w‖22. (3)

If sample si = {xi, ci,pi} is an anchor sample coming from
the training dataset, sample pairs {si, sj} coming from the
same object and corresponding to very similar poses contribute
to the pairwise loss:

Lpairs =
∑

(si,sj)∈P

‖fi − fj‖22. (4)

Also, triplets {si, sj , sk} were defined in the following way:

• either si, sj belong to the same object and sk to any
different object or,

• all three samples si, sj , sk belong to the same object,
with pi, pj being similar 3D poses, while pi, pk being
dissimilar ones.

Triplets were used to define the triplet loss Ltriplets as follows
[8]:

Ltriplets =
∑

(si,sj ,sk)∈T

max

(
0, 1− ∆−

∆+ + ε

)
, (5)

where ε is a margin value and ∆+ = ‖fi − fj‖2, ∆− =
‖fi − fk‖2 are the Euclidean feature distances between the
similar (si, sj) and dissimilar (si, sk) samples in the triplet
{si, sj , sk}.

As indicated by (3), a direct pose regression term is absent.
Therefore, the estimated pose can only be obtained via NN
search. Furthermore, the absence of a regression loss term
in the total loss function leads to inferior performance, as
demonstrated in [10].

The total loss function (3) introduced by [8] was extended
in [11], where a dynamic margin εd was used in (5) instead
of the static ε. The dynamic margin εd, which utilized unit
quaternions and the inverse cosine distance, was defined as:

εd =

{
2 arccos(|qTi qj |) if ci = cj ,

n else, for n > π.
(6)

It should be noted that in both works [8], [11] the real
sample 3D poses were not utilized in the training process, in
contrast to [10], where the total loss function is given by:

L = Lpose + Lobject + Lregression + λ‖w‖22, (7)

having the regression term Lregression. The pairwise loss
Lpose used sample pairs {si, sj} from the same object that
may have different 3D poses:

Lpose =
∑
si,sj

{‖fi − fj‖22 − δ(pi,pj)}2, (8)

where δ is the squared Euclidean distance ‖pi−pj‖22 between
the ground truth poses pi,pj . In addition, depth information
was also used to weigh the contribution of each sample
pair. Lpose was used to impose 3D object pose difference
information on the pose feature vectors fi, fj . Lobject used
triplets {si, sj , sk} in order to train the model to deal with
samples coming from different objects and was defined as:

Lobject =
∑

si,sj ,sk

∆+

∆− + ε
, (9)

where si, sj belong to the same object identity and sk to any
other object identity. The regression loss, Lregression, used in
their method was a RMS error ‖p − p̂‖22 over all samples,
again weighted by a depth-related term, where p, p̂ is the
ground truth and the regressed 3D object pose, respectively.

C. Proposed QL object pose estimation method

The total loss function used in the proposed quaternion
learning (QL) 3D object pose estimation method is:

L = Ldesc + Lqreg + λ‖w‖22. (10)

The novel loss function Ldesc aims at learning robust features
from which, both the object identity and the 3D pose can be
inferred. The quaternion regression loss function Lqreg, apart
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from allowing the network to directly predict object 3D poses,
also enhances feature learning, by inferring extra information
about the 3D object poses in the optimization process.

Unit quaternion regression needs some special care, as
the four quaternion entries q0, q1, q2, q3 are not independent.
The term sin θ

2 is found in all three entries q1, q2, q3, while
cos θ2 contributes to q0. As a result, direct regression to unit
quaternions leads to inferior performance [2], as it is difficult
for the CNN to learn this dependence between q0, q1, q2, q3. In
contrast, in the proposed method, the independent axis-angle
rotation representation entries r = [θ′, u1, u2, u3]T , θ′ = θ

2
are regressed, as depicted in Fig. 3. Ultimately, the 3D pose
quaternion regression error can be defined as follows:

Lqreg = ‖q− q̂‖22, (11)

where: 
q̂0 = cos(θ′)

q̂1 = u1 sin(θ′)

q̂2 = u2 sin(θ′)

q̂3 = u3 sin(θ′).

(12)

It is worth mentioning that the output of the network q̂ is
not strictly forced to have magnitude 1 (e.g. by applying
L2 normalization), as it makes the CNN training harder [2].
Nevertheless, by using unit quaternions as labels, the regressed
q̂ norm does not diverge too much from the unit norm.
During testing, L2 normalization can be applied to ensure unit
quaternion estimation.

Note that, the inverse cosine distance 2arccos(|qT q̂|) could
have been used as the regression loss function Lqreg, since it
is proven to be a better quaternion distance metric (III-A).
However, in the case of using the inverse cosine distance
for regression, the partial derivative of 2arccos(|qT q̂|) with
respect to q̂i needs to be calculated. This derivative causes
problems during training. More specifically, the gradient is
not continuous in the interval (−1, 1) at point 0 and gets
extreme values at the points where 2arccos(|qT q̂|)→ 0, i.e.,
its optimal position, as can be seen below:

∂

∂q̂i
(2arccos(|qT q̂|)) = − 2qi(q

T q̂)√
1− (qT q̂)2|(qT q̂)|

, (13)

where qi is an element of q. The proposed regression loss
function (11) in fact minimizes the inverse cosine distance
indirectly. Lqreg is minimized when q̂ approaches q, and since
q is a unit quaternion, the dot product between q and q̂ will be
close to 1. Therefore, minimizing (11) leads to minimizing the
inverse cosine distance as well, avoiding convergence issues.

3D pose descriptor learning requires a discriminative fea-
ture space, in order to exploit the learned features in the
NN search and obtain accurate 3D object pose and identity
estimation. Ideally, features coming from different 3D ob-
jects should be distinct, forming distinguishable and compact
classes. Moreover, the distance between features of samples
with similar poses should be small and their distance for ones
with dissimilar poses should be large, in order to form 3D
object pose sub-clusters within the object identity classes. To
accomplish these requirements, a triplet loss function must
be utilized in conjunction with a pairwise loss function for

f r
q

w

x

Fig. 3. CNN architecture for 3D object pose regression.

CNN training. The triplet loss function ensures the formation
of object clusters in the feature space, while the pairwise loss
function is used to infer 3D pose similarity or dissimilarity.

In order for such loss functions to be used, the data used
for CNN training Strain = {s1, . . . , sN} consist of N data
samples, where each sample si = {xi, ci,qi}, i = 1, . . . , N
contains an RGB image xi of an object, its assigned object
identity label ci ∈ C = {c1, . . . , cL} and the corresponding 3D
pose quaternion qi ∈ R4. Let P = {si, sj}, T = {si, sj , sk}
be sets containing training sample pairs and triplets, respec-
tively. The proposed feature learning loss function is of the
following form:

Ldesc = Lp + Lo (14)

The pairwise loss Lp is computed on pairs {si, sj} ∈ P , where
the samples si, sj belong in the same object identity cl, l =
1, . . . , L. Lp is used to enforce pose similarity within the same
object identity cl. Therefore, if fi = f(xi) ∈ F ⊂ Rd are the
features obtained from the last fully connected CNN layer
having xi as input, the pairwise loss is defined as:

Lp =
∑
si,sj

{‖fi − fj‖22 − 2 arccos(|qTi qj |)}2, (15)

where |qTi qj | is the absolute value of the inner product
between the ground truth 3D object pose quaternions qi, qj .
Essentially, Lp forces the Euclidean feature distance between
two samples from the same object identity to be equal to the
quaternion distance between the corresponding 3D poses qi,
qj . Thus, if the quaternion distance is small, the optimization
process forces the corresponding feature distance to be small
as well. The same applies if the quaternion distance between
the pair 3D poses is large. Therefore, Lp leads to the formation
of pose-related clusters in the feature space F . Based on
this, the features obtained from the proposed method will be
referred as 3D pose descriptors and, thus, the feature space F
as descriptor space.

The triplet loss term Lo in (14) enforces the 3D pose
descriptors coming from same-object class samples to have
smaller distances in the descriptor space, when compared
to the distances of descriptors calculated from different ob-
ject identity samples. For this purpose, the sample triplets
{si, sj , sk} ∈ T , consist of samples si, sj coming from the
same object identity cl, l = 1, . . . , L, while sk is a sample
coming from any different object identity. Lo is similar to
(9) so that the distance in the descriptor space between the
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TABLE I
TOTAL LOSS FUNCTIONS USED IN THE METHODS OF [8], [10], [11] AND THE PROPOSED METHOD.

[8] L =
∑
‖fi − fj‖22 +

∑
max

(
0, 1− ∆−

∆++ε

)
+ λ‖w‖22

[11] L =
∑
‖fi − fj‖22 +

∑
max

(
0, 1− ∆−

∆++εd

)
+ λ‖w‖22, εd =


2 arccos(|qT

i qj |) if ci=cj ,

n else,for n>π


[10] L =

∑
{‖fi − fj‖22 − ‖pi − pj‖22}2 +

∑ ∆+

∆−+ε
+
∑
‖pi − p̂i‖22 + λ‖w‖22

ours L =
∑
{‖fi − fj‖22 − 2 arccos(|qTi qj |)}2 +

∑ ∆+

∆−+ε
+
∑
‖qi − q̂i‖22 + λ‖w‖22

same object identity is forced to be smaller than the distance
between object descriptors coming from different classes. ε
is a small regularizing constant, that also prevents having a
zero denominator in (9). Essentially, Lo minimizes the within
object class cluster distance in the descriptor space.

The critical difference of the proposed QL object pose
estimation method compared to previous work is that we
use the quaternion distance between the ground truth 3D
object poses in the pairwise loss function (15) instead of
the Euclidean distance δ used in [10]. Furthermore, inspired
by [2], a regression loss function (11) that enables 3D pose
quaternion estimations is also used, in conjunction with (14)
for CNN training. These two novelties provide superior 3D
object pose regression performance, as shown in the next
sections. The total loss functions used in [8], [10], [11] and
the proposed method are presented in Table I.

IV. EXPERIMENTAL RESULTS

In this section, a detailed description of the dataset genera-
tion is given, along with implementation details. In addition,
the employed baseline models and performance evaluation, are
presented.

A. Object pose dataset generation

Since all related methods [8], [10], [11] used the LineMOD
dataset [54] for their experiments, all our experiments were
performed using the same dataset, to ensure a fair comparison.

The LineMOD dataset consists of RGB-D sequences of
fifteen different every-day objects, along with their 3D poses.
In addition, for each object, a 3D mesh model is available.
These data were used to create three separate sets, the training
Strain, template Stempl and test Stest sets, respectively. In the
proposed method, each set consists of samples s = {x, c,q}
where x is only the RGB object image (by dropping depth
information) and c, q are the corresponding object identity
label and the assigned ground truth 3D pose quaternion,
respectively. The Strain set is used in the training process
of the network. The template Stempl set is used in 3D object
pose estimation performance evaluation, where it acts as a
database: its elements are matched to the test images via NN
search. The Stest set is used only in the test stage, where the
trained network is evaluated using the appropriate performance
evaluation metrics. It has to be noted that Strain set contains
a mixture of real and synthetic RGB images, while Stest,
Stempl consist only of real and synthetic images, respectively.
Synthetic images were rendered from the corresponding 3D
mesh models, as described below.

The synthetic data were created by rendering the available
object mesh models by positioning a virtual camera at various
viewpoints on a half dome over the 3D object model [8].
At first, the camera viewpoints were at the vertices of a
regular icosahedron. By recursively subdividing each triangle
into 4 sub-triangles, more viewpoints were defined, and thus,
a denser viewpoint sampling was created. For the Stempl
database viewpoints, the subdivision was applied only two
times, resulting in 301 evenly distributed viewpoints. For
the synthetic data used in the training set, the subdivision
was performed one more time, ending up in 1241 different
viewpoints. The object was then rendered as seen from each
such viewpoint. After rendering the synthetic images of Strain,
background fractal noise [55] was added. Using fractal noise to
simulate backgrounds is a common technique [8], [10], [11]
and it was proven to be the most suitable type of synthetic
noise to be used as background, when the test set environment
is not known beforehand [11]. Since it is desirable our model
to generalize well to different image domains and fractal noise
was also used as background for synthetic images in the
most similar methods [8], [10], we also use fractal noise as
background for the synthetic images.

The real world data were included both in the training and
test datasets, by ensuring a uniform viewpoint distribution over
the viewing domain (hemisphere). The samples were roughly
50%-50% split over the training and test set, as in [8]. Given
that the camera intrinsic parameters were provided with the
dataset, RGB image patches x were extracted from a bounding
cube centered at the object center and all values beyond this
bounding cube were clipped. These image patches were then
stored along with their objects class c and the corresponding
3D pose quaternion q, forming a sample s.

It has to be noted that the synthetic images used in Stempl
have no added noise, as the network should map the noisy
synthetic and the real world input images to the same location
in the descriptor space, with the map of clean template images.
Examples of real and synthetic images are shown in Fig. 4.

Rotationally invariant objects. Some of the LineMOD
dataset objects are rotationally invariant to different degrees,
as also pointed out in previous work [8], [10]. Specifically,
the objects bowl, cup, eggbox and glue needed to be treated
differently from the rest, when creating our pairs and triplets
for the training process. Similar to [8], we treated the bowl
object as fully rotationally invariant, meaning that the az-
imuth of the viewing angle should not be considered, as
the bowl appearance is the same over all different azimuth
angles. Moreover, the objects eggbox and glue were treated
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TABLE II
3D OBJECT POSE ESTIMATION AND OBJECT CLASSIFICATION ACCURACY.

Angular threshold t

5° 10° 15° 20° 30° 40° 45° Mean (Median) ± Std
Object

classification

3DPOD [8] 36.47% 64.11% 77.32% 83.87% 89.37% 91.78% 92.71% 16.38°(8.10°) ± 27.24° 96.11%

PEDM [11] ? - 60.00% - 93.20% - 98.00% - - 99.30%

PGFL [10] 37.19% 80.30% 92.73% 96.26% 98.49% 99.14% 99.26% 7.61°(6.12°) ± 8.57° 98.80%

QL (ours) 40.15% 79.42% 93.66% 97.77% 99.63% 99.93% 99.95% 6.87°(5.91°) ± 5.08° 98.80%

PGFLd [10] † 34.11% 75.02% 90.53% 95.36% 98.35% 98.96% 99.20% 8.07°(6.51°) ± 8.78° 97.23%

QLd (ours) † 36.13% 74.05% 91.15% 96.72% 99.34% 99.74% 99.79% 7.51°(6.38°) ± 6.32° 97.78%
? The results of PEDM are directly cited from [11] with RGB-D setting.
† Refers to training the models without regression loss.

(a) real (b) synthetic (c) template (d) cyclist

Fig. 4. Examples of images used for CNN training and testing.

as 180° symmetric around the z-axis. As also stated in [8],
the cup object is a special case, because, when the handle
is not visible, it can be treated as a rotationally invariant one.
However, this is not always the case, as, for example, when its
handle is visible. In this work, we also treated it as rotationally
invariant, as in [8].

B. CNN implementation details

The CNN used in the proposed method has the same
architecture to [8], [10], [11], while, in our case, the input
layer has only 3 channels (RGB). The first two network layers
are convolutional ones with max-pooling and a rectified linear
(ReLU) activation function, followed by two fully connected
layers. The final fully connected layer produces the 3D pose
descriptor vector f ∈ F ⊂ Rd. In all the experiments, the
descriptor dimensionality was set to d = 32, as we have
seen no benefit by its further increase. For the quaternion
regression, an extra fully connected layer is added after the
descriptor layer. Then, as depicted in Fig. 3, this layer is
followed by the quaternion activation layer, which maps the
regressed r vector to q̂, according to (12). The overall CNN is
trained using the stochastic gradient decent method [56], with
momentum 0.9 and initial learning rate of 0.01, as in [10].
The learning rate is reduced in every epoch and the batch size
was set to 120. Keras [57] with Tensorflow [58] backend, were
used for the proposed method implementation.

C. Evaluation procedure

In all experiments the models were trained using the
LineMOD dataset as modified by [8]. The proposed method is
compared to the baseline methods of [8], [10], [11]. It has to

be noted, that the method of [10] was implemented in Python,
as the code was not publicly available. At first, a CNN model
was trained by following the method described in [10] and
using the RGB-D sequences of the LineMOD dataset. This
was only to ensure that our implementation of [10] had a
similar performance with the one reported in [10], which is
based on RGB-D data. Then, by using the same optimization
framework, a different model was trained from scratch, this
time using only RGB images as inputs and by omitting any
depth-related information in the total loss function. This RGB-
based CNN model is denoted by PGFL, where the estimated
3D object pose is obtained by NN search. In addition to the
PGFL model, which was trained using the total loss function
(7), another model was trained using again RGB images as
inputs and only the Lpose, Lobject terms. This new CNN model
is referred as PGFLd. Similarly, two different CNN models
of the proposed method were trained, denoted as QL and QLd.
QL is trained with the full multi-objective loss function (10)
and the QLd model is trained using only the proposed pose
descriptor learning term Ldesc in (10) (without the quaternion
regression term Lqreg). Moreover, using the available code for
[8], a model was trained with the RGB setting and is denoted
by 3DPOD. Also, the method of [11] is denoted by PEDM .
Note that, in all models reported in Table II, the estimated 3D
object pose is the ground truth pose assigned to the closest
Stempl sample retrieved by the nearest neighbor search.

Given a test sample s = {x, c,q} coming from Stest, the
3D object pose estimation error between the ground truth pose
q and the corresponding estimated pose q̂, is the angular error
in degrees, calculated using the inverse cosine distance:

err(q, q̂) = 2 arccos(|qT q̂|). (16)

The 3D pose estimation accuracy at threshold t is then defined
as the percentage of test samples, for which the angular error
between the estimated and the ground truth pose is below
a threshold angle t, err(q, q̂) < t. It should be noted that,
the pose estimation accuracy is calculated only for the test
samples that were correctly matched to their corresponding
object identity. A comparison of the performance between
the proposed CNN model QL and the baseline CNN models
3DPOD, PEDM and PGFL for threshold angle values
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TABLE III
3D OBJECT POSE ESTIMATION ACCURACY OF THE PROPOSED QL AND PGFL [10] METHODS FOR EACH LINEMOD OBJECT, FOR ANGLE THRESHOLDS

t ∈ [5o, 15o, 30o].

ape benchv bowl cam can cat cup driller duck eggbox glue holep iron lamp phone

5°
PGFL [10] 33.53% 34.57% 72.74% 36.32% 35.42% 32.35% 33.14% 29.87% 37.68% 37.13% 34.41% 29.74% 35.71% 36.82% 37.82%
QL (ours) 32.56% 32.23% 97.70% 33.43% 32.40% 35.80% 39.91% 27.23% 31.06% 49.02% 48.66% 31.71% 34.58% 34.00% 37.72%

15°
PGFL [10] 95.05% 91.90% 98.66% 95.36% 91.22% 91.48% 93.63% 86.63% 91.06% 89.84% 96.29% 91.35% 92.20% 91.46% 94.63%
QL (ours) 93.83% 93.10% 100% 93.95% 91.24% 91.86% 95.50% 85.92% 91.44% 98.04% 99.10% 92.86% 91.88% 92.53% 92.63%

30°
PGFL [10] 99.40% 98.75% 99.85% 98.80% 98.11% 98.45% 99.42% 94.96% 99.12% 97.91% 99.53% 98.58% 98.70% 96.10% 99.42%
QL (ours) 99.69% 100% 100% 100% 99.53% 99.85% 100% 97.65% 99.71% 100% 100% 99.43% 99.03% 99.54% 99.86%

t ∈ [5◦, 10◦, 15◦, 20◦, 30◦, 40◦, 45◦] is shown in Table II,
where the object classification accuracy is also reported. It
should be noted that, since the code of [11] could not be
made available, the results reported in [11] are directly cited
in Table II only for threshold angle values t ∈ [10◦, 20◦, 40◦].
The proposed method improves the 3D object pose estimation
accuracy, particularly when high pose estimation accuracy
is needed, e.g. err(q, q̂) < 5◦. Also, note that, if we are
just interested on coarse 3D object pose estimation, i.e., by
classifying it to frontal, side, back, top views, the threshold
t = 45◦ should be used.

To further evaluate the 3D object pose estimation per-
formance of the proposed method, the mean and standard
deviation values of the pose estimation error (16), are also
presented in Table II. These values were also calculated using
the estimations of the proposed and all baseline CNN models
for samples coming from Stest, that were correctly classified to
their object identity. The proposed model QL have lower mean
and standard deviation values of the angular error compared
to all baseline models.

The effect of using the quaternion distance in (15) can be
seen by comparing the performance of PGFLd and QLd
reported in Table II. The quaternion distance used in the
pairwise loss, boosted the 3D object pose estimation perfor-
mance both in terms of accuracy and mean angular error.
Since the quaternion distance used in the proposed method is a
better metric for 3D pose differences, the similar-pose clusters
formed in the descriptor space by Lp are more compact,
allowing the network to more successfully retrieve the closest
Stempl sample. Also, the object classification rate is slightly
increased, meaning that the object identity clusters in the
descriptor space were less affected by the quaternion distance.
Moreover, the comparison between QLd and QL shows that,
when the quaternion regression term Lqreg is also included in
the total loss function during the training process (QL), the 3D
object pose estimation accuracy, the mean angular error and
the object classification results are further improved. As the
pose estimations are obtained by NN search on the descriptor
space, this means that Lqreg, when combined with Ldesc,
forces the CNN to learn more robust 3D pose descriptors.

The 3D pose estimation accuracy for each object in the
LineMOD dataset is presented in Table III. The comparison
is conducted between the proposed method QL and the
second best performing method PGFL for threshold values
t ∈ [5o, 15o, 30o], which cover the high, medium and low

TABLE IV
PROPOSED METHOD 3D OBJECT POSE ESTIMATION ACCURACY BY CNN

REGRESSION OR VIA NN SEARCH.

Angular threshold t

5° 15° 30° 45° Mean (Median) ± Std
Inference

time

QLR 21.18% 72.53% 86.79% 89.93% 23.32°(8.99°) ± 42.07° 2.8 ms

QL 40.15% 93.66% 99.63% 99.95% 6.87°(5.91°) ± 5.08° 5.3 ms

TABLE V
3D OBJECT POSE ESTIMATION PERFORMANCE ON AN UNSEEN OBJECT.

Angular threshold t

5° 15° 30° 45° Mean (Median) ± Std

PGFL [10] 31.99% 59.31% 73.57% 77.68% 33.28°(10.57°) ± 48.70°

QL (ours) 49.00% 82.35% 90.81% 93.23% 15.88°(5.06°) ± 35.37°

PGFLd [10] † 30.37% 53.26% 64.94% 71.79% 40.10°(12.59°) ± 53.15°

QLd (ours) † 36.26% 63.17% 76.14% 83.00% 29.16°(8.58°) ± 46.79°
† Refers to training the models without regression loss.

accuracy areas, respectively. The reported results show that
the performance for the rotationally invariant objects (bowl,
cup, glue, eggbox) is increased, especially in the high accuracy
threshold (t = 5o). This can be explained by the fact that the
model should only learn to encode the elevation in the case
of fully rotationally invariant objects (bowl), or half of the
azimuth angles and the elevation of the objects that are 180o

symmetric around the z-axis (cup, glue, eggbox). These results
also highlight the need to treat non-trivial object symmetries
by using only RGB images. In addition, the comparison
between the performance of the proposed method QL and
PGFL for each object, show that the proposed loss function
better imposes the 3D pose information to the model, as the
accuracy of QL at threshold t = 30o is nearly 100%, for
all objects. Moreover, the proposed method accuracy is over
95% for all rotationally invariant objects even in the medium
accuracy threshold (t = 15o).

The quaternion regression term (11), not only enhances the
3D object pose estimation performance, but also offers the
CNN the ability to directly regress the 3D object pose. By
directly regressing the 3D object pose, the NN search is com-
pletely omitted and, thus, faster 3D object pose estimations
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are possible. When the estimated 3D object pose is obtained
by direct regression, the CNN model is denoted as QLR.
Note that, QLR and QL are the same CNN model, with
the only difference being that during testing, the 3D object
pose estimations are obtained by direct network regression in
the case of QLR, instead of employing a NN search on the
learned pose descriptors (QL). As shown in Table IV, the 3D
object pose estimation performance of QLR is significantly
lower compared to the performance of QL that uses NN
search. Nevertheless, direct 3D object pose regression can be
effectively used in cases where only coarse 3D object pose
estimation is desirable (e.g. for t = 45◦). Also, it must be
noted that QLR speed is nearly double that of QL, as shown
in Table IV. Computational speed was calculated using Ubuntu
and a GeForce GTX 1080 Ti graphics card.

D. Generalization ability to unseen objects

In addition to the experiments with the LineMOD dataset,
an evaluation of the generalization ability of the proposed QL
method to previously unseen objects was performed. To this
end, the best performing CNN models QL, PGFL and QLd,
PGFLd, which were trained using the full LineMOD dataset,
were tested on synthetic cyclist images, like the one shown in
Fig. 4d. These images were rendered using a 3D mesh model
and the pipeline described in IV-A. The choice of synthetic
cyclist images as test images was made in order to evaluate
the ability of the CNN models to generalize to unseen objects
having more complex appearance (cyclist on a bicycle) than
the ones used in training.

As shown in Table V, both CNN models QL, QLd, obtained
from the proposed method, greatly outperform the baseline
ones PGFL, PGFLd, proving again that the pose descriptors
learned by the proposed quaternion-based loss function better
encapsulate the 3D object pose information. In particular,
when comparing the performance between QL and PGFL, a
great increase of the pose accuracy is observed for all threshold
values, especially in the high accuracy thresholds t = 5◦

and t = 15◦, where the 3D object pose estimation accuracy
increase is 17% and 23%, respectively. As also shown in
Table V, the mean and standard deviation angular error values
calculated for the proposed QL method pose estimations are
significantly smaller than the ones calculated for the baseline
method. It should be noted that the object classification rate in
these experiments is 100%, as only cyclist object samples were
included in the Stempl set. This was to specifically evaluate
the 3D object pose estimation performance of both methods
on an unseen object.

The results obtained by the CNN models QLd and PGFLd
shown in Table V, show the impact of the regression terms
Lqreg, Lregression on performance, when it comes to unseen
objects. When the the total loss function (10) is used for
CNN training (QL), the 3D object pose estimation accuracy is
improved by 12.74% for the angle accuracy threshold t = 5◦

and by 19.18% for t = 15◦ compared to QLd performance.
The corresponding increase obtained by using the total loss
function (7) of the baseline method PGFL, when compared
to PGFLd model, is only 1.62% and 6.05% for t = 5◦ and

(a) five objects (b) single object

Fig. 5. Descriptor visualization of test images in 3D space.

Fig. 6. Retrieved top 5 nearest neighbors for 6 query (test) images. Left
column shows the query images and the rest columns depict the retrieved
closest nearest neighbors from left to right.

t = 15◦, respectively. These results prove that the proposed
quaternion regression loss function Lqreg makes the CNN
model more sensitive to 3D object pose differences, regardless
the object.

E. Qualitative evaluation

Apart from the 3D object pose estimation accuracy reported
in Tables II - V, a qualitative evaluation of the proposed
method is also performed. This is to give a more intuitive
demonstration of the 3D object pose estimation capabilities of
the proposed QL object pose estimation method.

At first, we present a visualization of the learned 3D pose
descriptors fi. Such descriptors of test images coming from
five of the fifteen different objects in the LineMOD dataset
are depicted in Fig. 5a, in a 3D dimensional space. The selec-
tion of five random objects was made only for visualization
purposes. The dimensionality reduction from d = 32 to 3,
was performed using the t-SNE algorithm [59] provided by
the Python library scikit-learn [60]. All five object identity
clusters appear to be easily distinguishable. A more clear view
of each of the formed class clusters is given in Fig. 5b, where
the learned 3D pose descriptors of test images coming from
a single random object are shown. Each point represents an
image depicting the object at a specific pose.
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In addition, the images of the top 5 Stempl samples retrieved
by NN search for each query image, are presented in Fig. 6.
The query images either belong to the test set Stest or are
synthetic images of the unseen cyclist object. In both cases, the
proposed method matches the query images to Stempl sample
images that have very similar 3D pose, with the 3D pose
difference between them being imperceptible in most cases.

V. CONCLUSION

In this work, a framework for 3D object pose estimation
along with object recognition using a lightweight CNN was
presented. In contrast to previous work, it is proven that RGB
images are sufficient for accurate 3D object pose estimation
without using depth information. This fact allows various ap-
plications in robotics, e.g., view selection for drone cinematog-
raphy. By examining the most appropriate 3D pose distance
metric, a multi-objective loss function based on quaternions,
is proposed. The proposed QL object pose estimation method
yielded more discriminating 3D pose descriptors, hence in-
creasing the 3D object pose accuracy compared to the state-
of-the-art. It also provided the CNN generalization ability to
unseen objects. In addition, when the object identity is not
important, the 3D object pose can be directly regressed from
the CNN, thus, reducing the 3D object pose inference time.

Future work can extend this method to take into account
object symmetries that are non-trivial, while using only RGB
images. In addition, the ability of the CNN model to generalize
to different image domains should also be examined, as it
would allow training models only with synthetic images.
Finally, training the CNN model to treat heavily occluded
images should also be considered.
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