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Abstract

The mass availability of mobile devices equipped with cameras has lead to
increased public privacy concerns in recent years. Face de-identification is
a necessary first step towards anonymity preservation, and can be trivially
solved by blurring or concealing detected faces. However, such naive pri-
vacy protection methods are both ineffective and unsatisfying, producing a
visually unpleasant result. In this paper, we tackle face de-identification
using Deep Autoencoders, by finetuning the encoder to perform face de-
identification. We present various methods to finetune the encoder in both a
supervised and unsupervised fashion to preserve facial attributes, while gen-
erating new faces which are both visually and quantitatively different from
the original ones. Furthermore, we quantify the realism and naturalness
of the resulting faces by introducing a diversity metric to measure the dis-
tinctiveness of the new faces. Experimental results show that the proposed
methods can generate new faces with different person identity labels, while
maintaining the facelike nature and diversity of the input face images.
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1. Introduction1

In modern times, the mass availability of mobile devices equipped with2

cameras, such as mobile phones, camera vans used for city mapping purposes3

or dash cameras, and more recently, drones, has lead to increased public4

privacy concerns. As unknowingly photographed individuals often wish to5

maintain their anonymity, companies which manage databases of such im-6

ages opt for de-identification methods to provide this anonymity. This is7

now enforced, at least in the European Union, by the recent GDPR legis-8

lation [1]. Therefore, a good practice would be to install privacy by design9

systems as close as possible to surveillance cameras, and even cameras used10

for entertainment purposes, such as on drones, to ensure privacy protection.11

As a person’s face is amongst the most significant biometric features when12

it comes to person identification, both by humans [2], and by computers13

[3], typically face de-identification suffices for anonymity preservation. A14

standard de-identification method comprises of face detection as a first step15

and blurring of the detected facial regions to achieve de-identification. As an16

example, in the images shot by a Google Camera Car for mapping purposes,17

when a face is detected, the face is blurred to hinder the recognition of18

that person both by computers and humans alike. Although unimportant19

in this context, such blurring processes produce a visually unpleasing result.20

Furthermore, it has been shown that such naive techniques can be defeated,21

for example via parrot recognition [4]. In addition, recent studies show that22

pixelation and blurring do not ensure proper de-identification [5, 6], as in23

the absence of clear facial features, humans will look for contextual clues to24

recognize a person, with surprising success. Thus, more advanced face de-25

identification methods, in terms of effectiveness and utility of the resulting26

images, must be investigated.27

With the recent advances of Machine Learning (ML) in face detection and28

recognition, face de-identification methods can become much more effective29

and efficient. Face detection and recognition accuracy has been greatly im-30

proved [7, 8]. Thus, de-identification methods can be better evaluated using31

learned face verification and recognition models. Furthermore, the aesthetic32

quality of the de-identified images can be improved with Machine Learning,33

which offers more sophisticated solutions than face blurring.34

In this paper, we exploit Autoencoders (AEs), extracting meaningful low-35

dimensional feature representations of facial images, to tackle the problem of36

face de-identification. Interestingly, we find that the information loss caused37
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Figure 1: Before (left) and after (right) application of the proposed de-identification
method. The identity of the subject is altered in a manner which preservers basic vi-
sual attributes, such as gender, pose, emotion and age, thus maintaining the naturalness
of the image.

by the dimensionality reduction that AEs perform, yields facial images which,38

while visually similar to the original ones, are recognized as different by39

state-of-the-art face recognition systems. We exploit this inherent ability for40

face de-identification, through the generation of facial images with different41

identity labels than the original one, both visually and quantitatively.42

The main contribution of this paper lies in finetuning the encoding part of43

a standard autoencoder to perform de-identification in the latent space. After44

finetuning the encoder, the network can then perform face de-identification45

in an end-to-end fashion, by forward passing the facial image through the46

modified encoder, which changes the identity of the face while preserving47

other attributes, and subsequently the decoder, which then reconstructs a48

new face. Extensive experimental results using both supervised and unsu-49

pervised learning for the encoder finetuning step indicate the effectiveness50

of the proposed method. Figure 1 demonstrates the ability of the proposed51

method to alter the identity of a subject effectively, while maintaining the52

naturalness of the image by creating a new face which inherently blends in53

with the context of the original face. Finally, a diversity measure is intro-54

duced, to quantify the quality of the generated faces, in terms of realism and55

utility of a de-identified image.56

The rest of this paper is organized as follows. Section 2 contains a state57

of the art review and theoretical comparisons to this work. In Section 358

the tools used in the proposed method are introduced, and the method is59

described in detail. Section 4 presents the results of our experimental study,60

while the conclusions drawn are summarized in Section 5.61
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2. Related Work62

Recent methods used for face de-identification focus on finding the bal-63

ance between preserving global facial attributes and simultaneously hinder-64

ing face recognition by altering the more refined facial attributes. The vi-65

sual quality of the de-identified image is addressed by using models which66

generate new facial images of high quality. An overview of various face de-67

identification methods can be found in [9]. Despite recent interest, there68

are no widely accepted benchmarks for face de-identification, and various69

face recognition datasets are used in conjunction with state-of-the-art face70

recognition systems to evaluate de-identification systems.71

2.1. De-identification and k-Anonymity Theory72

The k-Anonymity theory [10] imposes that in a set of de-identified people,73

each person cannot be distinguished from at least k − 1 other people in the74

same set. In [4], the k-Same algorithmic family was introduced, providing a75

de-identification method with theoretical guarantees of anonymization. The76

family was later enriched with the addition of the model-based k-Same-M77

method [11], which is more robust to alignment and other variation issues78

in a gallery set. Based on the k-Same-M family, in [12], multiple facial79

attribute classifiers as well as a face verifier are used in conjunction with80

a face image synthesis model, relying on heavily annotated datasets with81

multiple facial attribute features. The attribute classifiers are then used to82

measure the attribute similarity between a test sample and other samples83

from the gallery set. Compared against the k-Same-M method, the proposed84

method greatly reduces face recognition rates. In [13], the concepts of k-85

anonymity, l-diversity and t-closeness are directly tied to a proposed neural86

architecture, for effective anonymization of facial images.87

2.2. Neural Networks & De-identification88

Many tasks related to face analysis, such as face detection, recognition89

and verification [8, 7], have benefited from the recent success of Deep Learn-90

ing methods in the Computer Vision field. Convolutional neural networks91

revolutionized the way many face-related problems are handled, from face92

recognition [14], facial pose recognition in the wild [15], to attribute alteration93

[16]. Neural networks were used in [17], in combination with a background94

subtraction and segmentation scheme, for pedestrian face de-identification in95
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video. A style transfer algorithm is applied partially to change the appear-96

ance of a face detected in an image, after segmentation has revealed salient97

areas (i.e., people). The result is a de-identified image whose visual quali-98

ties depend heavily on the reference style image. However, it can be argued99

that changing the artistic style of a detected face doesn’t effectively hinder100

recognition, while providing a somewhat unrealistic result.101

In [18], a Generative Adversarial Network (GAN) is used for inpainting102

facial details after facial landmarks have been identified. This preserves the103

pose of the original face, while constructing a facial image of high quality104

which is visually pleasing and more effective than blurring methods for de-105

identification purposes. Generative networks were also used in [19], to gen-106

erate artificial faces which are then blended to create a new identity. Using a107

deep VGG-like network, feature vectors are extracted from a gallery set, and108

the k-Nearest Neighbors of each sample in the set are computed. These are109

then fed into the generative network which generates the new identity. The110

generated face is blended into the context of the original one in a separate111

step.112

More recently, GANs were used for full body as well as face de-identification113

[20], addressing the problem of identity recognition via non physiological114

characteristics. The networks are trained to produce new samples of cloth-115

ing as well as faces which match the probability distribution of the training116

dataset. Then, during deployment, new clothing items and faces are gener-117

ated and inpainted in place of the original ones, while attempting to protect118

the naturalness of the image against artifacts inserted by the GAN. GANs119

have also been used for style transfer purposes, which is closely related to120

de-identification, in [16]. Finally, adversarial training was used in [21], to121

train a generative network to produce new faces while preserving the action122

that the original person was performing. A deep resisual-based architecture123

was used with impressive results. However, despite the action preservation,124

no other attribute preservation occurs with regards to the faces themselves125

(e.g., gender, age or emotion).126

Autoencoders & This Work. In contrast to the above methods, in this work127

Autoencoders [22] are used, and it is shown experimentally that they are128

tools capable of achieving good de-identification performance, while produc-129

ing high quality reconstructions. Deep autoencoders have recently been pro-130

posed to solve tasks such as one-shot face recognition [23], unconstrained face131

recognition [24, 25], face alignment [26] and face hallucination [27] among132
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others. The features extracted by deep AEs have been shown time and time133

again to be significantly useful to such tasks. Adversarially trained autoen-134

coders were proposed in [28] for image generation and manipulation, and135

stacked Wasserstein autoencoders were proposed in [29] and applied to facial136

images with interesting results.137

Because of the information loss that occurs when extracting representa-138

tions of lower dimensionality, we show that even standard AEs reconstruct139

faces with altered identities. With an encoder finetuned for the purpose140

of de-identification, the de-identification performance increases even further141

and the produced images are also visually and quantitatively dissimilar to the142

original ones. The naturalness of the resulting images is quantified and mea-143

sured via faceness and diversity metrics, highlighting the ability of the pro-144

posed autoencoders to produce images which highly resemble diverse faces,145

with different identities than the original ones. Furthermore, the proposed146

method is very lightweight and capable of processing hundreds of faces at147

very high speeds, as it does not require online training or any additional148

processing, such as image segmentation. Thus, in conjunction with a fast149

face detector [30], a real-time de-identification system based on the proposed150

method can be deployed, even on mobile devices.151

3. Proposed Method152

3.1. Autoencoders153

Autoencoders (AEs) are neural networks which map their input data to154

itself, through multiple levels of non-linear neurons [22, 31, 32]. Thus, the155

input and output layers consist of as many neurons as is the dimension of156

the data. Such networks are comprised of an encoding part, which maps the157

input to an intermediate representation, and a decoding part, which maps the158

learned intermediate representation to the desired output, and is layer-wise159

symmetrical to the encoding part.160

Typically, an AE is used for dimensionality reduction as well as feature161

extraction, which means that the intermediate representation learned is of162

lower dimension than the input data. The layers of both parts of the network163

(l = 1, . . . , lenc, . . . , L, where lenc is the encoding layer), are accompanied164

by weights A(l) ∈ RDl×Dl−1 which multiply each layer’s input to produce165

an output, where Dl is the dimension the output at layer l. A bias term166

b(l) ∈ RDl is also added to the output of the neuron, and a non-linearity167
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s(·) called the activation function of the neuron is applied to this output to168

produce the neuron’s activation value.169

In the context of fully connected layers, the output x
(l)
out ∈ RDl of the l-th170

layer is given by:171

x
(l)
out = s(A(l)x

(l)
in + b(l)) (1)

where x
(l)
in is the input to the l-th layer, which is equal to the output of the172

previous layer, or:173

x
(l)
in =

{
x , l = 0

x
(l−1)
out , l > 0

(2)

where x ∈ RD0 denotes an input sample, D0 being the dimensionality of the174

input.175

For convolutional layers, the network’s input is a three-dimensional tensor176

representing an image as its pixel intensities, i.e., x ∈ RC
(0)
in ×H×W where177

H,W are the image’s height and width and C
(0)
in is the number of channels178

of the input image (e.g., 3 in RBG images). In this setting, each layer is179

parameterized by C
(l)
out filters f ∈ RC

(l)
out×n×n×C

(l)
in , and C

(l)
out biases b

(l)
c ∈ R.180

The output of the l-th layer is computed as:181

x
(l)
out,c = b(l)c +

C
(l)
in −1∑
k=0

f
(l)
c,k ∗ ∗x

(l)
in,k (3)

where x
(l)
out,c ∈ RHl×Wl is the c-th channel of the output tensor with c ∈182

{0, 1, . . . , C(l)
out}, b

(l)
c is the c-th bias value, f

(l)
c,k ∈ Rn×n is the k-th channel of183

the c-th filter, x
(l)
in,k ∈ RHl−1×Wl−1 is the k-th channel of the input tensor and184

finally the double star symbol, ∗∗, denotes the 2D convolution function.185

As in standard convolution, the input image must be padded spatially in186

accordance with the size of the convolution filter to preserve its dimensions.187

When no padding is added, the dimensions of the resulting volume are smaller188

than the original. To reduce the dimension faster, strided convolutional189

or pooling layers may be used. As an example, a max pooling operation190

with a 2 × 2 kernel and stride 2 will reduce the input volume by a factor191

of two immediately, by choosing the maximum response out of each 2 × 2192

non-overlapping input region, due to the stride. Although this causes some193

information loss, it can be compensated for by increasing the number of filters194

in the convolutional layers, to assure sufficient information is encoded for the195

reconstruction process.196
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The network parameters, i.e., the weights or filters and biases, can be197

learned using the backpropagation algorithm [33], in combination with an198

optimization method, such as Stochastic Gradient Descent (SGD) [34], to199

optimize an objective function. For autoencoders, the objective is typically200

to minimize the reconstruction error, i.e., difference of the output and the201

input, in terms of a differentiable function, such as the squared l2-norm:202

ℓ(xi,x
(L)
i,out) = ∥xi − x

(L)
i,out∥22 (4)

The objective of the network is to minimize the mean of errors over all data203

samples:204

L(X,X
(L)
out) = min

θ

1

N

N∑
i=1

ℓ(xi,x
(L)
i,out) (5)

where X,X
(L)
out are the matrices containing all input samples xi and recon-205

structed samples x
(L)
i,out, for i = 1, . . . , N , and θ is the set of the network’s206

optimizable parameters, i.e., θ = {A(l),b(l)}Ll=1 for networks comprised of207

fully connected layers, or θ = {f (l),b(l)}Ll=1 for convolutional networks.208

As the network’s output is a function of its input and the network’s209

weights and biases, the optimization of this loss function is tied to updating210

the parameters of the network towards the minimization of the reconstruction211

error. The process of updating the network’s parameters is referred to as the212

network’s training process. As the training process converges, the activations213

of the intermediate layers can be used as representations of the input data214

for other tasks, such as classification and clustering. Let xenc denote the215

output of the lenc layer, i.e., xenc = x
(lenc)
out ∈ Rd, d < D. Then xenc can216

be used as the low-dimensional representation of the data in the subsequent217

classification task.218

It’s worth noting that the described process is fully unsupervised, meaning219

that the label information of the data is not utilized during the training220

process. However, when the label information is available, its utilization in221

the training process of an AE could intuitively improve the quality of the222

features produced [35].223

3.2. Autoencoders for Face De-identification224

Let xi represent a facial image and xi,enc represent its encoded feature225

vector, learned by a standard Autoencoder. Due to the dimensionality re-226

duction, the encoded feature vector is a lossy compressed version of the orig-227

inal image. As a direct result, the reconstruction will not be perfect even228
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though the network has been trained to minimize the error between the re-229

construction and the input. In fact, this loss of information is enough to230

hinder an artificial face recognition system’s accuracy, despite the fact that231

the reconstructed image may be visually very close to the original, much like232

adversarial examples designed for the sole purpose of confusing neural net-233

works [36]. This important AE property is further demonstrated in Section234

4.235

Based on this observation, and the fact that the encoded representation236

contains information more useful than pixel intensities, we disintegrate the237

autoencoder into its encoder and decoder parts and focus on finetuning the238

encoder to produce representations which visibly alter the identity of its239

input. To achieve de-identification for a given sample xi, a target represen-240

tation zi is defined, and the encoder is trained to learn this representation241

by minimizing the following loss function over all samples:242

ℓdeid(xi,enc, zi) = ∥xi,enc − zi∥22. (6)

The choice of targets zi is detailed in the following subsections.243

Supervised Attribute Preserving De-identification. When attribute labels are244

available, i.e., each sample xi is accompanied by a set Ai of attributes such as245

identity, gender, ethnicity, pose, facial expression etc., these can be exploited246

to produce more visually pleasing de-identified faces. This can be achieved247

by forcing the encoded representation to lie away from the representation248

vectors with conflicting attributes and closer to representations with desirable249

attributes. We denote attributes as desirable or undesirable in the context250

of face de-identification. For example, identity is an undesirable attribute,251

and the representations should be shifted away from samples with the same252

identity. Other attributes, such as gender, pose and expression, are desirable253

for attribute preservation, so that the de-identified face will naturally blend254

into the context of the original face.255

Formally, we define the target representation of the i-th sample, yi, as:256

yi = (1− α)xi,enc + αPiXenc (7)

where P ∈ [0, 1]N×N is an attraction matrix, whose rows describe the effect257

of each sample in the set of encoded feature vectors Xenc ∈ RN×Denc on the258

i-th sample, i.e., the i-th row Pi ∈ [0, 1]N contains weights by which all sam-259

ples are linearly combined, to form the new target. The hyperparameter α260
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weighs the effect of the shift on the original sample, i.e., small values main-261

tain more of the original features. For convolutional networks, the targets262

can be extracted either by reshaping the encoded feature representations as263

vector and subsequently reshaping them into tensors of the same size as the264

encoded tensor, or by extracting a target per each grid cell of the encoded265

representation.266

To ensure attribute preservation, the weight Pij linking sample xj to sam-267

ple xi must be large if both samples are characterized by the same desirable268

attribute, or close to zero if they have undesirable to retain (clashing) at-269

tributes such as the same identity, or different poses. Let us denote by Di270

the set of samples with the same desirable attributes as sample xi. Then,271

the weights Pij can be formulated as:272

Pij =

{
1

|Di| , if xj ∈ Di

0 , otherwise
, (8)

indicating that each sample in the set of samples with desirable attributes Di273

contributes equally to the target feature yi, with force equal to the inverse274

of the set’s cardinality.275

For large datasets, the set of samples with desirable attributes can be276

constricted to only include the nearest neighbors of each sample. Denoting277

this set by Dn
i , the weights Pi can be extracted by Equation (8) by simply278

replacingDi byDn
i . Thus, more complex weights can be produced by defining279

other sets of samples, such as for example, the nearest neighbors of each will280

also lie closer to the mean vector of all samples, or to the center of the same281

cluster as this sample.282

Although the above process preserves the desirable attributes, it does not283

by itself guarantee that the identity of the person will be changed. Thus, the284

target extraction process can be enhanced by defining a set of samples with285

clashing attributes, Ci, for each sample, such that the sample is moved away286

from the samples in this set. Formally, the new targets are defined as:287

zi = (1 + β)yi − βQiY (9)

where the matrix Q ∈ [0, 1]N×N defines the relationships to be suppressed288

in the resulting representation, acting on the targets Y ∈ RN×Denc acquired289

by Equation (7). The repulsion matrix Q can be defined similarly to the at-290

traction matrix P from Equation (8), by defining the proper sets of samples291

with conflicting attributes. Let Ci denote the set of samples with attributes292

10



clashing those of the i-th sample. Such attributes include the same identity,293

and different properties such as the pose, gender and expression of the de-294

picted people. After selecting this set, the repulsion weights for each sample295

are formulated as:296

Qij =

{
1

|Ci| , if xj ∈ Ci
0 , otherwise

, (10)

where values close to one indicate strong repulsion, and values close to zero297

indicate little to no repulsion at all. Intuitively, if a sample lies far away298

from the i-th sample, it should not contribute to its target representation,299

whereas samples lying close to it should have a more significant effect on it.300

Thus, we can define a set of neighboring clashing samples as Cn
i for sample301

xi and encode this information into the target representation by replacing Ci302

in Equation (10) with Cn
i .303

By combining the attraction and repulsion matrices, the extracted tar-304

get representations force the encoder to learn an attribute-preserving de-305

identification function, whose output is fed to the decoder during the test306

phase and produces a new face that is both visually different and not rec-307

ognizable as the same person by state-of-the-art face recognition systems, as308

will be demonstrated in Section 4.309

Unsupervised De-identification. As the process of labeling data is very expen-310

sive, and unlabeled data exist in surplus, ideally Machine Learning methods311

should be capable of exploiting this vast volume of unlabeled data and still312

producing meaningful representations and results. Although labels are not313

required during the test phase of the proposed method, as described so far,314

they are still required in abundance for the training phase.315

To avoid this costly process and enable our method to work in a purely316

unsupervised manner, we exploit the autoencoder’s ability to uncover mean-317

ingful low-dimensional representations, in the sense that samples which lie318

close to each other in the latent subspace will have similar attributes whereas319

samples lying further away from each other will have dissimilar attributes.320

Autoencoders have been shown to be able to group samples by their at-321

tributes, as demonstrated in recent works on clustering which use autoen-322

coders as a feature extractor [37, 38].323

Based on this observation as well as the fact that the reconstructed facial324

images act as adversarial examples confusing state-of-the-art face recognition325

11



systems, we formulate attraction matrices without explicit attribute informa-326

tion, which force the encoded representations to be decoded into visibly and327

quantitatively different identities. For each sample xi, we define a set DU
i328

of samples which are more probable to be characterized by the same set of329

attributes, for example its n closest neighbors, so as to preserve those in330

the reconstruction phase. As distances are also more meaningful in the low-331

dimensional space [39], neighbors found by measuring distances at the latent332

space are more likely to be semantically related to each other. In general,333

there will also be a set CU
i of samples with attributes conflicting with those334

of sample xi.335

It is thus intuitive to first cluster the faces in the low-dimensional space,336

using a clustering algorithm such as k-means, by considering the resulting337

clusters as groups of samples with the same attributes. As aforementioned,338

autoencoders are capable of producing representations which can then be339

grouped into semantically similar clusters. Thus, the assumption that sam-340

ples belonging to the same cluster will have the same or similar attributes, is341

not a far-fetched one, and one could define DU
i as the set of samples in the342

same cluster as xi. Respectively, the set of samples belonging to different343

clusters can be assumed to have different attributes, and thus constitute the344

set of repulsion samples CU
i. Having chosen the attraction and repulsion345

sets, the new targets can be acquired in the same way as in the supervised346

paradigm, i.e., by combining Equations (7) and (9) using these sets.347

However, this set of attributes may also include the identity of the de-348

picted person, which clashes with the purpose of de-identification. To combat349

this, we first compute mean representations corresponding to either an entire350

face or different facial parts, e.g., left and right eyes, nose, mouth etc., by351

extracting feature vectors from the corresponding grid cells of the encoded352

representations. We then restrict the samples contributing to the attraction353

matrix P, by choosing only one of the nearest neighbors to contribute to354

the shift. This leads to a more crisp target, whose identity is different than355

the original, but whose facial features are structurally close to the original356

ones. As an example, this neighbor can be chosen to be each sample’s n-th357

closest neighbor or the one lying the closest to the mean face or facial part358

out of this set, which we denote by ni. The latter process ensures attribute359

preservation, given the autoencoder produces semantically meaningful rep-360

resentations, while attempting to modify the identity of the depicted person361

by moving its latent representation towards one that is closest to the mean362

representation, whose identity is a mixture of all identities in the dataset,363

12



i.e., it has been anonymized because it resembles all faces equally, and thus364

none of the faces more than any other at the same time.365

Formally, the target extraction can be summarized as:366

zi = (1− α)xi,enc + αni. (11)

In this unsupervised context, finding the balance between de-identification367

and attribute preservation depends on the number of neighbors chosen to fill368

the set DU
i with.369

Figure 2 illustrates the effect of some of the aforementioned shift types,370

for thirty samples of the LFW dataset [40], corresponding to ten facial im-371

ages from three different subjects, denoted by different shapes. Each subject372

is also characterized by an additional attribute, either “smiling” or not, de-373

noted by different colors. Figure 2a, shows the original samples encoded374

by a standard convolutional autoencoder and projected into 2D space via375

PCA [41]. Although samples with similar attributes lie close together, no376

prominent clusters of same-attribute samples appear. In Figure 2b, the sam-377

ples are shifted towards the mean of samples with the “smiling” attribute as378

well as away from the mean of samples without the attribute. The resulting379

representations are well separated in terms of the attribute in question.380

In Figure 2c, the original samples are shifted towards their nearest same-381

attribute neighbors and away from their closest neighbors without the at-382

tribute. The resulting representations are well separated in terms of the383

attribute, and the identities are entangled, which is a desirable side-effect.384

Finally, in Figure 2d, the samples are first clustered and then shifted towards385

their cluster centers. Although the separation is unsupervised, the formed386

clusters are quite uniform in terms of their attributes.387

4. Experimental Study388

4.1. Performance Measures389

Faceness. We measure the faceness of a de-identified facial image by its abil-390

ity to be confidently detected as a face by a neural network based face de-391

tector, provided by dlib [42]. Formally, for a set of N de-identified faces392

X̃:393

FCNS(X̃) =
1

N

N∑
i=1

fdet(x̃i) (12)
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(a) (b) (c) (d)

Figure 2: Encoded samples from the LFW dataset corresponding to male and female
subjects (colors), with “youth” and “white” attributes (squares and circles respectively).
(a) Original encoded samples, projected into 2D space by PCA [41]. (b) Samples shifted
towards the center of their attribute and away from the center of samples without the
attribute. (c) Samples shifted towards their closest same-attribute neighbors and away
from their closest neighbors without the attribute. (d) Samples shifted towards their
cluster center, uncovered by k-Means.

where fdet returns 1 if the de-identified face is detected as a face and 0394

otherwise.395

De-identification. We measure the ability of the network to produce faces396

with different identities from the original samples by measuring the de-397

identified face’s similarity to other images of the depicted person. For this398

purpose, we use pretrained face recognition systems provided by dlib. For-399

mally, for a set of de-identified facial images X̃ and their original counterparts400

X:401

DEID(X̃,X) =
1

N

N∑
i=1

1− frec(x̃i,xi) (13)

where the frec(·, ·), given two input facial images, returns 1 if they correspond402

to the same person and 0 otherwise. Internally, a face recognition system from403

dlib is used to extract feature vectors corresponding to the two input faces.404

Then, the euclidean between the features is measured and thresholded to405

produce the binary output. In our experiments we set this threshold to 0.6,406

adopted from the official dlib implementation1, which achieves an accuracy407

of 99.38% on the LFW benchmark.408

Although the final goal is of the proposed system for the person to be409

non-identifiable by both humans and computers, we believe the DEID metric410

1http://dlib.net/face recognition.py.html
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is a valid measure of de-identification especially in combination with the411

FCNS metric, based on the increasingly successful performance of modern412

face recognition systems.413

Diversity. We also measure the ability of the de-identification model to pro-414

duce diverse faces, by measuring their similarity using the face recognition415

system used for the DEID metric. We randomly select M = 10.000 pairs416

of de-identified faces and check their similarity, to maintain tractability and417

avoid the evaluation of all possible pairs. Formally:418

DIV (X̃) =
1

M

M∑
m=1

1− frec(x̃
(1)
m , x̃(2)

m ), (14)

where x̃
(·)
m denotes a member of the m-th pair. Thus, this metric measures419

the amount of de-identified pairs of faces which are recognized as different.420

Although faceness and de-identification suffice in terms of quantitatively421

evaluating the de-identification results, we include diversity as a metric which422

quantizes the quality of the resulting faces in terms of realism of the photos423

after all faces have been de-identified.424

4.2. Datasets425

All of the datasets used to validate the proposed method have been an-426

notated exhaustively either manually, or automatically, by algorithms that427

have been trained on manually annotated datasets with publicly disclosed428

information, such as ethnicity, age, gender, etc.429

Labeled Faces in the Wild. For our experiments, we use the aligned LFW430

dataset [40], which consists of about 13.000 images containing faces as well431

as attributes for each image, including the depicted person’s identity, gender,432

ethnicity, facial expression etc. About 1.600 of the different people are only433

depicted in a single image. As the images from the raw dataset contain434

faces in context, we use the face detector provided by dlib to extract tight435

bounding boxes and crop the detected faces to 64 × 64 grayscale images.436

Recent works on face recognition achieve results comparable to or even better437

than human-level performance [8], making the dataset a great candidate for438

face de-identification purposes. The face recognition system from dlib, which439

we use for the purpose of measuring the de-identification effect, achieves an440

accuracy of 99.38% on this dataset.441
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CelebA. We also use the CelebA dataset [43], containing over 200K images442

of about 10K different people. Like LFW, we use the dlib provided face443

detector to extract tight bounding boxes around the depicted faces and crop444

grayscale images of size 64 × 64. The baseline faceness and diversity for445

CelebA is 98.63% and 99.1% respectively.446

4.3. Experimental Results447

We experiment with both fully connected and fully convolutional mod-448

els to compare both architectures. As the autoencoders tend to produce a449

blurred reconstruction, we also use a deblurrer network, trained to remove450

gaussian blur from images. This network is another, shallow autoencoder451

trained with blurred images and their uncontaminated counterparts as the452

target. The deblurrer is trained using images blurred with gaussian noise453

and the original images as their targets. Furthermore, as the deblurrer may454

introduce artifacts into the deblurred face, we make use of another autoen-455

coder which acts as a smoothener. This network is a standard autoencoder,456

trained on facial images. As it has not seen such artifacts during training, the457

smoothener will inherently remove them from the reconstruction. It should458

be noted that the deblurrer and smoothener are quite shallow networks and459

the AE is the deepest network. Still, the entire architecture is much more460

compact than other state-of-the-art networks, making it very fast. Further-461

more, the networks are trained separately as the goals of these two nets are462

more generic and not directly related to de-identification.463

Figure 3 illustrates the proposed system architecture, with a fully convo-464

lutional autoencoder as the base de-identification network. The de-identifier465

can be a fully connected or fully convolutional autoencoder trained with the466

objective proposed in Section 3. In deployment, a single forward pass of the467

image suffices to produce a de-identified face. The deblurrer is implemented468

as a fully convolutional autoencoder with four layers and no downsampling469

factors. The output of the deblurrer is a sharpened de-identified face, al-470

though the process might introduce artifacts. Finally, the smoothener re-471

moves these artifacts and outputs the final de-identified face. We found that472

the use of the deblurrer in combination with the smoothener lead to increased473

de-identification rates. The deblurrer significantly affects the faceness of the474

resulting images and has a small effect on the de-identification rate. The475

smoothener has a strong effect on the diversity measure, which can be at-476

tribute to the removal of artifacts which may negatively effect the recognizer.477

The entire procedure can be viewed as a sequential array of neural networks.478
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Table 1: Ablation study into the network architecture’s effect on various de-identification
metrics for the fully connected model.

Encoder Architecture FCNS DEID DIV
4096− 2048 74.53 85.44 69.80
4096− 1024 77.23 84.30 72.53
4096− 512 76.55 84.74 70.33
4096− 1024− 768 73.43 90.37 75.94
4096− 1024− 768− 512 74.44 94.40 75.94
4096− 2048− 1024− 762− 512 56.62 97.38 78.42

The final result is a more realistic face, which firstly boosts the faceness479

scores and secondly helps the face recognition system produce correct results480

by providing more face-like images.481

Figure 3: Deployment of the proposed de-identification system. The proposed modified
autoencoder first de-identifies an input face. The output becomes the input to the deblur-
rer network, which produces a sharper face. Artifacts are removed by the smoothener.
The entire system can be viewed as an end-to-end neural network sequence.

4.3.1. Fully Connected Model482

We experiment first with a autoencoder which only uses fully-connected483

layers, i.e., the input image is flattened into a 64 × 64 = 4096-dimensional484

feature vector before it is forwarded to the network.485

Training configuration. We perform an ablation study into the network ar-486

chitecture of a standard autoencoder, to find which one works the best for487

de-identification purposes while still producing images with high faceness488

scores. For this purpose, we fix the number of training epochs, and experi-489

ment with the depth and width of the model. The results of this study are490

summarized in Table 1, where the first column summarizes the architecture491

of the encoder — the decoder architecture is symmetrical. The results are492

obtained by training a standard autoencoder using the faces extracted from493

the LFW dataset and evaluating the model on a subset of the CelebA dataset494

consisting of 10K faces.495
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Table 2: Ablation study into the number of training epochs’ effect on various de-
identification metrics for the fully connected model.

Epochs FCNS DEID DIV
150 74.74 94.00 66.77
200 74.97 94.64 74.51
300 74.46 93.00 74.20
400 74.55 92.64 75.33

Figure 4: Examples of de-identified faces, as produced by a standard autoencoder trained
on LFW, which achieves 94.64% de-identification and 74.55% faceness at the CelebA 10K
test subset.

Although the best de-identification and diversity results are obtained us-496

ing the deepest architecture, this can be purely attributed to the signifi-497

cantly lower faceness score. Thus, we choose the second deepest architec-498

ture (4096 − 1024 − 768 − 512) as the one providing the best baseline de-499

identification score. We then examine the number of training epochs required500

to train this architecture, to achieve a good balance between the three met-501

rics. The results are summarized in Table 2. We get the best result in terms502

of both faceness and de-identification at 200 training epochs. Although the503

diversity score increases with the number of epochs, the loss in faceness and504

de-identification justifies our choice of stopping the training process at 200505

epochs.506

Although the de-identification scores achieved by this standard autoen-507

coder may seem encouraging, the resulting faces are of very low quality as508

corroborated by the low faceness scores and illustrated in Figure 4. Thus, a509

standard autoencoder cannot provide visually pleasing faces with identities510

different from the original ones.511

Evaluation. Having settled on the network architecture and number of train-512

ing epochs, we choose another subset of 10K faces from CelebA for the eval-513

uation of the model.514
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Supervised De-identification We experiment with various settings of515

the attraction and repulsion matrices P and Q, as defined by the attraction516

and repulsion sets of samples. We exploit the ethnicity (Ethn), mood (Mood)517

and mouth opening (Mth) as characteristics which accompany each face from518

the LFW dataset to train the encoder. For the supervised paradigm, we519

select the k-Nearest Neighbors of a sample with the same characteristics as520

the set of samples with desirable attributes Dn
i , and the sample’s k-Nearest521

Neighbors with different characteristics as the set of samples with conflicting522

attributes Cn
i .523

Table 3 presents a comparison between two experiments, one for k = 10524

and one for k = 20 nearest neighbors used for the shift. We experiment both525

with a single shift involving the ethnicity of the depicted people, which is526

arguably their most prominent attribute, as well as with multiple gradual527

shifts towards different characteristics. While all methods improve upon the528

baseline faceness and de-identification, the diversity of the resulting faces529

decreases as the number of shifts increases. The decrease in diversity is due530

to the averaging process which takes place when computing the attraction531

and repulsion matrices, the rows of which become the mean of k samples for532

each shift. Despite the decrease in diversity, the performance gain in terms533

of faceness and de-identification is significant, and more prominent in the534

case of k = 20 neighbors. The diversity is also larger in general for this case,535

which can be attributed to the larger number of identities contributing to536

each de-identified face.537

Table 3: Comparative results for k = 10 and k = 20 neighbors, in the supervised paradigm.
Shifting towards multiple attributes increases the faceness and de-identification results but
decreases the diversity of the de-identified faces.

Shift Method FCNS DEID DIV
No shift 92.88 85.22 59.47

k = 10 Ethn 96.82 88.12 59.27
Ethn+Mood 99.10 91.88 48.51
Ethn+Mood+Mth 98.25 91.87 43.40

k = 20 Ethn+Mood 99.76 92.36 51.44
Ethn+Mood+Mth 99.85 92.65 48.25

For successive shifts, the final attribute has the most prominent effect on538

the original sample. This is because the effect of the shift is gradually faded539

out — multiplied by (1 − α) — after each successive shift. Thus, we also540
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Table 4: Comparative results for various orders of shifting towards multiple attributes.

Shift Method FCNS DEID DIV
Ethn+Mood+Mth 99.85 92.65 48.25
Ethn+Mth+Mood 99.78 92.56 48.96
Mood+Ethn+Mth 99.71 92.74 39.60
Mood+Mth+Ethn 99.76 92.94 51.28
Mth+Mood+Ethn 99.52 93.02 41.08
Mth+Ethn+Mood 99.62 93.22 34.00

experiment with the order of the shifts, for the k = 20 case. The results of541

this experiment are summarized in Table 4. The mouth opening and mood542

attributes mostly contribute to the general faceness of a face, i.e., how well543

it resembles a natural face and thus is recognizable as one by a face detector.544

Thus, if the samples are shifted towards these attributes last, the network545

should produce de-identified faces which resemble natural faces the most.546

This is corroborated by the faceness scores, which are the highest for these547

cases.548

Furthermore, as aforementioned, the ethnicity of the depicted people is549

their most prominent attribute. Hence, intuitively, it should contribute the550

most to the shift in order to achieve de-identification and diverse faces. As551

shown in Table 4, the highest de-identification scores are achieved when eth-552

nicity is the last or next-to-last attribute to contribute to the shift.553

Unsupervised De-identification For the unsupervised paradigm, we554

use the k-Means algorithm to first uncover clusters in the low-dimensional555

subspace learned by the autoencoder and define sets DU
i and CU

i . Then, each556

sample is shifted towards the center of the cluster it belongs to. For clusters557

with a large number of samples, all of the clusters samples will be shifted558

towards the same target. This will naturally lead to low diversity scores.559

This is illustrated in Figure 5 and Table 5, which presents the faceness, de-560

identification and diversity scores for various numbers of clusters K.561

On the contrary, for smaller clusters, there should be more diversity in562

the de-identified faces due to the larger availability of cluster centers to shift563

towards. Whereas in Figure 5, the attributes of the faces have been wiped564

out by the large number of samples contributing to their shift, in Figure 6,565

where each cluster consists of much fewer samples, most of the attributes566
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Table 5: Comparative results for shift towards the center of the closest cluster for various
number of clusters uncovered by k-Means.

K FCNS DEID DIV
10 100 97.74 7.42
50 100 95.76 27.37
180 99.83 95.10 44.93
300 99.53 94.91 44.77

Figure 5: Examples of de-identified faces, for K = 10 clusters. All samples have shifted
towards the same target, all of which have very similar features.

of the original faces are preserved after the de-identification process. This567

includes the ethnicity and mouth opening attributes, whereas in Figure 5,568

only the pose is preserved, which may be attributed to the k-Means algorithm569

clustering faces into group with more or less the same pose.570

In comparison to the supervised methods, unsupervised de-identification571

leads to lower diversity scores, undoubtedly due to the fact that multiple572

samples will have the same target (i.e., cluster center). As the number of573

clusters increases, so does the resulting diversity. However, the highest di-574

versity achieved using the unsupervised method is still much lower than the575

highest diversity achieved using supervised methods (44.93 and 51.28 respec-576

tively). However, the best setting in the unsupervised scenario yields slightly577

better faceness and significantly better de-identification, somewhat sacrific-578

Figure 6: Examples of de-identified faces, for K = 180 clusters. The de-identified faces
are visibly and quantitatively more diverse.
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ing naturalness for the sake of more effective de-identification.579

4.3.2. Fully Convolutional Model580

Training configuration. As in the fully connected model, we first perform a581

study into the most suitable network architecture. We make use of max pool-582

ing layers with stride 2 to quickly downsample the 64 × 64 input grayscale583

image into a volume with as few channels as possible, while maintaining low584

reconstruction errors. Finally, we chose an architecture which alternates be-585

tween convolutional layers with 3 × 3 filters and max pooling layers with586

stride 2, until the input is downsampled into a 2× 2 volume with 256 chan-587

nels. In this representation, each grid cell roughly corresponds to a spatially588

corresponding facial attribute, i.e., left eye, right eye, left cheek, right cheek.589

Thus we can choose to either shift the entire representation by first flatten-590

ing it into a 2× 2× 256 = 1024-dimensional vector, or to shift each feature591

vector extracted for each grid cell towards feature vectors extracted at the592

same spatial location.593

In our experiments with convolutional autoencoders, we found that they594

are more likely to create artifacts caused by misalignment of the faces seen595

during its training stage and faces used for evaluation. In general, the faces596

in CelebA are not as well aligned as the ones in LFW. For this reason, we597

incorporate 10K faces from CelebA into the training set of the autoencoder,598

and focus entirely on unsupervised de-identification methods.599

Evaluation. We evaluate various settings in the same set of 10K faces from600

CelebA as the previous experiments. We experiment first with flattening the601

learned representations and shifting them towards one neighbor to ensure602

crisp de-identification. We choose this neighbor out of a set of n neighbors603

to be the one which lies the closest to the representation of the mean face,604

thus only defining the set DU
i of samples with desirable properties. We si-605

multaneously perform a study into the effect of the number of neighbors n606

as well as the hyperparameter α controlling the degree of the shift towards607

this neighbor.608

The results are summarized in Table 6 for two different values of n and two609

values of α. The best faceness and de-identification scores are achieved for610

n = 9 neighbors, although all settings lead to almost perfect faceness. This611

isn’t true for the de-identification results, which are significantly improved612

by increasing the number of neighbors. However, as the number of neighbors613

increases, the diversity of the faces decreases. Although the shift is performed614
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using only one of those neighbors, the larger the number of neighbors in which615

we search for this sample, the higher the chance that multiple samples will be616

assigned the same target. This is evident by the decrease in diversity score617

both as n increases and as α, the degree of the shift, increases. The smaller618

the value of α is, the closer each sample remains to its original representation.619

The higher the value, de-identification increases but diversity decreases as620

shifted samples are clustered together. Effectively, α controls the similarity621

between the original and de-identified faces in the latent space uncovered by622

the autoencoder.623

Table 6: Study into the effect of the hyperparameters on the de-identification results.

FCNS DEID DIV
α = 0.4 n = 5 98.66 56.14 87.87

n = 7 98.92 72.46 78.00
n = 9 99.51 91.48 66.08

α = 0.8 n = 5 98.87 59.25 86.75
n = 7 99.15 76.43 76.72
n = 9 99.80 93.97 55.14

For the case where each grid cell feature vector, roughly corresponding624

to a facial characteristic, is shifted independently of each other, we choose to625

shift each one towards its n-th nearest neighbor, without taking into consid-626

eration the mean representation for that grid cell. This is to account for the627

higher diversity present in distinct facial characteristics when the faces to be628

de-identified are misaligned. For example, if a person is posed slightly to the629

left, it is counter intuitive to shift their upper left characteristic towards those630

of people who are depicted in a frontal view. The sample’s n-th neighbor,631

however, is very likely to be similar in pose and structure, but dissimilar in632

identity. Figure 7 shows examples of this variant on color images, the first633

row showing the original faces, whereas the reconstructions from a standard634

AE and a proposed AE are shown in the second and third rows respectively.635

The results are presented in Table 7, for various values of n. We start636

by moving each feature vector towards its closest neighbor, which yields the637

highest diversity but very low de-identification. The best results are given for638

n = 20 neighbors, in terms of de-identification, with also high faceness and639

diversity scores. This is in contrast with the results presented in Table 6.640

This is because, for each grid cell feature vector, its target representation641
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Figure 7: Examples of color images. First row shows the original faces, second one the
reconstructed ones by a standard AE, and third row shows de-identified faces using the
proposed method.

Table 7: Comparative results for the unsupervised paradigm, where each grid cell feature
is shifted towards its n-th closest neighbor.

FCNS DEID DIV
n = 1 98.04 59.72 88.76
n = 5 98.48 61.29 84.93
n = 10 98.62 57.55 87.43
n = 20 98.15 65.11 84.45

may belong to a different identity. In total, up to four identities may be642

combined to produce the final de-identified face.643

In comparison to the fully connected models, the convolutional networks644

yield significantly higher diversity scores at the cost of slightly reduced de-645

identification scores — more significantly in the case where each spatial fea-646

ture is modified separately. Figure 8 illustrates examples of new faces gener-647

ated by shifting each spatial feature towards its 10th closest neighbor. The648

generated faces are quite visually pleasing and maintain many of the origi-649

nal face’s properties, such as expression, gender, pose and facial accessories.650

However, this realism and diversity leads to decreased de-identification rates.651

From the results presented in Tables 3-7, it is clear that the fully con-652

nected models offer better de-identification rates, even in the unsupervised653

scenario, while sacrificing the diversity of the reconstructed faces in compari-654

son to the fully convolutional models. The faceness scores are similar in both655

cases. Furthermore, the unsupervised experiments indicate that AEs are656

capable of extracting representations which implicitly incorporate attribute657

information, allowing the proposed methods to work effectively even in the658

absence of attribute labels. Deciding on a variant depends on the desired659
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Figure 8: Examples of de-identified faces, for modification towards the 10-th neighbor.

application-specific de-identification to diversity trade-off.660

Although the used datasets mostly contain frontal images, the proposed661

methods are designed to work with any facial pose, as this can be considered662

a preservable attribute and added to the list of attracting attributes to force663

the samples to maintain the original pose. This is already implicitly imposed664

by the autoencoder, which even in the unsupervised training, learns to map665

images with similar attributes close together. Given appropriate training666

samples, the proposed method can handle all variations of the attributes667

that appear in the training dataset.668

4.4. Anonymization & Attribute Preservation669

We finally perform an experiment on the subset of 200 people used in670

[12], to compare the two methods and measure the anonymization and at-671

tribute preservation capability of the proposed method. Our results, using672

a fully connected AE model, with the encoded representations being shifted673

towards their cluster center, are summarized in Table 8. We choose this vari-674

ant of the proposed method for its high faceness scores and its relatively low675

diversity scores, which will lead to highly usable anonymized data. We mea-676

sure the anonymization (ANON), following k-Anonymity theory [10], i.e., by677

counting the minimum number of faces from the gallery (test) set that are678

indistinguishable from one another.679

Furthermore, we evaluate the attribute preservation ability of the pro-680

posed method, by calculating the micro-averaged Precision score over four681

attributes: one for gender and three for ethnicity (ATTR). We consider682

the attributes produced by an attribute classifier to be the groundtruth at-683

tributes2.684

2https://github.com/wondonghyeon/face-classification
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Table 8: Deidentification, anonymization and attribute preservation for a subset of 200
people used in [12], using a fully connected AE. The best variant of the competitive method
achieves a de-identification rate of about 90%.

K DEID ANON ATTR
10 99% 39 58%
50 99% 81 55%
180 100% 55 49%
300 99% 49 55%

The proposed method attains perfect de-identification scores while achiev-685

ing very high anonymization rates. Furthermore, based on the micro-averaged686

precision scores, the proposed method seems to sufficiently preserve the at-687

tributes of the original faces.688

4.5. Speed & Deployment on Embedded Devices689

Due to the lightweight architecture of the proposed de-identification pi-690

peline, including the deblurring and smoothening networks, it is capable of691

running on embedded systems. We investigate the speed of the proposed692

method on an NVIDIA Jetson TX2 module, to facilitate de-identification on693

videos captured by unmanned robots such as UAVs The Jetson TX2 is a694

very lightweight computer with a CUDA-enabled GPU, which supports fast695

computation of calculations, such as those performed by convolutional neural696

networks. De-identification on such videos is crucial, as flights on public areas697

raise several privacy concerns. For an input face of size 64×64, a de-identified698

face is produced at 0.65ms, while achieving very high de-identification rates699

and photorealistic results, as illustrated in the previous sections. Thus, in700

combination with a fast face detector [44, 30], a privacy preserving system701

based on face de-identification can run at real-time speed even on systems702

with limited computational resources.703

5. Conclusions704

We have presented multiple methods for face de-identification based on705

fully connected and fully convolutional autoencoders, by training the encoder706

to learn to shift the faces towards other faces with desirable attributes and707

away from samples with conflicting attributes. More specifically, we have708

presented various ways to acquire new encoding targets in both a super-709

vised and unsupervised setting. When attribute labels are available, we have710
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presented straightforward ways to incorporate this information into the en-711

coder so as to produce faces which are de-identified while maintaining their712

faceness, i.e., their ability to be recognized as faces. Even when labels are713

unavailable, which is true for the majority of data massively available, we714

have proposed various intuitive ways to train the encoder to achieve high715

de-identification and faceness scores. Moreover, we introduce the diversity716

metric, to quantize the quality of the produced faces in terms of the aesthetic717

result, so that a photo with de-identified faces will remain as natural as pos-718

sible while achieving its purpose of maintain the anonymity of those depicted719

in it. Finally, due to the simplicity of the proposed de-identification system,720

it can be deployed on embedded devices. Thus it can be efficiently used to721

address privacy concerns in scenarios where privacy preservation is crucial,722

such as in autonomous UAV flights.723
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