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Abstract—Recent mass commercialization of affordable

Unmanned Aerial Vehicles (UAVs, or “drones”) has signif-

icantly altered the media production landscape, allowing

easy acquisition of impressive aerial footage. Relevant

applications include production of movies, television shows

or commercials, as well as filming outdoor events or news

stories for TV. Increased drone autonomy in the near

future is expected to reduce shooting costs and shift focus

to the creative process, rather than the minutiae of UAV

operation. This short overview introduces and surveys the

emerging field of autonomous UAV filming, attempting to

familiarize the reader with the area and, concurrently,

highlight the inherent signal processing aspects and chal-

lenges.

Keywords—UAV cinematography, intelligent shooting, au-

tonomous drones

I. INTRODUCTION

The rapid popularization of commercial, battery-

powered, camera-equipped, Vertical Take-off and

The research leading to these results has received funding from
the European Union’s European Union Horizon 2020 research and
innovation programme under grant agreement No 731667 (MUL-
TIDRONE).

Landing (VTOL) Unmanned Aerial Vehicles (UAVs,

or “drones”) during the past five years, has already

affected media production and coverage. UAVs have

proven to be an affordable, flexible means for swiftly

acquiring impressive aerial footage in diverse sce-

narios, such as movie/TV shooting, outdoor event

coverage for live or delayed broadcast, advertising

or newsgathering, partially replacing dollies and

helicopters. They offer fast and adaptive shot setup,

the ability to hover above a point of interest, access

to narrow spaces, as well as the possibility for novel

aerial shot types not easily achievable otherwise,

at a minimal cost. They are expected to continue

rising in popularity, for amateur and professional

filmmaking alike [1].

However, a number of challenges arise along

with the new opportunities. Severe battery autonomy

limitations (typically, less than 25 minutes of flight

time), finite bandwidth in the wireless communi-

cation channel (e.g., Wi-Fi, 4G/LTE cellular or



radio link) and safety-motivated legal restrictions,

complicate UAV usage and highlight issues that are

not present when filming with conventional means.

Legal restrictions typically include a requirement for

a pilot maintaining direct line-of-sight with the ve-

hicle at all times (fully autonomous civilian drones

are illegal), maximum permissible flight altitude

and minimum distance from human crowds. Energy

consumption restrictions are also important, given

the UAV continuous flight time possible with current

battery technology, as well as related limitations on

processing power and payload weight; the latter are

factors that further reduce battery life.

Single-UAV shooting with a manually controlled

drone is the norm in media production today, with

a director/cinematographer, a pilot and a camera-

man typically required for professional filming. Ini-

tially, the director specifies the targets to be filmed,

i.e., subjects or areas of interest within the scene.

Then, (s)he designs a cinematography plan in pre-

production, composed of a temporally ordered se-

quence of target assignments, UAV/camera motion

types relative to the current target (e.g., Orbit, Fly-

By, etc.) and framing shot types (e.g., Close-Up,

Medium Shot, etc.), which the pilot and the camera-

man, acting in coordination, attempt subsequently

to implement during shooting. In such a setting,

each target may only be captured from a specific

viewpoint/angle and with a specific framing shot

type at any given time instance, limiting the cin-

ematographer’s artistic palette. Moreover, there can

only be a single target at each time, restricting the

scene coverage and resulting in a more static, less

immersive visual result. Finally, the “dead” time in-

tervals required for the UAV to travel from one point

to another, in order to shoot from a different angle,

aim at a different target, or return to the recharging

platform, impede smooth and unobstructed filming.

Swarms/fleets of multiple UAVs, composed of

many cooperating drones, are a viable option for

overcoming the above limitations, by eliminating

dead time intervals and maximizing scene coverage,

since the participating drones may simultaneously

view overlapping portions of space from different

positions. Due to the possibly large number of fleet

members, a degree of decisional and functional

autonomy would significantly ease their control, by

lightening the burden on human operators.

However, in civilian applications, it is typical for

a human pilot per UAV to be legally required, due

to safety considerations and lack of reliable vehicle

autonomy. In media production, employing a pilot

and a cameraman per drone may increase filming

costs prohibitively. Additionally, the cooperation of

multiple UAVs inherently gives rise to various coor-

dination challenges, such as that the swarm members

need to avoid collisions between them and stay out

of each other’s field-of-view (FoV avoidance), in

order for the shooting process to be transparent.

Facing the above issues without prohibitive re-

source expenditure or human intervention, as well

as in a manner that takes into account UAV-

specific concerns (e.g., battery autonomy limi-

tations, FoV/collision avoidance, restricted flight

zones, etc.), requires intelligent algorithms for au-

tomating UAV flight and shooting in concert. Thus,



the area of autonomous UAV filming has recently

been formed, firmly located at the intersection

of aerial cinematography, aerial robotics, computer

vision/machine learning and intelligent shooting.

Within it, applied signal processing has a significant

role to play, especially in the form of real-time

image/video analysis and in overcoming communi-

cation challenges.

An introduction to this emerging field follows,

along with an assessment of its current state and

possible directions of future progress. Conforming

to recent research [2], the main focus is on outdoor

live event coverage, whose challenges include film-

ing over long distances, with possibly vast maps,

in (at least partially) unscripted and uncontrolled

settings. Different production scenarios involve ei-

ther only subsets of the challenges presented here,

or significantly more controlled shooting settings

(e.g., movie sets). Indoor filming comes with its

own set of problems, due to more problematic

UAV positioning/self-localization, with localization

errors giving rise to heightened safety concerns in

cluttered environments. However, accurate modern

indoor positioning systems exist which mitigate such

issues.

II. INTELLIGENT UAV SHOOTING

Intelligent UAV shooting is a currently emerging

research area with significant industry potential.

In general, the goal is to automate as much of

the media production process as possible, while

ensuring adherence to artistic and cinematographic

constraints. A few low-hanging fruits have been

grabbed, but the general problem is still open and

unsolved.

For UAVs, the feasibility of manually designed

drone trajectories with regard to vehicle physical

limits is an important concern. Recent methods (e.g.,

[3]) re-time such a trajectory and output an opti-

mized variant guaranteed to be feasible, without dis-

turbing the intended visual content in the captured

footage. More importantly, end-to-end systems able

to execute single-UAV shooting missions have been

developed [4] [5]. Such systems are capable of guid-

ing an UAV outdoors so as to autonomously cap-

ture high-quality footage based on cinematographic

rules. Static shots and transitions between them are

computed automatically, based on well-established

visual composition principles and a list of canonical

shots. Typically, the user implicitly specifies the

UAV path and the shot types to be filmed before

executing a drone mission, by prescribing desired

“key-frames”, i.e., actual, temporally ordered exam-

ple video frames of the intended shot within a virtual

scene representation, so as to subsequently capture

them autonomously during flight. The flight process

is automated based on the cinematography plan.

A few commercial applications of similar nature

have been released recently. Notably, Skywand is a

virtual reality system, allowing the user to aerially

explore a 3D graphics model of the scene (s)he

wants to cover and identify/place desired key-frames

within the virtual environment. The system then

computes the real UAV trajectory, as well as the cor-

responding sequence of camera rotations, required

for a smooth shot containing these key-frames to



actually be filmed. Freeskies CoPilot is a mobile

software suite, offering similar functionality but with

a simple 3D map instead of a VR interface. In

both cases, the resulting drone autonomy and envi-

ronment perception is minimal, the cinematography

plan consists simply of example desired key-frames

which are cumbersome to define, the computed

flight paths are not on-the-fly adjustable and legal

restrictions are not being considered.

Although there are examples of algorithms that

simply calculate the appropriate number of drones,

so as to provide maximum coverage of targets from

appropriate viewpoints, in general, little to no effort

has been expended towards investigating automated

shooting of dynamic scenes in unstructured environ-

ments using multiple cooperating UAVs, under bat-

tery autonomy, FoV/collision avoidance and flight

zone restrictions. Notably, in [6], an on-line real-

time planning algorithm is proposed that jointly

optimizes feasible trajectories and control inputs for

multiple UAVs filming a cluttered dynamic indoor

scene with FoV/collision avoidance, by processing

user-specified aesthetic objectives and high-level

cinematography plans.

III. AUTONOMOUS UAV FILMING

Automated UAV flight and filming require a num-

ber of underlying enabling technologies to be in

place, if they are to operate in a satisfactory manner.

Below, the relevant state-of-the-art is clustered into

three groups: the 2D group, the 3D group and the

video capture/communication group.

A. The 2D Group

The first required technology group, hereafter

called “2D group”, heavily involves image/video

processing and semantic analysis operating on the

image plane. It consists of a combination of 2D

visual target detection, 2D visual target tracking

and image-based visual servoing. In principle, it is

feasible for all the above tasks to be performed in

real-time by computer vision and machine learning

algorithms, using only the monocular camera also

employed for shooting.

2D visual target detection is necessary for local-

izing the target’s image (i.e., the Region-of-Interest,

or ROI) on a video frame, so that the system

knows exactly how to rotate the camera in order to

achieve central composition framing. Additionally,

visual target detectors can also be exploited for

identifying a possible obstacle or an on-ground

UAV landing site. The extracted ROI is a rectangle

(described in pixel coordinates) that encloses the

target’s image. In currently available drones, similar

methods are already employed to better adjust a

manually pre-specified ROI, based on the video

content. In the future, more automated UAVs are

expected to rely solely on automatic visual target de-

tection. Relevant state-of-the-art algorithms, based

on deep neural networks, are impressively accurate

and optimized for parallel execution on General-

Purpose Graphical Processing Units (GP-GPUs).

Such high-performance hardware has recently been

commercialized in small, power-efficient form factor

for embedded systems, ideal for on-board inclusion



in UAVs1. However, current processing power and

energy consumption restrictions limit what is possi-

ble on a UAV, in comparison to desktop computers.

2D visual target tracking tracks a pre-specified

ROI on the consecutive frames of a video sequence,

by taking advantage of spatiotemporal locality con-

straints, and updates the ROI pixel coordinates at

each video frame. Although tracking can be per-

formed by simply re-detecting the target at each

video frame, a better approach is to periodically re-

initialize the ROI using a 2D visual target detector

and employ a separate visual tracker for the inter-

mediate intervals. Correlation filter-based trackers

are suitable for real-time operation [7]. Although

it is very difficult to achieve top accuracy in real-

time with current state-of-the-art 2D visual detectors

and trackers, given the processing power limitations

of UAV hardware, future progress in reducing their

computational requirements, e.g., by novel research

in lightweight neural networks, is expected to alle-

viate this issue.

Image-based visual servoing can be used for prop-

erly rotating the camera and sending suitable motion

commands to the UAV motors, so as to achieve a

specific cinematography (e.g., maintaining central

composition framing) or control (e.g., landing) pur-

pose in an autonomous manner. In essence, it is a vi-

sual feedback control loop that only requires a target

ROI, possibly automatically derived from 2D visual

detection/tracking, as input. More advanced visual

servoing can also be employed for controlling UAV

motion so as to autonomously capture a number of

1E.g., the NVIDIA Jetson series

desired shot types based solely on visual input.

An alternative to image-based visual servoing is

reinforcement learning employing raw video input

and motor command output. Thus, any need for

accurate vehicle or environment models is bypassed

and the resulting controller is more adaptive to

dynamic situations, at the cost of losing precise,

analytic solutions and requiring advanced robotics

simulator software and/or large properly annotated

image datasets for training. Deep neural networks

have recently been employed in similar settings for

UAV collision avoidance, indoor flight control in

search and recovery operations or high-level flight

navigation [8]. An imitation learning variant has also

been explored for drone racing [9], where a neural

network learns to map video input to proper motor

control commands in a supervised setting, using

datasets obtained by employing human pilots in a

photorealistic simulator. However, such approaches

have not yet been investigated for cinematography

applications.

In general, the methods contained in the 2D group

suffice for autonomously achieving physical target

following and rudimentary cinematic coverage by

the drone, as well as effective landing.

B. The 3D Group

The second required technology group, hereafter

called “3D group”, operates on top of the first one

and consists of a set of methods and devices that

allow functioning in global 3D Cartesian space.

These technologies are essential to achieve fully

autonomous, non-trivial UAV filming with safe and



effective obstacle/collision avoidance. This is mainly

achieved by employing Visual Simultaneous Lo-

calization and Mapping (SLAM), as well as by

the presence of Global Positioning System (GPS)

receivers on-board the UAV and (ideally) on the

targets being filmed.

Visual SLAM [10] can be used to detect and avoid

obstacles during flight time, by mapping the im-

mediate environment and localizing the drone with

respect to that 3D map. Localization includes an

estimation for both the position and the orientation

of the UAV-mounted camera at each time instance.

Visual SLAM performs an incremental 3D scene

reconstruction based on the camera feed, using a

real-time, on-line variant of Structure-from-Motion

algorithms, augmented by visual place recognition,

graph-based map modelling and loop closure mod-

ules. The computed map is typically a 3D point

cloud, either sparse, semi-dense or dense, with the

first estimated location of the UAV employed as

the arbitrary origin of the map coordinate system.

However, since a point cloud cannot distinguish be-

tween unobserved and observed-to-be-empty space,

different approaches are typically employed for safe

map representation in autonomous vehicles (Oc-

tomap [11], an octree-based 3D occupancy grid, is

a popular choice).

Despite the fact that Visual SLAM-based obstacle

detection can, in principle, be performed using a sin-

gle camera, additional sensors may greatly enhance

the algorithm effectiveness. Such sensors can in-

clude an altimeter and an ultrasound module for as-

sisting in obstacle avoidance, as well as a secondary

stereoscopic camera and an Inertial Measurement

Unit (IMU) for more robust Visual SLAM. Actually,

altimeters, IMUs and ultrasonic sensors constitute

standard equipment for all professional drones. On

the other hand, Light Detection and Ranging sen-

sors (LIDARs) are more rarely employed visual

sensors that may be used instead of stereoscopic

3D cameras in order to achieve increased accuracy

and performance, as well as robustness to variable

environmental lighting conditions, for tasks such as

SLAM. Their main strength derives from the dense

3D scene reconstructions of unmatched quality they

can provide. Although, currently, top LIDARs have

lower refresh rate, lower resolution, lack of color

perception, greater weight and significantly higher

cost than a good camera, it is very likely that future

technology improvements will increase their appeal.

The 3D maps built by Visual SLAM (preferably,

by jointly exploiting stereoscopic 3D camera and

IMU inputs) can be aligned with the common GPS

coordinate frame, using a similarity transformation,

and employed for assisting in global target, obsta-

cle and UAV localization, leading to more robust

operation exploiting multiple information sources.

The dynamic 3D map built and constantly main-

tained by the drone can then serve as input to a 3D

path planning algorithm. Such algorithms for UAVs

are currently able to deal with complex dynamic

and kinematic constraints in real-time, resulting in

nearly-optimal collision-free paths being computed

on-line. Thus, everything seen by the camera may

be mapped onto a common 3D world coordinate

system and elaborate UAV motion trajectories can



be planned, so as to autonomously capture any

cinematic shot type desired. Due to the dynamic

nature of the environment, path planning may take

place in two levels: a high-level long-term plan

must be devised periodically, or when important

events are detected, while during the intermediate

intervals a low-level plan can locally adjust that path

according to the current situation (e.g., in case a

moving target suddenly changes motion direction)

or cinematography requirements. The need for such

a partitioning, however, can be reduced (to a degree)

if the vehicle paths are always being planned in

a variable, target-centered coordinate system, thus

outputting a set of temporally ordered waypoints

relative to the target. Subsequently, at each time

instance during the actual execution of the path plan,

the next relative waypoint can be located on-the-

fly in the global 3D map, by utilizing the known,

current target 3D position in the GPS coordinate

frame.

Low-level motion control is an issue directly

related to path planning, since it involves the ac-

tual execution of the current path plan. For VTOL

UAVs, such as quadrotors, motion control relying

on GPS-IMU fusion is already a mature technology.

In general, Proportional-Integral-Derivative (PID) or

Linear-Quadratic Regulator (LQR) controllers are

employed for related tasks. The PixHawk/PX4 Au-

topilot, a popular low-level flight trajectory control

system, offers a commercial off-the-shelf PID cas-

cade control solution for UAVs that allows vehicle

steering at various levels, ranging from designating

path waypoints to directly feeding raw motion com-

mands to the motors.

The fusion of IMU, GPS and Visual SLAM

information, in principle, allows accurate, real-time,

global UAV localization in both position and ori-

entation. Targets, on the other hand, can only be

localized with regard to their position. However,

target orientation must be known in order to ac-

curately steer the UAV and guide the shooting

process so as to autonomously capture a number

of non-trivial shot types (for instance, consider the

cinematographic requirement of filming a subject

from a very specific view angle). Luckily, operating

in global 3D Cartesian coordinates makes it mean-

ingful to integrate a 3D visual target pose estimation

algorithm into the vision processing pipeline, thus

bringing image/video analysis to the forefront once

more. There are two main approaches to achieve

this: the computer vision approach, where prede-

fined landmark points are detected/tracked on the

target’s image and used to solve the Perspective-n-

Point problem, or the machine learning approach,

where the target’s pose is directly regressed by a

trained model that only uses the visual input. The

first approach requires a 3D model of the target

to be known, while the second solution requires

a regressor properly trained on a representative,

fully annotated image dataset. The machine learning

approach, in case a deep neural regressor is em-

ployed, allows integration with the 2D visual target

detector and execution on a GP-GPU in real-time, as

a unified neural network. However, no commercial

UAV offers such capabilities yet.

The existence of the global, dynamic 3D map also



makes it meaningful to detect human crowds in the

2D visual input. This process can also be integrated

into the 2D group, using a deep neural network

running on GP-GPU in real-time [12]. Subsequently,

the detected crowd ROI (in pixel coordinates) may

be mapped to the relevant terrain areas of the 3D

map by perspective back-projection, so as to achieve

a semantic annotation of the map. This is important,

due to legal regulations restricting UAV flight above

human crowds. A similar process can be followed

for recognizing and localizing potential emergency

landing sites and flying towards them if needed.

Typically, the GPS signal is not available indoors

and it may even be temporarily lost outdoors. Ad-

ditionally, its usual position error is up to 5 meters.

These problems can be bypassed by employing

differential GPS units (accurate in the range of

approximately 20 cm), by IMU/GPS/Visual SLAM

fused localization and by replacing GPS with an

Active Radio-Frequency IDentification (RFID) or

a Wireless Positioning System (WPS) solution in

GPS-denied environments. These approaches, how-

ever, come with associated monetary and computa-

tional costs, which explains the fact that state-of-

the-art commercial UAVs lack several capabilities

derived from the 3D group, despite being universally

equipped with simple GPS receivers.

C. Video Capture and Communication Group

Infrastructure for communications and related is-

sues is critical for successful deployment of UAV

swarms in practical scenarios, especially in live

event media coverage applications. Even in single-

UAV missions it is challenging to stream high-

resolution video (especially 4K UHD, i.e., the norm

in media production) down to a ground station

with Quality-of-Service (QoS) guarantees, while si-

multaneously executing all of the previously de-

scribed algorithms in real-time. Video acquisition,

compression, synchronization and transmission are

procedures easily implemented using professional

cameras and open-source software, although the lack

of media production-quality camera models with

Camera Serial Interface (CSI) connectivity (allowing

rapid and stable capture for reliable on-line process-

ing) is an existing practical issue. However, they

jointly consume significant processing power and

energy, on a computing platform already strained in

these resources. The issue cannot simply be solved

by dedicated hardware, since the latter would come

with additional energy consumption, monetary and

weight overhead. Therefore, at the current stage of

technology, a trade-off has to be made between the

broadcast video resolution, the hardware cost and

the level of vehicle cognitive autonomy.

In simpler, non-live coverage, i.e., when filming

for deferred broadcast, or shooting a scripted se-

quence, on-the-fly video transmission is not required

(video may simply be stored on-board and retrieved

later). In fact, if all processing is performed on-

board in a completely autonomous manner, there is

not even need for networking. However, commu-

nications are required in all other cases, including

the non-live single-UAV filming where a subset

of the less critical algorithms previously described,

e.g., crowd/landing site detection and high-level



path planning, are executed on a computationally

powerful ground station, at the cost of significant

latency (at best, about one hundred milliseconds). In

general, a private QoS-guaranteeing 4G/LTE infras-

tructure suffices for the task, given the high mobility

of the UAVs and the possibly long distances that

need to be covered in outdoor event filming. Tradi-

tional Wi-Fi is a less costly, suboptimal alternative

with higher latency and significantly smaller range,

while public LTE networks are not reliable due to

the lack of a way to prioritize UAV communica-

tions over telephony. The main challenge lies in

live broadcasting; even private LTE will not allow

consistent 4K UHD video streaming, unavoidably

leading to a fall back on FullHD resolution.

If a swarm of multiple cooperating UAVs is

employed, additional issues arise. Most importantly,

in live coverage, the available bandwidth may not

be enough to support live FullHD video streaming

from all drones concurrently, resulting in a hard

upper limit on the number of drones (a simple linear

relation exists between the required total bandwidth

and the number of employed UAVs). Furthermore,

if direct coordination between the drones them-

selves is required (so as to autonomously capture

a multiple-UAV shot, to execute distributed variants

of algorithms such as SLAM, or simply for redun-

dancy/fault tolerance), then an intra-swarm Flying

Ad Hoc Network (FANET) should be employed,

supporting ad hoc routing and accounting for high

node mobility, long distances and rapidly varying

network topology. Despite recent advances, FANETs

are not yet a mature technology; for actual deploy-

ment, either custom, optimized Wi-Fi extensions

must be developed, or falling back to LTE infrastruc-

ture is unavoidable, at the cost of increased latency.

IV. AUTONOMOUS FEATURES IN CURRENT

COMMERCIAL UAVS

The employed algorithms in current commercial

drones do not cover the entire range of the research

methods presented in Section III. For instance, in-

stead of pure image-based visual servoing, more

traditional optimal control methods are typically

employed, where control signals are computed by

explicitly constructing trajectories through configu-

ration space, subject to costs formulated in image

space. Other tasks, such as 3D target pose esti-

mation or human crowd detection, are not being

performed at all, while learnt control policies (e.g.,

via reinforcement or imitation learning) are not com-

monly utilized outside laboratory settings. Advances

in processing hardware (e.g., using the NVIDIA

Jetson TX2 board, or a future model) and algorithm

efficiency/performance are expected to reduce the

gap between research and commercial implementa-

tions/capabilities of autonomous UAV features.

The presented technologies are visualized in Fig-

ure 1, where the ones currently appearing only in

research settings are clearly separated from methods

already employed in commercial UAVs. The meth-

ods in the 2D and 3D group are further examined in

Figure 2, where the input/output exchanges between

them and the most important sensors are visible.

The two most popular commercial state-of-the-art

UAVs for videography purposes are DJI Phantom IV

Pro (employing the Intel Movidius Myriad 2 Vision



Fig. 1: A visualization of the presented technologies, clustered in three groups. Within each group, the
methods currently only appearing in research settings are written in a red font, while the methods currently
employed in commercial UAVs are written in a green font.

Processing Unit) and the more recent Skydio R1

(built around the more powerful NVIDIA Tegra X1

System-on-a-Chip). They offer similar autonomous

capabilities, such as obstacle detection and avoid-

ance, automated landing, physical target follow-

ing/target orbiting enabled by visual target tracking

(for low-speed, manually pre-selected targets), as

well as automatic central composition framing, i.e.,

continuously rotating the camera so as to always

keep the pre-selected target properly framed at the

center.

However, Skydio R1 is a more advanced plat-

form due to the more capable computing hardware

and the multiple pairs of stereoscopic cameras,

cooperating to build a 3D occupancy volume as

an environment map. It integrates improved Visual

SLAM, path planning and deep learning object

detection functionalities. Its main selling point is

the impressive obstacle avoidance behaviour, even

in highly cluttered spaces. However, the resulting

footage is typically lacking in cinematic quality,

since the encoded knowledge about cinematography

is rudimentary and there is no integration with

intelligent shooting algorithms.

V. FUTURE PROSPECTS

During the 21st century, UAVs have evolved from

remotely controlled curiosities with purely military

applications into a technological revolution, taking

multiple industries by storm and paving the way for

massively available embodied autonomous agents.

Aerial cinematography has already been transformed



Fig. 2: A visualization of the input/output exchanges between the presented technologies from the 2D/3D
groups and the most important sensors.

by the easy availability of advanced VTOL drones,

but there is still a lot of room for improvements

in multiple aspects. The currently limited UAV

autonomy, the lack of commercial off-the-self co-

operative UAV swarm platforms, the multitude of

complications arising from legal or technological

restrictions, as well as the absence of multiple-UAV

cinematography expertise, are all issues prescribing

directions for advancement.

We can easily imagine an ideal scenario where

a director gives high-level, concise cinematography

instructions in near-natural language before film-

ing. Subsequently, a fully autonomous UAV swarm

would acquire the desired footage, while constantly

and optimally adapting to the ever-changing situ-

ations arising within the shooting area, under the

minimal oversight of a single flight supervisor. In

a less ambitious variant, arguably more realistic at

the current level of technology, the director would

come up with a detailed cinematography plan and,



if deemed necessary, would be able to manually

intervene during production.

For both scenarios, further advancements are re-

quired in order to realize them. Beyond upgrades

in sensor technology and computational hardware,

progress in UAV cognitive and functional autonomy,

enabled by improvements in real-time image/video

analysis and mobile networking, respectively, have

to be attained in the near future.
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