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Abstract—The emerging field of autonomous UAV cinematog-
raphy is examined through a tutorial for non-experts, which
also presents the required underlying technologies and connec-
tions with different UAV application domains. Current indus-
try practices are formalized by presenting a UAV shot type
taxonomy composed of framing shot types, single-UAV camera
motion types and multiple-UAV camera motion types. Visually
pleasing combinations of framing shot types and camera motion
types are identified, while the presented camera motion types
are modelled geometrically and graded into distinct energy
consumption classes and required technology complexity levels
for autonomous capture. Two specific strategies are prescribed,
namely focal length compensation and multidrone compensation,
for partially overcoming a number of issues arising in UAV
live outdoor event coverage, deemed as the most complex UAV
cinematography scenario. Finally, the shot types compatible with
each compensation strategy are explicitly identified. Overall,
this tutorial both familiarizes readers coming from different
backgrounds with the topic in a structured manner and lays
necessary groundwork for future advancements.

Keywords—UAV cinematography, intelligent shooting, au-
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I. INTRODUCTION

The rapid popularization of commercial, battery-powered,
camera-equipped, Vertical Take-off and Landing (VTOL)
Unmanned Aerial Vehicles (UAVs, or “drones”) during the
past five years, has already affected media production. UAVs
have proven to be an affordable, flexible means for swiftly
acquiring impressive aerial footage in diverse scenarios. They
are suitable for movie/TV filming, outdoor event coverage for
live or delayed broadcast, advertising or newsgathering, partially
replacing dollies and helicopters. They offer fast and adaptive
shot setup, the ability to hover above a point of interest, access
to narrow spaces, as well as the possibility for novel aerial shot
types not easily achievable otherwise, at a minimal cost. UAVs
are expected to continue rising in popularity, for amateur and
professional filmmaking alike [1] [2].

An illuminating example regarding the creative possibilities
made available by UAV cinematography can be found in the
introductory scene of the animated movie “The Secret Life of
Pets” (2016). The film starts with a low-altitude aerial shot
of the Statue of Liberty that climbs rapidly toward its head,
bypassing it and then flying swiftly along a nearby suspension

bridge. The virtual camera looks vertically down, towards
the deck, from a constant altitude. Subsequently, the camera
abandons the bridge and starts orbiting around a neighbouring
skyscraper, until suddenly flying-by it to reveal an establishing
shot of New York City. The camera then dives into the nearby
Central Park, flying above the pedestrians, until the protagonist
is seen riding a bicycle. Finally, the virtual camera starts
tracking the linearly moving bicycle from the side, maintaining
a steady distance and matching its speed. Although it could be
argued that the above sequence mostly illustrates the artistic
freedom inherent in 3D computer graphics, it is also true that
UAVs are the best medium for filming such a sequence in
live-action footage.

However, a number of challenges arise along with the
new opportunities. Severe battery autonomy limitations, finite
bandwidth in the wireless communication channel (e.g., WiFi,
4G cellular or radio link) and safety-motivated legal restrictions,
complicate UAV usage and highlight issues that are not present
in conventional filming. Legal restrictions typically require
a direct line-of-sight between pilot and vehicle at all times,
while also defining a maximum permissible flight altitude and
a minimum distance from human crowds. Energy consumption
restrictions are also important, given the UAV continuous flight
time possible with current battery technology (typically, less
than 25 minutes). Related limitations on processing power and
payload weight derive from the fact that these are factors further
reducing battery life.

Single-UAV filming with a manually controlled drone
is the norm in media production today, with a direc-
tor/cinematographer, a pilot and a cameraman typically required
for professional coverage. Initially, the director specifies the
targets to be filmed, i.e., subjects or areas of interest within
the scene. Then, he designs a cinematography plan in pre-
production, composed of a temporally ordered sequence of
target assignments, UAV/camera motion types relative to the
current target (e.g., Orbit, Fly-By, etc.) and framing shot
types (e.g., Close-Up, Medium Shot, etc.)!. The pilot and
the cameraman, acting in coordination, attempt subsequently
to implement this plan during mission execution. In such a

'We do not consider here other elements of cinematography, i.e., scene
lighting and depth-of-field/focus, since we assume natural lighting in outdoor
settings and fully focused images, so as to facilitate their analysis by computer
vision algorithms.



setting, each target may only be captured from a specific
viewpoint/angle and with a specific framing shot type at any
given time instance, limiting the cinematographer’s artistic
palette. Moreover, there can only be a single target at each
time, restricting the scene coverage and resulting in a more
static, less immersive visual result. Finally, the “dead” time
intervals required for the UAV to travel from one point to
another, in order to shoot from a different angle, aim at a
different target, or return to the recharging platform, impede
smooth and unobstructed filming.

Swarms/fleets of multiple UAVs, composed of many cooper-
ating drones, are a viable option for overcoming the above limi-
tations. They eliminate dead time intervals and maximize scene
coverage, since the participating drones may simultaneously
view overlapping portions of space from different positions.
Due to the possibly large number of swarm members, a degree
of cognitive autonomy would significantly ease their control, by
lightening the burden on human operators. However, currently,
drone swarms are mainly restricted to military applications,
while full autonomy is still in embryonic stage. Existing
swarms operate best at a human-oriented semi-autonomy
level, i.e., a human operator regularly sends commands to a
swarm leader (either pre-selected, or dynamically assigned) and
receives back periodic status reports plus sensor information
[3]. Additionally, swarm members interact with each other
and with the leader UAV for purposes of coordination, task
assignment and simple decision-making. Human supervision
from the ground is not absolutely necessary, but typically
facilitates more effective swarm behaviour, since humans tend
to perform better at target identification and action prediction
[4], while autonomous operation is superior in lower-level
tasks, such as path planning and target following [5]. A
leader-follower architecture combined with autonomous intra-
swarm coordination allows easier operation by a single ground
supervisor [6], permitting him to treat the swarm as a single
entity.

The situation is currently different in civilian applications,
where it is typical for a human pilot per UAV to be legally
required, due to safety considerations and lack of reliable
vehicle autonomy. In media production, employing a pilot and
a cameraman per drone may increase filming costs prohibitively.
Additionally, the cooperation of multiple UAVs inherently gives
rise to various coordination challenges, such as that the swarm
members need to avoid collisions between them and stay out
of each other’s field-of-view (FoV avoidance), in order for the
filming process to be transparent.

Facing the above issues without prohibitive resource expen-
diture or human intervention, as well as in a manner that takes
into account UAV-specific concerns (e.g., battery autonomy
limitations, FoV/collision avoidance, restricted flight zones,
etc.), requires intelligent algorithms for automating UAV flight
and filming in concert. To achieve this, a formally standardized
vocabulary of UAV cinematography building blocks and a
systematic identification of UAV-related issues in the context of
media production/broadcasting, along with possible solutions, is
required. However, since UAV cinematography is an emerging
topic, it has only recently been brought under research focus
and, therefore, no clearly defined taxonomy of shot types achiev-

able with a single UAV, or a swarm of multiple cooperating
UAVs, has been specified.

The purpose of this article is both to familiarize readers
coming from different backgrounds with the topic, as well as to
lay exactly the necessary groundwork for future advancements.
Thus, it attempts to formalize current practices, based on
accumulated professional experience, in order to catalyze further
research. Below, the recently formed field of autonomous
UAV cinematography, firmly located at the intersection of
aerial cinematography, aerial robotics, computer vision/machine
learning and intelligent filming, is introduced and examined
from multiple aspects. Background is tersely provided for
readers who are not specialists in robotics or cinematography.
Following preliminary research work ([7], [8], [9], [10], [11],
[12], [13], [14], [15]), the main focus is on outdoor live event
coverage, deemed as the most complex application of UAV
cinematography. Different production scenarios involve either
only subsets of the challenges presented here, or significantly
more controlled filming settings (e.g., movie sets). Therefore,
this tutorial is relevant to any kind of UAV media production.

The remainder of the article is organized in the following
way. Section II briefly introduces the field of intelligent filming,
paying particular attention to the use of UAV-mounted cameras.
Section III reviews the underlying technologies which make
autonomous UAV filming possible, including robotics and com-
puter vision/machine learning modules. Additionally, connec-
tions with different, non-cinematography UAV applications are
examined. Sections IV and V present an organized vocabulary
of single-UAV cinematography, focusing on framing shot types
(FSTs) and camera motion types (CMTs), respectively. Visually
pleasing combinations of FSTs and CMTs are identified, while
the presented camera motion types are mathematically modeled,
clustered into four separate groups and graded into distinct
energy consumption and required technology complexity levels.
Thus, a complete UAV shot type taxonomy is detailed. Section
VI extends this taxonomy to cinematographically meaningful
multiple-UAV camera motion types. Section VII provides
examples of how this formalized taxonomy can be exploited for
facilitating UAV cognitive autonomy algorithms. Section VIII
offers two specific strategies, namely focal length compensation
and multidrone compensation, for partially overcoming a
number of issues arising in UAV outdoor event coverage. The
shot types compatible with each compensation strategy are
explicitly identified. Section IX briefly presents conclusions
drawn from the preceding discussion and prescribes future
research directions.

II. TECHNOLOGIES FOR INTELLIGENT FILMING

Intelligent filming/editing is a recent research topic, with
autonomous UAV filming being a currently emerging subfield.
In general, the goal is to automate as much of the media
production process as possible, while ensuring adherence to
artistic and cinematographic constraints. Although a few low-
hanging fruits have been grabbed, the general problem is still
open and unsolved. Below, the relevant state-of-the-art is briefly
reviewed, with an emphasis on UAV filming.

In [16] an optimization-based algorithm is presented that
processes off-line a single high resolution video from a static



camera filming a staged event. It outputs a set of virtual pan-
tilt-zoom (PTZ) moving camera feeds obeying cinematographic
principles and user-provided constraints, regarding which actors
should be contained and how they should be framed. The
algorithm exploits face recognition/tracking sub-modules as a
pre-processing step for the identification of actors, with no 3D
perception of the stage involved.

In [17] the video input from a robotic camera visually
tracking and physically following a pre-defined region (e.g.,
the current centroid of all players in a basketball game) is
processed in real-time. It produces a virtual camera video
output following a smooth, aesthetically pleasing trajectory, by
employing a path planning algorithm and frame resampling.
In contrast to most intelligent filming methods, this approach
exploits special hardware.

In the case of UAV filming, the feasibility of manually
designed drone trajectories with regard to vehicle physical
limits is an important concern. The method in [18] re-times
such a trajectory and outputs an optimized variant guaranteed
to be feasible, without disturbing the intended visual content
in the captured footage. A more general approach that is
not specifically designed for cinematography applications is
presented in [19], where custom high-level user goals are taken
into account (e.g., codifying cinematography goals).

Intelligent filming/editing with multiple cameras presents
additional challenges, highlighting the editing aspect. In [20] an
optimization-based algorithm is presented for the computation
of a single, aesthetically pleasing video, conforming to basic
editing guidelines (such as the 180-degree rule and jump
cut avoidance [21]), from raw feeds coming separately from
multiple cameras. Operating also within a multi-camera context,
the work in [22] approaches automated editing as a problem
of camera selection over time and models it with a Partially
Observable Markov Decision Process over temporal windows.
A research effort oriented towards multi-camera UAV footage
is [23], presenting an autonomous system that calculates the
appropriate number of drones, in order to provide maximum
coverage of targets from appropriate viewpoints.

End-to-end systems able to execute single-UAV filming
missions have been developed as well. Such a system is
presented in [24], capable of guiding an UAV outdoors so
as to autonomously capture high-quality footage based on
cinematographic rules. Static shots and transitions between
them are computed automatically, based on well-established
visual composition principles and a list of canonical shots. In
[25], the authors present a tool that allows the user to implicitly
specify the UAV path and the shot types to be filmed before
executing a drone mission. This is done by prescribing desired
“key-frames”, i.e., actual, temporally ordered example video
frames of the intended shot, so as to subsequently capture them
autonomously during flight. In both cases, as well as in [26], the
flight process is automated based on the cinematography plan,
but no dynamic adaptation or active environment perception is
involved.

A few commercial applications, also oriented towards outdoor
single-UAV cinematography planning, have been released
recently. Notably, Skywand [27] is a virtual reality system,
allowing the user to aerially explore a 3D graphics model of the

scene he wants to cover and identify/place desired key-frames
within the virtual environment. The system then computes the
real UAV trajectory, as well as the corresponding sequence of
camera rotations, required for a smooth shot containing these
key-frames to actually be filmed. Freeskies CoPilot [28] is a
mobile software suite, offering similar functionality but with
a simple 3D map instead of a VR interface. In both cases,
the resulting drone autonomy and environment perception is
minimal, the cinematography plan consists in example key-
frames, the computed flight paths are not on-the-fly adjustable
and legal restrictions are not being considered.

Little effort has been expended towards investigating auto-
mated filming of dynamic scenes in unstructured environments
using multiple cooperating UAVs, under battery autonomy,
FoV/collision avoidance and flight zone restrictions. Notably,
in [29], an on-line real-time planning algorithm is proposed
that jointly optimizes feasible trajectories and control inputs
for multiple UAVs filming a cluttered dynamic scene with
FoV/collision avoidance, by processing user-specified aesthetic
objectives and high-level cinematography plans. This method
extends a previous, single-UAV method [30] that only optimizes
local trajectory segments. Since both algorithms are designed
for controlled indoor settings, UAV energy consumption is
not taken into account and flight zone restrictions are not
considered.

III. TECHNOLOGIES FOR AUTONOMOUS UAV FILMING

Currently, commercial UAVs employed in media production
are mostly manually controlled, with only a few rudimentary
functionalities being performed autonomously. In state-of-the-
art drones?, such functionalities are obstacle avoidance, landing,
physical target following or target orbiting (for low-speed,
manually pre-selected targets), as well as automatic central
composition framing, i.e., continuously rotating the camera so
as to always keep the pre-selected target properly framed at the
center. Both these basic functions and any future algorithms
for more advanced, automated UAV flight and filming, require
a number of underlying enabling technologies to be in place.

Below, these technologies are introduced and presented
according to the functionality they provide, i.e., they are
partitioned into the following subjects: perception, planning
and control, swarming and communications. Within the first
two of these subjects, each presented technology is further
assigned a label of one out of two “complexity groups” we
identified, based on the complexity of the required hardware.
The two complexity groups are the vision- and the 3D-group.
The former one consists of visual Simultaneous Localization
and Mapping (SLAM), 2D visual target detection, 2D visual
target tracking and image-based visual servoing algorithms.
In principle, it is feasible for these tasks to be performed in
real-time by computer vision and machine learning algorithms,
using only the monocular camera also employed for filming.
The latter group consists in a set of methods and devices that
allow functioning in global 3D Cartesian space. This is mainly
achieved by the presence of Global Positioning System (GPS)

2E.g., the popular DJI Phantom 4, or Skydio R1



receivers [31] on-board the UAV, as well as (ideally) on the
targets being filmed.

In general, the methods contained in the vision-group suffice
for autonomously achieving physical target following and
rudimentary cinematic coverage by the drone, as well as
effective obstacle/collision avoidance and landing. However,
technologies clustered under the 3D-group are essential to
achieve more advanced, fully autonomous, non-trivial UAV
cinematography, therefore it is imperative for them to start
appearing in non-prototype drones. Hardware and software

advancements are expected to allow this in the following years.

Finally, connections are made to different UAV application
domains, such as surveillance, inspection, or rescue and
recovery operations.

A. Perception

Visual SLAM [32] [33] [34] [35], a vision-group technology
in its basic form, can be used to detect and avoid obstacles
during flight time, by mapping the immediate environment and
localizing the drone with respect to that 3D map. Localization
includes an estimation for both the position and the orientation
of the UAV-mounted camera at each time instance. Visual
SLAM performs an incremental 3D scene reconstruction based
on the camera feed, using a real-time, on-line variant of
Structure-from-Motion algorithms [36], augmented by visual
place recognition [37], graph-based map modelling [38] and
loop closure [39] modules. The computed map is typically a
3D point cloud, either sparse, semi-dense or dense, with the
first estimated location of the UAV employed as the arbitrary
origin of the map coordinate system.

Despite the fact that visual SLAM can, in principle, be
performed using a single camera, additional sensors may greatly
enhance its effectiveness. Such sensors include a secondary
stereoscopic camera and an Inertial Measurement Unit (IMU)
[40] for more robust operation. Actually, these sensors constitute
standard equipment for all professional drones. On the other
hand, Light Detection and Ranging sensors (LiDARSs) are
more rarely employed visual sensors that can be used instead
of stereoscopic 3D cameras in order to achieve increased
accuracy and performance, as well as robustness to variable
environmental lighting conditions [41]. Their main strength
derives from the dense 3D scene reconstructions of unmatched
quality they can provide. Although, currently, top LiDARs have
lower refresh rate, lower resolution, lack of color perception
and significantly higher cost than a good camera, it is very
likely that future technology improvements will increase their
appeal.

LiDAR-based SLAM is also a high-end option for integrating
obstacle and collision detection with generic environment
mapping and self-localization. However, traditionally, separate,
simple altimeter and ultrasound sensors can be employed to
this end; such inexpensive sensors are found in virtually all
professional drones.

2D visual target detection is necessary for localizing the
target’s image (i.e., the Region-of-Interest, or ROI) on a
video frame, so that the system knows exactly how to rotate

the camera in order to achieve central composition framing.

Additionally, visual target detectors can also be exploited for
identifying a possible obstacle or an on-ground UAV landing
site. The extracted ROI is a rectangle (described in pixel
coordinates) that encloses the target’s image. In currently
available drones, similar methods are already employed to better
adjust a manually pre-specified ROI, based on the video content.
In the future, more fully automated UAVs are expected to rely
solely on automatic visual target detection. Relevant state-of-
the-art algorithms [42] [43] [44] [45] [46], based on deep
neural networks [47], are impressively accurate and optimized
for parallel execution on General-Purpose Graphical Processing
Units (GP-GPUs) [48]. Such high-performance hardware has
recently been commercialized in small, power-efficient form
factor for embedded systems, ideal for on-board inclusion
in UAVs®. However, current processing power and energy
consumption restrictions limit what is possible on a UAYV, in
comparison to desktop computers.

2D visual target tracking tracks a pre-specified ROI on the
consecutive frames of a video sequence, by taking advantage
of spatiotemporal locality constraints, and updates the ROI
pixel coordinates at each video frame. Although tracking can
be performed be simply re-detecting the target at each video
frame, a better approach is to periodically re-initialize the ROI
using a 2D visual target detector and employ a separate visual
tracker for the intermediate intervals. Correlation filter-based
trackers are suitable for real-time operation [49] [50]. Although
it is very difficult to achieve top accuracy in real-time with
current state-of-the-art 2D visual detectors and trackers, given
the processing power limitations of UAV hardware, future
progress is expected to alleviate this issue. Novel research in
lightweight neural networks [51] is a promising avenue to this
end.

Obviously, 2D visual target detection and tracking are
vision-group technologies. Assuming GPSs are available and
operational, further possibilities are opened up. E.g., the 3D
maps built by visual SLAM can be aligned with the common
GPS coordinate frame, using a similarity transformation [52],
and employed for assisting in global target, obstacle and
UAV localization, leading to more robust operation exploiting
multiple information sources.

The fusion of IMU, GPS and visual SLAM information, in
principle, allows accurate, real-time, global UAV localization
in both position and orientation. Targets, on the other hand, can
only be localized with regard to their position. However, target
orientation must be known in order to accurately steer the UAV
and guide the filming process so as to autonomously capture
specific, non-trivial shot types. Luckily, operating in global
3D Cartesian coordinates makes it meaningful to integrate a
3D visual target pose estimation algorithm into the vision-
group pipeline. There are two main approaches to achieve this:
a) the computer vision approach, where predefined landmark
points are detected/tracked on the target’s image and used to
solve the Perspective-n-Point problem [53], or b) the machine
learning approach, where the target’s pose is directly regressed
by a trained model that only uses the visual input [54] [55].
The first approach requires a 3D model of the target to be
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known, while the second solution requires a regressor properly
trained on a representative, fully annotated image dataset. The
machine learning approach is not only more robust, but also, if
a deep neural regressor is employed, such an algorithm may be
incorporated into the 2D visual target detector and run entirely
on GP-GPU in real-time, as a unified neural network. However,
no commercial UAV offers such capabilities yet.

The existence of the global, dynamic 3D map also makes it
meaningful to detect human crowds in the 2D visual input. This
process can also be integrated into the vision-group, using a
deep neural network running on GP-GPU in real-time [56] [57].
Subsequently, the detected crowd ROI (in pixel coordinates)
may be corresponded to the relevant terrain areas of the 3D
map by perspective back-projection [58], so as to achieve a
semantic annotation of the map [59]. This is important, due to
legal regulations restricting UAV flight above human crowds. A
similar process can be followed for recognizing and localizing
potential emergency landing sites and flying towards them if
needed. As in the case of 3D visual target pose estimation, such
capabilities are entirely missing from current state-of-the-art
UAVs.

Typically, the GPS signal is not available indoors and it
may even be temporarily lost outdoors. Additionally, its usual
position error is in the range of approximately up to 5 meters
[31]. These problems can be bypassed by employing differential
GPS units (accurate in the range of approximately 20 cm
[60]), by IMU/GPS/visual SLAM fused localization and by
replacing GPS with an Active Radio-Frequency IDentification
(RFID) positioning system [61] in GPS-denied environments.
These solutions, however, come with associated monetary and
computational costs, which explains the fact that state-of-the-art
commercial UAVs completely lack capabilities depending on
the 3D-group, despite being universally equipped with simple
GPS receivers.

B. Planning and control

The dynamic 3D map built and constantly maintained by the
drone can then serve as input to a 3D path planning algorithm.
Such algorithms for UAVs [62] [63] are currently able to deal
with complex dynamic and kinematic constraints in real-time,
resulting in nearly-optimal collision-free paths being computed
on-line. Thus, everything seen by the camera may be mapped
onto a common 3D world coordinate system and elaborate
UAV motion trajectories can be planned, so as to autonomously
capture any cinematic shot type desired. Due to the dynamic
nature of the environment, path planning may take place in
two levels: a) a high-level, long-term plan must be devised
periodically, or when important events are detected, while
b) a low-level plan can locally adjust that path during the
intermediate intervals according to the current situation (e.g.,
in case a moving target suddenly changes motion direction) or
cinematography requirements.

The need for such a partitioning, however, can be minimized
if the vehicle paths are always being planned in a variable,
target-centered coordinate system, thus outputting a set of tem-
porally ordered waypoints relative to the target. Subsequently, at
each time instance during the actual execution of the path plan,

the next relative waypoint can be located on-the-fly in the global
3D map, by utilizing the known, current target 3D position
in the GPS coordinate frame. Then, low-level replanning is
reduced to simple reactive obstacle avoidance.

Low-level motion control is an issue directly related to path
planning, since it involves the actual execution of the current
path plan. For VTOL UAVs, such as quadrotors, motion control
relying on GPS-IMU fusion is already a mature technology. In
general, Proportional-Integral-Derivative (PID) [64] or Linear-
Quadratic Regulator (LQR) [65] controllers are employed for
related tasks. The PixHawk/PX4 Autopilot [66], a popular
low-level flight trajectory control system, offers a commercial
off-the-shelf PID cascade control solution for UAVs that allows
vehicle steering at various levels, ranging from designating
path waypoints to directly feeding raw motion commands to
the motors.

Besides traditional 3D path planning and motion control algo-
rithms, a reinforcement learning approach can be alternatively
employed for proper UAV trajectory planning and following,
so as to capture desired target shots. Learning in a 3D context
allows complex UAV/camera motion types to be implemented,
such as a subset of the motion types described in Section V, but
it has not yet been investigated for cinematography applications.

Beyond the 3D-group technologies presented above for
planning and control, purely vision-group approaches can be
employed that rely only on video input. Image-based visual
servoing may be used for properly rotating the camera and
sending suitable motion commands to the UAV motors, so as
to achieve a specific cinematography (e.g., maintaining central
composition framing) or control (e.g., landing [67]) purpose
in an autonomous manner. In essence, it is a visual feedback
control loop that only requires a target ROI, possibly automati-
cally derived from 2D visual detection/tracking, as input. More
advanced visual servoing can also be employed for controlling
UAV motion so as to autonomously capture a number of desired
shot types based solely on visual input, similarly to how state-of-
the-art commercial drones implement physical target following
and orbiting. A number of UAV/camera motion types that can
be autonomously implemented in such a manner are identified
and described in Section V, while methodological examples of
autonomous filming are briefly discussed in Section VII.

An alternative to image-based UAV motion control methods
is reinforcement learning employing raw video input and
outputting direct motor commands. Thus, any need for accurate
vehicle or environment models is bypassed and the resulting
controller is more adaptive to dynamic situations, at the cost
of losing precise, analytic solutions and requiring advanced
robotics simulator software and/or large properly annotated
image datasets. Deep neural networks have recently been
employed in similar settings for UAV collision avoidance [68],
indoor flight control in search and recovery operations [69] or
high-level flight navigation [70]. An imitation learning variant
has also been explored for drone racing [71], where a neural
network learns to map video input to proper motor control
commands in a supervised setting, using datasets obtained by
employing human pilots in a photorealistic simulator. However,
such approaches are currently under research (nowhere near
commercial deployment) and have not yet been investigated



for cinematography applications.

C. Swarming

No commercial civilian multiple-UAV platform exists, al-
though semi-autonomous swarms of military fixed-wing UAVs,
supported by automated intra-swarm coordination and task
assignment, are regularly employed in the field (typically, under
the leader-follower paradigm). Extending this model to civilian
media production scenarios using VTOL drones is necessary,
if autonomous multiple-UAV cinematography is to become a
reality.

In general, typical swarm formation control methods [72]
[73], aiming to enforce a synchronized group motion on all
swarm members, are not readily applicable to cinematography
applications for the entirety of a filming mission, since different
swarm members may have to follow very different trajectories
at a given time, in order to capture the desired shots and cover
large areas. However, temporary swarm formations composed
of a few UAVs may be employed for efficiently capturing
individual multiple-UAV shots, such as the ones defined in
Section VI. In such a scenario, it is not difficult to conceive the
moving target being filmed acting as a reference point for intra-
swarm position coordination. Although several paradigms for
UAV swarm formation control exist, including leader-follower,
behavioural and virtual structure approaches [74], there is no
relevant research dedicated to cinematography applications.

Moreover, optimal autonomous task assignment based on
directorial guidelines (namely, which UAV will cover each
target, at what time interval and with what shot type) is a
relatively unexplored area [8]. Any requirement for assignments
to be able to dynamically change on-the-fly, based on detected
semantic events (e.g., significant change in rank position of
lead contestants during a sports race), further complicates the
issue and highlights the importance of autonomous semantic
event detection. In the simplest scenario, the latter may consist
in a set of rules regarding the relative positions of targets in
the 3D map, but more elaborate methods can be exploited (e.g.,
on-line activity recognition from the visual input [75]).

Multiple-UAV coordination in a swarm context also allows
cooperative variants of algorithms from the vision and the
3D-group to be employed, e.g., cooperative visual SLAM [76]
or cooperative path planning [77]. However, as in the case of
formation control and task assignment, cinematography/media
production applications impose constraints that have not been
researched up to now.

In all the above methods, a choice has to be made regarding
whether they will be implemented in a centralized or a
distributed manner. In the first case, where a swarm member (or
a ground control station) serves as “master”, algorithm design is
more efficient, the result is more optimal and the computational
load is reduced at the “slave” members. However, a single
point of failure and a possible communication/computational
bottleneck, i.e., the master, are introduced to the swarm. The
choice resulting in the optimal balance depends on the specific
application and on the available hardware/infrastructure. This
is one more aspect from which multiple-UAV cinematogra-
phy/media production has not yet been systematically examined.

D. Communications

Communication issues in autonomous multiple-UAV cine-
matography can be seen as having both “data streaming” and
“networking” aspects. In general, infrastructure for communica-
tions and related issues is critical for successful deployment of
UAV swarms in practical scenarios [78], especially in live event
media coverage applications. Even in single-UAV missions it
is challenging to stream high-resolution video (especially 4K
UHD, i.e., the norm in media production) down to a ground
station with Quality-of-Service (QoS) guarantees, while simul-
taneously executing all of the previously described algorithms
in real-time. Video acquisition, compression, synchronization
and transmission are procedures easily implemented using
professional cameras and open-source software, although the
lack of media production-quality camera models with Camera
Serial Interface (CSI) connectivity (allowing rapid and stable
capture for reliable on-line processing) is an existing practical
issue. However, they jointly consume significant processing
power and energy, on a computing platform already strained in
these resources. The issue cannot simply be solved by dedicated
hardware, since the latter would come with additional energy
consumption, monetary and weight overhead. Therefore, at the
current stage of technology, a trade-off has to be made between
the broadcast video resolution, the hardware cost and the level
of vehicle cognitive autonomy.

In simpler, non-live coverage, i.e., when filming for deferred
broadcast, or filming a scripted sequence, on-the-fly video
transmission is not required (video may simply be stored on-
board and retrieved later). In fact, if all processing is performed
on-board in a completely autonomous manner, there is not even
need for networking. However, communications are required in
all other cases, including the non-live single-UAV filming where
a subset of the less critical algorithms previously described,
e.g., crowd/landing site detection and high-level path planning,
are executed on a computationally powerful ground station,
at the cost of significant latency (at best, about one hundred
milliseconds). In general, a private QoS-guaranteeing 4G/LTE
infrastructure suffices for the task, given the high mobility of the
UAVs and the possibly long distances that need to be covered
in outdoor event filming. Traditional WiFi is a less costly,
suboptimal alternative with higher latency and significantly
smaller range, while public LTE networks are not reliable due
to the lack of a way to prioritize UAV communications over
telephony. The main challenge lies in live broadcasting; even
private LTE will not allow consistent 4K UHD video streaming,
unavoidably leading to a fall back on FullHD resolution.

If a swarm of multiple cooperating UAVs is employed,
additional issues arise. Most importantly, in live coverage,
the available bandwidth may not be enough to support live
FullHD video streaming from all drones concurrently, resulting
in a hard upper limit on the number of drones (a simple
linear relation exists between the required total bandwidth
and the number of employed UAVs). Furthermore, if direct
coordination between the drones themselves is required (so
as to autonomously capture a multiple-UAV shot, to execute
distributed variants of algorithms such as SLAM, or simply
for redundancy/fault tolerance), then an intra-swarm Flying Ad



Hoc Network (FANET) should be employed. It supports ad hoc
routing and accounts for high node mobility, long distances
and rapidly varying network topology. Despite recent advances,
FANETS are not yet a mature technology; for actual deployment,
either custom, optimized WiFi extensions must be developed,
or falling back to LTE infrastructure is unavoidable, at the cost
of increased latency.

E. Autonomous UAV Video Capture in Other Application
Domains

Most of the technical issues and solutions described above
also apply to any UAV application domain involving video
capturing, besides cinematography applications. These include
area surveillance and/or moving target monitoring [79], rescue
and recovery operations, infrastructure inspection (e.g., of
wind turbines [80], or agricultural production [81]), scientific
exploration and 3D scene reconstruction tasks. In all of these
scenarios, both UAV and target 3D localization, 2D target
detection/recognition and tracking, 3D mapping, path planning
and potential emergency landing site detection are directly
relevant. Less significant issues in a non-cinematography setting
include 3D target pose estimation, target central composition,
human crowd detection and live data streaming.

For instance, with the possible exceptions of 3D scene
reconstruction and surveillance applications, no human crowds
are typically present near the UAV, while no framing shot type
constraints are in place. Thus, autonomous cinematographic
outdoor live event coverage arguably proves to be the most
technically challenging single-UAV application overall, despite
the existence of very narrowly defined, domain-specific prob-
lems (such as weed classification for agricultural inspection
applications [82], or changes detection for area surveillance
[79D).

On the other hand, swarming issues and methods are
possibly more significant in non-cinematography applications.
For instance, tight temporal deadlines and/or a very extended
area of coverage, which are commonly found in all of the above
scenarios, increase the relevance of UAV swarm deployment
and coordination, as well as, in turn, of cooperative algorithms
for SLAM, path planning, etc. In contrast, although multiple-
UAV coverage is beneficial when filming events, as explained
in Section I, the relative importance of swarm approaches
is lower in cinematography applications, where employing
multiple UAVs enriches the creative potential, but is not an
absolute requirement for properly performing the desired task
in time.

A special note must be made for the intelligent UAV
filming systems and methods presented in Section II. Although
the consideration of aesthetic criteria commonly found in
such systems is only relevant to cinematography applications,
their ability to pre-compute feasible drone trajectories for
capturing desired footage is significant for all the different
UAV application scenarios discussed above. However, typically,
current intelligent UAV filming systems only operate in known
environments under controlled settings. This is almost never
the case in surveillance, rescue and recovery, or scientific
exploration applications, rendering them almost useless for
such tasks.

Nevertheless, future advances have the potential to change
this situation. For instance, a search and rescue operation could
benefit significantly from a similar system able to function in a
partially unknown environment. The mission could be implicitly
planned by simply specifying properties of the desired footage.
Subsequently, actually capturing such footage in an autonomous
manner would imply that the target has been detected and is
being inspected from the requested view angles (e.g., to check
for visible signs of damage or injuries).

IV. UAV CINEMATOGRAPHY FRAMING SHOT TYPES

The various shot types in UAV cinematography can be
described using two complementary criteria: the framing shot
type (FST) and the UAV/camera motion trajectory (CMT).
Each CMT can be successfully combined with a subset of the
possible FSTs, according to director’s specifications, so as to
achieve a pleasant visual result. FSTs are primarily defined by
the relative size of the main subject/target being filmed (if any)
to the video frame size. They are mostly derived/adapted from
the ones found in traditional ground and aerial cinematography
(217 [1] [2].

Based on visual inspection of sample UAV video coverage
of outdoor events, we have defined eight FSTs in UAV
cinematography: Extreme Long Shot, Long Shot, Medium Shot,
Medium Close-Up, Close-Up, Two-Shot/Three-Shot and Over-
the-Shoulder. Traditional cinematography also includes Extreme
Close-Ups, a very “zoomed in” FST that typically depicts a
human head from the lips to the forehead, in order to empha-
size subject emotions. In practice, based on extensive visual
inspection of professional and semi-professional UAV footage
from multiple sources, we have not determined a corresponding
FST to be regularly employed in UAV cinematography.

Table I summarizes the six basic FSTs using thresholds on
the target ROI width/height to video frame width/height ratio
(“coverage™). The other two FSTs (Two-Shot/Three-Shot, Over-
the-Shoulder) can be seen as specific combinations of more
basic ones. Verbal descriptions for all eight FSTs are provided
below:

1) Extreme Long Shot (ELS): The target appears so distant
from the camera that it may not even be visible (at least
not in detail). The emphasis is on showing an expansive
view of its surroundings. This FST typically provides
scene context to the viewer and establishes the theater
of action. In general, less than approximately 5% of the
video frame width and/or video frame height is covered
by the target. An example is depicted in Figure la.

2) Very Long Shot (VLS): The target is barely visible and
perceived to be at a large distance from the camera,
appearing small. The purpose of this FST is to firmly
localize the target in his surroundings in the mind of
the viewer. In general, approximately 5 — 20% of the
video frame width and/or video frame height is covered
by the target. An example is depicted in Figure 1b.

3) Long Shot (LS): The entire target is visible and perceived
to be at an intermediate distance from the camera. This
FST depicts both the target and its surroundings clearly.
In general, the target covers at most 20 — 40% of



the video frame width and/or video frame height. An
example is depicted in Figure lc.

4) Medium Shot (MS): The target is perceived to be at a
fairly short distance from the camera, appearing quite
large. This FST places emphasis mainly on the target
being filmed. In case the target is a person, a MS would
depict him from the waist up. In general, the target
covers at most 40 — 60% of the video frame width
and/or video frame height. An example is depicted in
Figure 1d.

5) Medium Close-Up (MCU): Either the entire target, or a
large portion of it is visible and perceived to be at a very
short distance from the camera. This FST showcases
the most interesting portion of the target. In case the
target is a person, a MCU would depict him from the
chest up. In general, the target covers at most 60 — 75%
of the video frame width and/or video frame height. An
example is depicted in Figure le.

6) Close-Up (CU): The most interesting part of the target
appears to be at a very short distance from the camera,
spanning almost the entire foreground. This FST em-
phasizes a specific detail of the target’s image. In case
the target is a person, a CU would depict him from the
neck up. In general, the target covers more than 75%
of the video frame width and/or video frame height. An
example is depicted in Figure 1f.

7) Two-Shot/Three-Shot (2S/3S): Two/three subjects appear
simultaneously in the video frame, arranged so that they
are equally visible. With regard to the perceived camera
distance from the target, 2S/3S is typically a Long Shot
or a Medium Shot. Examples are depicted in Figures
Ig,h.

8) Over-the-Shoulder (OTS): The main target is clearly
visible and perceived to be at a fairly short, or short,
distance from the camera, while a secondary target is
visible at the left or right edge of the video frame and
appears to be at a significantly shorter distance from the
camera. OTS can be regarded as a variant of the Two-
Shot, with the main target being filmed as in a Very Long
Shot, Long Shot or Medium Shot, and with the secondary
target being filmed as in a Medium Shot, Medium Close-
Up or Close-Up, respectively. Either the main or the
secondary target can be a geographical landmark (e.g.,
a historical monument). This is an adaptation from the
traditional OTS shot in movie/TV dialogue scenes, where
the two targets are persons talking to each other and the
secondary target is shown from behind. An example is
depicted in Figure 1i.

Typically, the on-board camera is suspended from a gimbal
that allows rapid, arbitrary camera rotation around its yaw, pitch
and roll axis, within orientation limits prescribed by mechanical
gimbal stops. Given a fixed, constantly visible target, the FST in
UAV cinematography can be adjusted, in principle, by suitably
modifying any combination of the following: the zoom level
(controlled by the camera focal length f), the camera gimbal
rotation and the UAV/camera world position. However, in most
situations, simply altering f should be sufficient for achieving

TABLE I: Basic FSTs and their corresponding target ROI to
video frame width/height ratio percentage.

FST Coverage
Extreme Long Shot (ELS) | < 5%
Very Long Shot (VLS) 5 —20%
Long Shot (LS) 20 — 40%
Medium Shot (MS) 40 — 60%
Medium Close-Up (MCU) | 60 — 75%
Close-Up (CU) > 75%

the desired FST. E.g., transitioning between any of the single-
subject types (ELS, VLS, LS, MS, MCU, CU) is not only
trivially performed by adjusting the zoom level, but such an
approach is the least energy-consuming. When the multiple-
subject FSTs are also considered (25, 3S, OTS), transitions
among FSTs may also require adjusting the camera gimbal
rotation (e.g., so as to orient towards a midpoint between
many subjects, instead of towards a single subject) and the
UAV/camera position in world coordinates, in order for the
proper filming angle to be achieved (especially in OTS shots).
In the latter case, adherence to flight zone and legal restrictions
must be ensured during the transition.

Besides the above issues, single-subject FSTs are also
affected by a directorial choice regarding the visual arrangement
of the target within the video frame. The most common option
is “central composition”, where the image of the target being
filmed is located at the center of the video frame, with the “Rule
of Thirds” providing an alternative. According to the latter, a
video frame is conceived as divided into a 9 x 9 rectangular grid,
with the center of the target’s image located at an intersection
point of a vertical and a horizontal grid line [83]. In the more
visually crowded multiple-subject FSTs, the “Rule of Thirds”
should be the preferred composition, according to conventional
cinematography guidelines.

Filming one or more moving targets imposes a demand
for the above adjustments to be performed on top of, and in
combination with, any gimbal or UAV parameter adaptations
required by the target and/or UAV motion. Thus, the desired
UAV/camera motion trajectory comes into play.

V. SINGLE-UAV CAMERA MOTION SHOT TYPES

Several standard types of UAV/camera motion trajecto-
ries/types (CMTs) have emerged since the popularization of
UAVs. As in the case of FSTs, most of them are derived/adapted
from the ones found in traditional ground and aerial cine-
matography. A significant subset of these motion types (“target-
oriented”) are relative to a (still or moving) target being filmed,
while the rest do not depend on a specific subject and emphasize
capturing the scene (‘“‘scene-oriented”). Moreover, a small subset
of the presented types do not involve actual UAV motion and
have been included for reference purposes. In the sequel, they
are referred to as “static shots”, in contrast to “dynamic shots”.

Below, a taxonomy of 26 CMTs is provided, complemented
by mathematical modeling (details per CMT are in the
Appendix). Verbal descriptions for a subset of them can be
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Fig. 1: Examples of different UAV shot types when filming boat targets from their side (Lateral Tracking Shot): a) Extreme Long
Shot (ELS), b) Very Long Shot (VLS), c) Long Shot (LS), d) Medium Shot (MS), e) Medium Close-Up (MCU), f) Close-Up
(CU), g) Two-Shot (2S), h) Three-Shot (3S) and i) Over-the-Shoulder (OTS). Notice that, in CU, the visual emphasis is on the

boat crew.

found in recent photography/cinematography literature [1] [2].
The main focus is on coverage of outdoor events in dynamic,
unstructured environments with moving targets/subjects (e.g., in
live sports broadcasting), which represents the most challenging
application. In different production scenarios, either only
subsets of the shot types presented here are employed, or
the scenes to be filmed consist in significantly more controlled
settings (e.g., movie sets).

In terms of energy consumption, the following UAV operation
ordering may be defined, from the least to most battery-
intensive: camera operations (gimbal rotations, zoom), flying
down, flying horizontally/hovering, flying up. In general, the
direction of UAV flight dominates the energy-related behavior,
with camera operations being relatively negligible. Thus,
wherever possible, each presented CMT has been classified into
one out of three possible energy consumption levels: “low”,
“medium” and “high”.

In terms of framing, an assessment is provided regarding
the FSTs compatible with each CMT. In general, the scene-
oriented CMTs fit well only with ELS and VLS, since no real
subject is being filmed, while the framing types that fit with
target-oriented CMTs vary depending on the latters’ purpose.
For instance, in a Chase shot (where the UAV follows/leads a
moving target from behind/from the front, maintaining a steady
distance), the viewer is meant to experience a “simulation” of
the target’s motion within its environment, while the target is
fully visible. Thus, a CU that excludes most of the surroundings
from the video frame is an unsuitable FST. Moreover, in the
extreme case of a Bird’s Eye shot (a scene-oriented CMT, where
the UAV flies vertically up, while the camera stays stable and
focused vertically down), no specific FST fits well, since the
distance from the ground starts small and increases steadily.

In terms of the required technology complexity level,
each of the proposed CMTs is assigned to the minimum
hardware/software combination necessary for autonomously
capturing it in an unstructured, dynamic environment, based
on the discussion in Section III. Three levels are possible:
“minimum”, “vision” and “vision+3D”. The first one implies
that no visual input analysis, GPS-based target localization, or
any of the methods contained in the vision or the 3D-group
is required for filming with this CMT. For instance, scene-
oriented shots with simplistic UAV trajectories fall under this
category. The second level refers to CMTs that require the
vision-group methods to be available. The third level implies
that methods contained in both the vision and the 3D-group are
required, i.e., both on-target and on-drone GPS receivers (or
equivalent positioning systems) must be active. Vision methods
may be necessary even in scene-oriented dynamic shots, e.g., for
assisting in mapping/localization and/or human crowd detection,
therefore no pure “3D” (with no vision) designation has been
given.

The presented mathematical treatment assumes that, given a
camera frame-rate of 7', time ¢ is discrete, non-negative and
proceeds in steps of % seconds. The ijk-axes convention is
employed for the 3D coordinate system. A separate timeline is
employed for each shot type description, i.e., ¢ = 0 indicates
the start of a shot type filming session. At each time instance ¢
the 3D positions of the UAV (x;) and the target (p;), as well
as an estimated 3D target velocity vector (4;), are assumed
known in a fixed, orthonormal, right-handed World Coordinate
System (WCS), with its k-axis vertical to a local tangent plane



(hereafter shortened to “ground plane”).* For instance, a local
East-North-Up (ENU) coordinate system may be employed [84].
Additionally, at each time instance ¢, a current, orthonormal,
right-handed target-centered coordinate system (TCS) is defined.
Its origin lies on the current target position, its k-axis is
vertical to the ground plane and its i-axis is the Lo-normalized
projection of the current target velocity vector onto the ground
plane. In case of a still target, the TCS ¢-axis is defined as
parallel to the projection of the vector pg — X onto the ground
plane. In both coordinate systems, the ij-plane is parallel to
the ground plane and the k-component is called “altitude”.
Below, vectors expressed in TCS are denoted without the tilde
symbol (e.g., x;, p: and u;). In mobile robotics literature,
an additional, vehicle-centered coordinate system is typically
employed, having its origin located at a fixed distance from
the UAV-mounted camera. Since the scope of this article does
not include UAV control per se, we do not make use of such
a coordinate frame and limit our analysis to cinematography
issues.

Since the origin and the axes of TCS in terms of the WCS
are fully defined, transforming between the two coordinate
systems is trivial, allowing us to provide descriptions either
in TCS or in WCS, depending on which approach is more
succinct for each case. A subset of the presented motion types
require pre-specification of motion parameters meant to adapt
the UAV motion trajectory to concrete directorial guidelines
(e.g., distance to be covered by the UAV).

We assume standard measurement units for the above
quantities, i.e., distance is measured in meters, speed in meters
per second and the frame-rate in frames per second. Moreover,
in the mathematical description of scene-oriented motion types
we assume a known “virtual target” (a 3D world point located in
the visible scene) as a reference point for the TCS. Therefore,
p: and p; are considered meaningful both in target and in
scene-oriented motion types.

The 3D scene point at which the camera looks at time
instance ¢ is denoted by 1; (in TCS). It depends on the specific
FST combined with each CMT. That is, for single-subject FSTs
with central composition it holds that 1; = p;, while in the
case of a “Rule of Thirds” composition 1; has to be suitably
adjusted. When a multiple-subject FST has been selected, 1;
must be computed based both on p; and the 3D positions of
neighboring, secondary targets.

To simplify the following analysis, a single-subject FST with
central composition is assumed (therefore, it usually holds that
l; = p; and o; = —x;). In several cases, the shot type is only
meaningful if the target is moving linearly. Moreover, such an
assumption is additionally made below in cases where the future
position of the target or the UAV needs to be predicted, for
reasons of modeling convenience (these cases are appropriately
marked in the following analysis). Constant linear motion
is assumed for both these scenarios, although extending the
formulas for the case of constantly accelerated linear motion
is trivial (assuming a target acceleration vector can be reliably

4Following widespread convention, we employ the term “local tangent plane”

for a plane parallel to the local sea level, while the term “terrain tangent plane”

is reserved for the plane instantaneously tangent to the local terrain inclination.

estimated).

The 26 CMTs have been clustered into four groups containing
similar motions. Geometrical description for each CMT is
provided in the Appendix, while in Table IIl each one is
assigned a list of compatible FSTs, an energy consumption
grading and a required technology complexity level. In case
the battery consumption varies depending on a parameter, the
latter has been identified.

A. Static shots

Static shots are CMTs (either target-oriented, or scene-
oriented) where there is no UAV motion. There are five CMTs
falling under this category, with graphical examples provided
in Figure 2:

1) Static Shot (SS) (scene-oriented), 2) Static Shot of Still
Target (SSST) (target-oriented) and 3) Static Shot of Moving
Target (SSMT) [2] (target-oriented) are the simplest, non-
parametric CMTs. In all cases, the UAV simply hovers. In
SS and SSST, the camera gimbal stays stable during filming,
while in SSMT it rotates slowly so as to always keep the
moving target properly framed. In SS, p; refers to a fixed,
virtual target position in WCS, selected by the director, while
in SSST and SSMT it refers to the position of a real target in
WCS.

4) Static Aerial Pan (SAP) is a scene-oriented, parametric
CMT, where the camera gimbal rotates slowly (with respect
to the yaw axis), in order to capture the scene context, while
the UAV simply hovers [2]. p; refers to a fixed, virtual target
position selected by the director.

5) Static Aerial Tilt (SAT) is a scene-oriented, parametric
CMT, where the camera gimbal rotates slowly (with respect to
the pitch axis), in order to capture the scene context, while the
UAV simply hovers [1] [2]. p; refers to a fixed, virtual target
position selected by the director.

B. Dynamic scene shots

Dynamic scene shots are CMTs where the UAV is moving,
while the emphasis is on conveying the scene context to the
viewer and/or achieving a visually pleasing cinematographic
effect. Thus, the target is virtual. There are seven CMTs falling
under this category, with graphical examples provided in Figure
3:

1) Moving Aerial Pan (MAP) and 2) Moving Aerial Tilt
(MAT) [2] are two parametric CMTs, where the camera gimbal
rotates slowly (with respect to the yaw/pitch axis, in MAP/MAT,
respectively), in order to capture the scene context, while
the UAV is slowly flying at a steady trajectory with constant
velocity. p; refers to a varying, virtual target position moving
identically to the UAV, with initial py selected by the director.
Therefore, during filming, the UAV position remains constant
in TCS, but varies in WCS.

3) Pedestal/Elevator Shot (PS) [1] [2] and 4) Bird’s Eye Shot
(BIRD) [2] are parametric CMTs, where the UAV is slowly
flying up or down, along the k-axis, with a constant velocity,
while the camera gimbal remains stable. In PS the camera axis
is parallel to the ground plane and p; refers to a varying, virtual



TABLE II: UAV/Camera Motion Description Nomenclature.

Ist = [ﬁtl ) ﬁt27 ﬁt?)]T

The 3D target position in WCS, at time instance ¢

b = [ptlapt27pt3]T

The 3D target position in TCS, i.e., the current TCS origin at
time instance ¢. It is always equal to [0, 0, 0]7.

X; = [Z41, T2, T13]7 || The 3D UAV position in WCS, at time instance ¢
Xy = [T, Te2, T3 T |[ The 3D UAV position in TCS, at time instance ¢
0; = [f1, Gro, Ug3]” || The estimated 3D target velocity in WCS, at time instance ¢
W = [wg, Uz, Ugs 7| The estimated 3D target velocity in TCS, at time instance ¢
Vi = [041, Us2, Us3)T || The 3D UAV velocity in WCS, at time instance ¢
Vi = [Us1, Vs, vg3]T || The 3D UAV velocity in TCS, at time instance ¢
l, ¢ R3 The 3D position at which the camera looks (known as the
“LookAt point”) in WCS, at time instance ¢
; € R3 The 3D position at which the camera looks in TCS, at time instance ¢

o=l —x

The LookAt vector in WCS, at time instance ¢. It is a
scalar multiple of the camera axis.

o, =1 —x

The LookAt vector in TCS, at time instance ¢

ij,k The WCS axes unit vectors
ij,k The TCS axes unit vectors
T The camera frame-rate

target position moving identically to the UAV (with initial pg
selected by the director), while in BIRD the camera axis is
facing vertically down and p; refers to a static virtual target
position directly beneath the UAV. Therefore, in PS, the UAV
position remains constant during filming in TCS, but varies in
WCS, while in BIRD the UAV altitude constantly increases or
decreases (in both coordinate systems).

5) Moving Bird’s Eye Shot (MOVBIRD) and 6) Survey Shot
(SURVEY) are two parametric CMTs where the camera gimbal
remains stable, while the UAV is slowly flying in parallel to
the terrain tangent plane with constant velocity. The camera
is facing vertically down in the case of MOVBIRD, while
in SURVEY it is facing ahead. p; refers to a varying, virtual
target position moving identically to the UAV, therefore the UAV
position remains constant in TCS. In the case of MOVBIRD,
the initial target position pg depends on the initial UAV position
Xo. In SURVEY py is selected by the director, while the camera
axis is approximately parallel to the terrain tangent plane.

7) Fly-Through (FLYTHROUGH) is a parametric CMT,
where the camera gimbal remains stable, with the camera
typically facing ahead, and the UAV is flying forward and
through an opening/gap/hole with constant velocity [2]. p:
refers to a varying, virtual target position moving identically to
the UAV. This is an aerial CMT only achievable with small-form
UAVs, thus especially important for UAV cinematography.

C. Target tracking shots

Target tracking shots are CMTs where the UAV motion
directly depends on the trajectory of a real target. There

are eleven CMTs falling under this category, with graphical
examples provided in Figure 4:

1) Moving Aerial Pan with Moving Target (MAPMT) and 2)
Moving Aerial Tilt with Moving Target (MATMT) are parametric
CMTs, where the camera gimbal rotates slowly (mainly
with respect to the yaw/pitch axis, for MAPMT/MATMT
respectively) so as to always keep the linearly moving target
properly framed, while the UAV is slowly flying at a steady
trajectory with constant velocity. p; refers to the position of
a real target, varying over time in such a manner that the
target and the UAV trajectory projections onto the ground
plane are approximately perpendicular/parallel to each other,
for MAPMT/MATMT respectively.

3) Lateral Tracking Shot (LTS) [1] [2] and 4) Vertical
Tracking Shot (VTS) are non-parametric CMTs, where the
camera gimbal remains stable and the camera always focused
on the moving target. In LTS, the camera axis is approximately
perpendicular both to the target trajectory and to the WCS
vertical axis vector k, while the UAV flies sideways/in parallel
to the target, matching its speed if possible. In VTS, the camera
axis is perpendicular to the target trajectory and the UAV flies
exactly above the target, matching its speed if possible. In
both cases, p; refers to a real, varying target position in WCS.
During filming, the UAV position remains constant in TCS,
but varies in WCS.

5) Orbit (ORBIT) A parametric CMT, where the camera
gimbal is slowly rotating, so as to always keep the still or
linearly moving target properly framed, while the UAV (semi-
)circles around the target and, simultaneously, follows the
latter’s linear trajectory (if any) [1] [2]. During filming, the
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Fig. 2: Examples of different static UAV CMTs: a) Static Shot (SS), b) Static Shot of Still Target (SSST), c) Static Shot of
Moving Target (SSMT), d) Static Aerial Pan (SAP) and e) Static Aerial Tilt (SAT).

UAV altitude remains constant in TCS, but may vary in WCS.

p: refers to a real, varying or static target position in WCS.

6) Fly-Over (FLYOVER) and 7) Fly-By (FLYBY) [2] are
parametric CMTs, where the camera gimbal is slowly rotating
(mainly along the pitch axis, in the case of FLYOVER), so
as to always keep the still or linearly moving target properly
framed. The UAV intercepts the target from behind/from the
front (and to the left/right, in the case of FLYBY), at a steady
altitude (in TCS) and with constant velocity, flies exactly above
it/passes it by (for FLYOVER/FLYBY, respectively) and keeps
on flying at a linear trajectory, with the camera still focusing on
the receding target. The UAV and target trajectory projections
onto the ground plane remain approximately parallel during
filming. p; refers to a real, varying or static target position in
WCS.

8) Descent (DESCENT), 9) Descent Over (DESCENTOVER)
and 10) Ascent (ASCENT) are parametric CMTs, where the
camera gimbal is slowly rotating (mainly along the pitch axis),
so as to always keep the still or linearly moving target properly
framed. The UAV linearly intercepts/backs away from the target
(for DESCENT,DESCENTOVER/ASCENT, respectively) from
behind or from the front, at a steadily decreasing/increasing TCS

altitude (for DESCENT,DESCENTOVER/ASCENT, respec-
tively), with constant velocity. In DESCENT, the shot ends with
the UAV flying exactly above the target, in DESCENTOVER
the UAV passes the target by, while in ASCENT the UAV keeps
flying away from the target, with the camera still focusing on
the latter. The UAV and target trajectory projections onto the
ground plane remain approximately parallel during filming. p;
refers to a real, varying or static target position in WCS.

11) Chase/Follow Shot (CHASE) is a non-parametric CMT,
where the camera gimbal remains stable and the camera always
focused on the target [2]. The UAV follows/leads the target from
behind/from the front, at a steady trajectory, steady distance
and matching its speed if possible. p; refers to a real, varying
target position in WCS.

D. Dynamic target shots

Dynamic target shots are CMTs where the target is real, but
UAV motion does not depend only on the target trajectory.
In such scenarios, the FST can be either allowed to vary
automatically according to the UAV-target distance at each
time instance, or can be actively held fixed (via appropriately
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Fig. 3: Examples of different dynamic scene UAV CMTs: a) Moving Aerial Pan (MAP), b) Moving Aerial Tilt (MAT), c)
Pedestal/Elevator Shot (PS), d) Bird’s Eye Shot (BIRD), e) Moving Bird’s Eye Shot (MOVBIRD), f) Survey Shot (SURVEY)

and g) Fly-Through (FLYTHROUGH).

adapting the zoom level). There are three CMTs falling under
this category, with graphical examples provided in Figure 5:

1) Constrained Lateral Tracking Shot (CONLTS) is a para-
metric CMT, where the camera gimbal remains stable and the
camera always focused on the moving target. The UAV flies
along the projection of the target trajectory onto a pre-defined
“flight plane”, vertical to the ground plane, while maintaining
a constant TCS altitude during filming. This is relevant, for
instance, in football match coverage, where the UAVs are
allowed to fly only above the pitch sidelines. p; refers to a
real, varying target position in WCS.

2) Pedestal/Elevator Shot With Target (PST) is a parametric
CMT, where the UAV is slowly flying up or down, along the k-
axis, with constant velocity [1] [2]. The camera gimbal rotates
slowly (mainly along the pitch axis), so as to always keep the
linearly moving target properly framed. The projections of the
camera axis and of the target trajectory on the ground plane
are approximately lying on the same line during filming. p;
refers to a real, varying target position in WCS.

3) Reveal Shot (RS) is a parametric CMT, where the camera
gimbal is stable, with the target initially out of frame (e.g.,
hidden behind an obstacle) [2]. The UAV flies at a steady
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Fig. 4: Examples of different target tracking UAV CMTs: a) Moving Aerial Pan with Moving Target (MAPMT), b) Moving Aerial
Tilt with Moving Target (MATMT), c) Lateral Tracking Shot (LTS), d) Vertical Tracking Shot (VTS), e) Orbit (ORBIT), f) Fly-Over

(FLYOVER), g) Fly-By (FLYBY), h) Chase/Follow (CHASE), i) Descent (DESCENT), j) Descent Over (DESCENTOVER) and
k) Ascent (ASCENT).

c)

Fig. 5: Examples of different dynamic target UAV CMTs: a) Constrained Lateral Tracking Shot (CONLTS), b) Pedestal/Elevator
Shot With Target (PST) and c) Reveal Shot (RS).



TABLE III: Single-UAV CMT properties: “Framing” refers to compatible FSTs, "Energy” refers to expected energy consumption,
while “Technology” refers to required technology complexity level for autonomous capture. Light blue, yellow, green and red
cells denote static, dynamic scene, target tracking and dynamic target shots, respectively. * denotes that energy consumption
depends on UAV velocity direction, while ** denotes that energy consumption depends on target velocity direction. | denotes a
case where the energy consumption is low because the UAV is flying down, while 1 denotes a case where the energy consumption

is high because the UAV is flying up.

| Camera Motion | Framing | Energy | Technology |
SS ELS, VLS medium | minimum
SSST All medium vision
SAP ELS, VLS medium | minimum
SAT ELS, VLS medium | minimum
SSMT All medium vision
MAP ELS, VLS any * vision+3D
MAT ELS, VLS any * vision+3D
PS ELS, VLS Jor?T | minimum
BIRD None Jor T | minimum
MOVBIRD ELS, VLS any * vision+3D
SURVEY ELS, VLS any * vision+3D
FLYTHROUGH ELS, VLS any * vision+3D
MAPMT LS, MS, MCU, OTS, 2S/3S any * vision+3D
MATMT LS, MS, OTS, 2S/3S any * vision+3D
LTS VLS, LS, MS, MCU, OTS, 2S/3S | any ** vision
VTS VLS, LS, MS, MCU, 2S/3S any ** vision
ORBIT LS, MS, MCU, CU, 2S/3S any ** vision
FLYOVER LS, MS, MCU, CU, 2S/3S any ** | vision+3D
FLYBY LS, MS, MCU, CU, 2S/3S any ** | vision+3D
DESCENT LS, MS, MCU, CU, 2S/3S low vision+3D
DESCENTOVER LS, MS, MCU, CU, 2S/3S low vision+3D
ASCENT LS, MS, MCU, 2S/3S high vision+3D
CHASE VLS, LS, MS, OTS, 2S/3S any ** vision
CONLTS LS, MS, MCU, OTS, 2S/3S any ** vision
PST LS, MS, 2S/3S Jort vision
RS LS, MS, 2S/3S any * vision+3D

trajectory with constant velocity, until the target becomes fully
visible. p; refers to a real, varying or static target position in
WCS.

VI. MULTIPLE-UAV CAMERA MOTION TYPES

Employing a swarm of cooperating UAVs for video coverage
of outdoor events, not only offers great opportunities for novel
cinematographic effects, but also a way to deal with many
issues arising in single-UAV cinematography. As discussed in
Section I, the main advantages are the ability to concurrently
film the same target from multiple viewpoints and with multiple
FSTs, elimination of dead time intervals due to UAV traveling
and maximization of scene coverage.

The CMTs described in Subsection V can, in principle, be
assembled in various combinations in order to produce an unlim-
ited number of composite, multiple-UAV CMTs. However, only
a percentage of these combinations are cinematographically
meaningful and have the potential to significantly improve the
resulting visual experience. In this Subsection, a minimal list of
four specific, standardized relevant configurations is proposed.
In all cases, the employed UAVs should stay out of each other’s
FoV at all times, in order to preserve transparency of the filming
process for the viewer. Obviously, in movie/TV production or
in advertising, this is not merely a recommendation, but an
absolute requirement.

The multiple-UAV CMTs that have been identified are



detailed below. In all cases, the concurrently deployed UAVs
may employ different FSTs, among the fitting ones, while the
final broadcasted/edited video feed can alternate between the
different UAV inputs, resulting in an exciting visual result.
Graphical examples are provided in Figures 6 and 7.
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Fig. 6: Examples of three multiple-UAV CMTs: a) 2-UAV
Chase (2CHASE), b) 3-UAV Orbit (30RBIT) and c) 3-UAV
Track (3TRACK).

1) 2-UAV Chase (2CHASE): A non-parametric CMT involv-
ing two UAVs, each one performing a CHASE on the selected
moving target. The first drone leads, thus viewing the target
from the front, while the second drone follows, thus viewing
the target from behind. The distances between each of the
UAVs and the target remains approximately constant during
filming. However, the two distances need not be identical, i.e.,
the first drone can be a lot closer to the target than the second
one, or vice versa. The FSTs compatible with 2CHASE are
derived from single-UAV CHASE: VLS, LS, MS, OTS and
2S/3S. The mathematical description can be trivially derived
from single-UAV CHASE.

In a 2CHASE scenario, alternating the active video feed
between a frontal MS and a rear LS, for instance, has the
potential to provide a novel, pleasing and dynamic visual
experience.

2) 3-UAV Orbit (30ORBIT): A parametric CMT involving
three UAVs, each one performing an ORBIT at the selected
moving target with a common angular velocity. The (semi-
)circular components of the three trajectories coincide, but the
drones fly along it with a phase difference. Therefore, the three
UAVs remain at all times at the vertices of a spinning triangle,
that also moves linearly following the target motion. The FSTs
compatible with 30RBIT are derived from single-UAV ORBIT:
LS, MS, MCU, CU and 2S/3S.

The mathematical description is easily derived from that of
single-UAV ORBIT, under the following assumptions:
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where 6}, 62 and 63 are the initial angles of the first, the second
and the third UAV, respectively.

3) 3-UAV Track (3TRACK): A non-parametric CMT in-
volving three UAVs: two performing an LTS from opposing
sides of the selected moving target (“lateral” UAVs), and one
simultaneously performing a VTS (“vertical” UAV). Thus, the
two lateral UAVs provide a comprehensive view of the target
moving in its environment, while the vertical UAV provides on
overview of the target motion from above, with all the cameras
being “locked” on the target while simultaneously precisely
“tracking” its trajectory. Both the mathematical description and
the compatible FSTs can be trivially derived from single-UAV
LTS and VTS.

Alternating the active video feed between these three views
can provide an aesthetically pleasing and comprehensive shot
of the moving target in its surrounding. It must be noted that,
although the target itself will prevent the lateral UAVs from
being visible to each other, FoV avoidance is more complex
when examining whether the lateral UAVs are visible from the
vertical one. It depends on the interplay between the vertical
UAV’s FST, its TCS altitude and the distance between each
of the lateral UAVs from the target, thus possibly requiring
careful coordination.

4) Dancing Drones (2DD): Dancing Drones, depicted in
Figure 7, is a parametric CMT involving two UAVs, each one
performing the first half of a FLYOVER and the second half
of a FLYBY on the selected still or moving target. The first
drone initially leads, thus viewing the target from the front
and moving in the opposite direction from the latter, while the
second drone initially follows, thus viewing the target from
behind and moving to the same direction as the latter. Thus,
the first step of 2DD corresponds to the first half of a double
FLYOVER, with the two drones flying at very different speeds
(the rear one must “catch up” with the moving target and
get past it, while the frontal UAV flies towards it). When the
two UAVs are about to pass exactly above the target, they
avoid colliding by flying perpendicularly to their trajectory up
to that point, in opposite directions, without slowing down
or losing focus on the target. This intermediate step of 2DD
lasts until a pre-specified distance d is covered by each UAV.
Subsequently, the two drones turn 90° once more and start
flying in parallel to their original directions. This step of 2DD
actually corresponds to the second half of a double FLYBY.
Subsequently, each drone flies to its closest position lying upon
the target trajectory and a new cycle of 2DD may begin, with
the frontal and the rear UAV having exchanged roles.

During the entire filming session, both cameras stay focused
on the target and the two UAVs remain at a steady altitude
(in WCS). 2DD fits well with LS, MS, MCU, CU and 2S/3S
FSTs. The mathematical description can be trivially derived
from single-UAV FLYOVER and FLYBY, with pre-specified
distance d also serving as the parameter d of FLYBY.

VII. COGNITIVE AUTONOMY EXPLOITING A UAV SHOT
TYPE TAXONOMY

The presented UAV shot type taxonomy and the accompa-
nying mathematical modelling may easily be employed for
facilitating cognitive autonomy algorithms. Three examples are
briefly described in this Section, in order to showcase the value
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Fig. 7: One cycle of the Dancing Drones (2DD), depicted
in consecutive steps: a) first half of a double FLYOVER, b)
intermediate step, ¢) second half of a double FLYBY and d)
final step that sets the stage for the next 2DD cycle.

of such a formalized taxonomy. In future research, each of these
examples may be expanded to detailed, cinematography-aware
algorithms.

A. Autonomous UAV Shot Capturing

According to Table III, all 26 single-UAV CMTs can be
autonomously captured assuming a vision+3D operational
environment, where 3D coordinates of both the target and

the UAV are available at all times in global 3D Cartesian space.

In fact, this is rather straightforward by employing black-box,
low-level UAV/gimbal controllers, 3D baseline path-planning
algorithms and the mathematical description of the CMTs that
is provided in the Appendix. This is a task with immediate
commercial impact, that clearly showcases the value of the
proposed taxonomy.

Additionally, as shown in Table III, a subset of the CMTs
could be implemented by relying only on vision technologies
(i.e., no GPS-based localization). For instance, instead of relying
on the formulas found in the Appendix, several target tracking
CMTs can be alternatively defined as a set of requirements
that relate 2D visual information, UAV trajectory and camera
orientation. A good example would be CHASE, that can be
described as the following set of requirements:

e The UAV velocity direction and the camera axis should
always form and retain a yaw angle w, equal either to 0
or 7 rad.

e The camera axis pitch angle should remain fixed to 0¢ <
0. This is an external parameter that implicitly determines
the UAV altitude relative to the target.

Camera focal length f should remain constant.

e Target 2D ROI area R, should remain approximately
fixed to d,. d, is an external parameter that implicitly
determines the desired FST.

e Target ROI center [R,, R,]” should always remain at
the video frame center/principal point.

Then, a vision-based UAV controller could be implemented
which exploits the above requirements to form an error

signal, driving a PID controller that controls instant UAV
motion parameters. Thus, a target tracking shot could be
executed without needing 3D target/UAV coordinates. The
only requirement is for the target to initially be visible and
detectable on the video frame.

As in the 3D-group-based capturing scenario, this approach
is made possible only by the presence of a formalized UAV
shot type taxonomy.

B. Object detection on video

A number of 2D object detection algorithms exploit spa-
tiotemporal locality constraints found in video footage, instead
of simply processing each video frame independently, in
order to augment detection accuracy. Such algorithms may
impose inter-frame spatial position constraints (e.g., encoding
knowledge that the target ROI trajectory is smooth over time
in the video footage), so as to better model expected apparent
target motion on the video frames [85] [86] [87].

Assuming that the video being analyzed is derived from a
known UAV shot type capture session, additional constraints can
be inserted in order to further augment detection accuracy. For
instance, in a LTS footage of a bicycle race, all visible bicycles
are expected to mainly move horizontally across consecutive
video frames (in pixel coordinates), or not move at all in the
case of the specific target which the UAV physically tracks.
Vertical apparent ROI motion should be negligible-to-none.
This knowledge could be encoded as an additional constraint
on the spatiotemporal detection algorithm.

Obviously, this would not be possible without a standardized
UAV shot type taxonomy.

C. UAV video summarization

UAV video summarization methods have mostly been de-
veloped for post-processing geospatial aerial survey footage.
This application directly maps to the SURVEY CMT, described
in Section V, and typically leads to continuous, long-duration
videos with a virtual target. In this case, summarization is a
necessary analysis step that automatically selects the most
interesting parts for human browsing. The most common
algorithmic approach is first to construct a geo-registered
video mosaic, either global one, or composed from multiple
mini-mosaics that draw their content from different temporal
segments of the original footage [88], and then detect objects
and/or unusual activity patterns inside this material (e.g.,
by identifying outlying object trajectories that cannot be
reconstructed well after sparse encoding [89]). Saliency-based
scoring has also been employed for ranking visible object
motion patterns within each video segment. Subsequently, all
“interesting” object trajectories from each video segment are
superimposed on the same background video frame [90].

However, if different CMTs from the proposed taxonomy
are employed during video capturing, the entire process could
be augmented with constraints deriving from knowledge of the
cinematographic specifications. For instance, in target tracking
CMTs, only specific video frames could be pre-selected for
analysis, in order to reduce the computational overhead of



summarization. Thus, during an ORBIT circle around the target,
only the 4 video frames captured when the UAV is directly
behind, directly in front of and to the two sides of the target
could be used. This is trivial when operating in a global 3D
Cartesian space (e.g., if the targets are equipped with GPSs),
but it may require advanced visual 3D target pose estimation
algorithms otherwise.

An additional example would be a DESCENT CMT, where
only the initial/final video segments at the start/end of the shot
could be retained for further analysis, i.e., the video frames
where the camera lies the farthest from the target and (almost)
directly above it. In general, awareness of the CMT equips us
with a priori knowledge regarding the most interesting parts of
the footage.

VIII.

In practice, UAV cinematography involves issues outlined
in Section I: battery autonomy limitations, finite bandwidth
in the wireless video transmission channel, restricted flight
zones arising from safety-motivated legal requirements, as
well as collision/FoV avoidance (in case of multiple-UAV
filming). In this Section, two general compensation strategies
for alleviating a number of these issues are presented, i.e., focal
length compensation and multidrone compensation. Specific
scenarios where each of these strategies is applicable are also
identified.

Focal length compensation refers to continuously varying
the camera focal length (therefore, zoom level) while the UAV
either hovers, or follows a different trajectory than the expected
one, in order to partially compensate for an inability to fly along
the trajectory specified by the selected shot type. The reasons
for such an inability may be flight zone restrictions (e.g., a
UAV is not permitted to fly over human crowds), or excessively
high target speed in target tracking CMTs, given that maximum
UAV speed is constrained. Limited battery autonomy may also
be responsible, given that hovering is a less energy-consuming
operation than flying up.

Multidrone compensation refers to on-line replacing one
primary UAV with another (“auxiliary”) in the middle of a
continuous filming session. Transitioning the active video feed
from the primary UAV to the auxiliary one must incur minimal
disruption to the visual result. As before, the reasons for
employing this strategy may be limited battery autonomy, i.e.,
the primary drone is expected to run out of power soon, or flight
zone restrictions. In the latter case, focal length compensation
may also be required to be employed on the primary UAV
immediately before the transition.

In order for this strategy to work, a pool of auxiliary UAVs
must be maintained available at all times, located at carefully
selected scene positions dispersed throughout the scene to be
covered. An auxiliary UAV must get notified and start flying
to the appropriate location as soon as the filming session starts,
so that it is already optimally placed during the transition.

Two concrete examples of focal length compensation are
provided below. The first one is a CHASE from behind with a
LS framing type, where a target moves uphill along an inclined
plane. The expected UAV trajectory is also inclined upwards,
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following the terrain tangent plane. Due to energy consumption
considerations, the UAV may stop physically following the
target and start hovering. From that point in time on, the camera
gimbal must begin rotating in order to keep the target properly
framed (as in SSMT), while the focal length steadily increases
(the camera zooms in) so as to retain the LS framing. The
visual result obviously differs from that of a pure CHASE, due
to different perspective, and the filming session may need to
terminate early, since the target could hide behind an obstacle
and the maximum focal length is limited. However, for a time,
focal length compensation provides a good approximation of
CHASE at a reduced energy cost. This example is illustrated
in Figures 8a,b.

(b)

Fig. 8: Example of focal length compensation: a) The UAV
shoots the target using a CHASE, b) The UAV starts hovering
and transitions to a SSMT, while constantly increasing its focal
length for as long as possible.

The second example is a semicircular ORBIT around the
still target with a LS framing type and with a restricted flight
zone in the middle part of the semicircular trajectory (e.g., a
human crowd is present). Instead of following the expected
trajectory, the UAV simply flies linearly from the initial point
to the endpoint of the semicircle (thus performing a FLYBY),
while continuously adjusting the focal length in the process, so
as to maintain a LS of the target. As before, due to the different
perspective, focal length compensation may only provide an
approximation of ORBIT. This example is illustrated in Figures
9a,b.
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Fig. 9: Example of focal length compensation: a) the UAV
shoots the still target using an ORBIT, but the main part of the
semicircular trajectory is located within restricted flight area
(denoted by light red color), b) the UAV flies linearly instead,
actually performing a FLYBY, while constantly adjusting its
focal length to maintain proper FST.

Two examples of multidrone compensation are also provided.



The first one is a LTS where the primary UAV is soon expected
to enter a low-battery mode, requiring its emergency return to
a recharging platform. An auxiliary UAV gets notified at the
start of the filming session and begins travelling to the expected
transition point with appropriate speed. When the transition
between the two UAVs occurs, the active video feed is passed
on to the auxiliary UAV, while the primary UAV stops filming
and flies to the closest recharging platform. Since during the
transition the two UAVs must keep a safety distance between
them, the auxiliary UAV may initially, for a very short time
interval, begin filming with SSMT CMT, before resuming the
LTS. This example is illustrated in Figures 10a,b,c.

(©

Fig. 10: Example of multidrone compensation: a) The primary
UAV shoots the target using a LTS, b) During the transition,
the primary UAV departs while the auxiliary UAV starts filming
using an intermediate SSMT, c) The auxiliary UAV resumes
the LTS.

The second multidrone compensation example is a MATMT
where the primary UAV is soon expected to enter a restricted
flight area. An auxiliary UAV gets notified at the start of
the filming session and begins travelling to that point on
the expected UAV trajectory that lies just beyond the end
of the restricted flight area (position B). When the primary
UAV reaches the restricted zone (position A) it starts hovering
with focal length compensation, i.e., it keeps zooming on the
approaching target, until the moment of transition. Then, the
active video feed is passed on to the auxiliary UAV, while
the primary UAV stops filming and returns to the recharging
platform. Simultaneously, the auxiliary UAV resumes the
MATMT from position B. This example is illustrated in Figures
11a,b,c.

Table IV depicts whether focal length compensation can be
successfully employed for each of the single-UAV CMTs, in a
cinematographically meaningful way. For instance, the purpose
of MAP is to depict the scene context under a constantly
changing perspective, therefore focal length compensation
(although possible, with the UAV hovering) would not be
a good strategy. Multidrone compensation may always be
employed for reasons of limited battery autonomy, assuming
a pool of auxiliary UAVs is available. In the case of flight
zone restrictions, it can be reasonably used if focal length

compensation is also compatible with the current shot type.

The only requirement is that the restricted flight area is not so
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Fig. 11: Example of multidrone compensation: a) The primary
UAV films the approaching target using a MATMT, but is
unable to continue flying forward due to the restricted flight
area just ahead (denoted by light red color), b) The auxiliary
UAV is travelling to position B, while the primary UAV hovers
at position A with focal length compensation, c) The auxiliary
UAV resumes MATMT from position B, while the primary
UAV stops filming and withdraws.

extended that the visual result would severely deviate from the
expected one with the selected shot type.

IX. DISCUSSION AND FUTURE PROSPECTS

During the 21st century, UAVs have evolved from remotely
controlled curiosities with purely military applications into a
technological revolution, taking multiple industries by storm and
paving the way for massively available embodied autonomous
agents. Aerial cinematography has already been transformed by
the easy availability of advanced VTOL drones, but there is still
a lot of room for improvements in multiple aspects. Directions
for advancement derive from the currently limited UAV
decisional and functional autonomy, the lack of commercial
off-the-self cooperative UAV swarm platforms, the multitude of
complications arising from legal or technological restrictions, as
well as the absence of multiple-UAV cinematography expertise.

Outdoor event coverage in dynamic, unstructured environ-
ments is undeniably the most difficult and variable task relating
to UAV media production. We can easily imagine an ideal
scenario where a director gives high-level, concise event
coverage instructions in near-natural language before the event.
Subsequently, a fully autonomous UAV swarm would acquire
the desired footage, while constantly and optimally adapting
to the ever-changing situations arising within the event area,
under the minimal oversight of a single flight supervisor. In a
less ambitious variant, arguably more realistic at the current



TABLE IV: Compensation strategy compatibility with each of the single-UAV CMTs. Light blue, yellow, green and red cells
denote static, dynamic scene, target tracking and dynamic target shots, respectively.

| Camera Motion | Compensation Strategies | Camera Motion | Compensation Strategies |

SS X MATMT v
SSST X LTS X
SAP X VTS X
SAT X ORBIT 4
SSMT X FLYOVER 4
MAP X FLYBY v
MAT X DESCENT X

PS X DESCENTOVER X
BIRD v ASCENT 4
MOVBIRD X CHASE v
SURVEY X CONLTS X
FLYTHROUGH v PST X
MAPMT v RS X

level of technology, the director would come up with a detailed
cinematography plan and, if deemed necessary, would be able
to manually intervene during production. For both scenarios, a
deep understanding of UAV cinematography is required in order
to realize them. Further advancements in sensor technology and
computational hardware, as well as progress in UAV cognitive
and functional autonomy, enabled by improvements in real-time
image/video analysis and mobile networking, are expected to
facilitate the process.

This tutorial serves both as an introduction to the topic,
and as a step towards achieving a greater understanding of
UAV cinematography, by exploiting accumulated industry
experience. A wave of further research is needed towards
realizing autonomous UAV swarms for dynamic, aerial media
coverage requiring minimal human intervention from pilots
or directors. Possible future directions include algorithms for
on-line, real-time, optimal compensation strategy evaluation,
fully autonomous filming (involving all UAV shot types) that
considers optimal transitions between different shots, intra-
swarm coordination and task assignment interacting with on-
line semantic event detection, as well as tight integration of
camera control with UAV path planning algorithms, under
cinematography-aware guidelines. In all cases, energy efficiency,
legal flight restrictions, collision/FoV avoidance and limited
communication channel bandwidth are factors to be considered.
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APPENDIX: Mathematical Description
of Single-UAV Camera Motion Types

The 26 CMTs, clustered into four groups, are described
geometrically below according to the mathematical framework
presented in Section V. Table V summarizes the relevant
notation.

A. Static shots

1) Static Shot (SS) (scene-oriented), 2) Static Shot of Still
Target (SSST) (target-oriented) and 3) Static Shot of Moving
Target (SSMT). The base mathematical description for all three
is terse:

X =%;_1, ly=py Wt 3)
Additionally, for SS and SSST, it also holds that:
Pt = Pi—1, Vi. 4)

4) Static Aerial Pan (SAP). The mathematical description (in
TCS) employs p; as a reference point marking the center of a
line segment S = (1,,in, Linas ). The panning rotation consists
in moving 1; along this line segment, thus 1,,,;, and 1,,,, are
defined based on an absolute maximum yaw camera rotation
angle parameter 6 (measured in degrees). When 1; = py, the
current yaw camera rotation angle is zero and the camera axis is
perpendicular to S. An additional angular velocity parameter w
(measured in degrees per second) affects how fast the panning
rotation is performed. Therefore’:

Xy = X¢_1, Vt 5
Pt = Pt—1, Vi (6)
n = x| tan 6 (M
Xt X k
e % K] ©
lma;v = _lmin (9)
Ly = Lnin +P(t) (lmaac - lmin) (10)
w
1 = = -1 — 11
pt) €[0,1], p(0)=0, p(t)=pt-1)+ 557 (1D

Figure 12 depicts the line segment connecting 1,,,;, and py,
along which 1, moves during the first half of a SAP shot.

5) Static Aerial Tilt (SAT). The mathematical description
(in TCS) is similar to that of SAP, but with the line segment

S = (Linin, Lmaz) now being vertical to the ground plane.

Parameters 6 and w should also be specified, as in SAP, with

0 referring to absolute maximum pitch camera rotation angle.

Therefore:
Xy = Xy_1, Vi (12)
Pt = Pt—1,Vt (13)

SOperator x denotes the cross product.

Imin

Fig. 12: Geometry of the Static Aerial Pan (SAP): the line
segment connecting 1,,;, and p; is depicted. It is one half
of the line segment S = (1,,in, Linasz ), along which 1, moves
during a SAP shot.

- Imin

na

as |

Sk

Pt

Fig. 13: Geometry of the Static Aerial Tilt (SAT): the line
segment connecting l,,,;, and p; is depicted. As shown, its
length is equal to n; + mo. k is the vertical TCS unit axis
vector.

d= /a2 + 2%, (14)

T3

6 = arcsin —=>- (15)
[[x¢]]
n = g (16)
ny = dtan (0 — 6) 17)
ng = dtan (0 + 0) — 3 (18)
n=ny +ny =z +dtan (0 — 6) (19)
Liin = nk (20)
Lpar = —n3k 1)
1 = Liin + p(t) bmaz — Lmin) (22)
p(t) €[0,1], p(0)=0, p(t) :p(t—1)+29LT7 0 < 72;23?

The line segment connecting 1,,,, and p;, as well as the
one connecting 1,4, and p;, are depicted in Figures 13 and
14, respectively. Thus, the entire line segment along which 1,
moves during a SAT shot is visualized.

B. Dynamic scene shots

1) Moving Aerial Pan (MAP) and 2) Moving Aerial Tilt
(MAT) [2]. The mathematical description of MAP is similar to
that of SAP, but also incorporates synchronized UAV and virtual



TABLE V: UAV/Camera Motion Type description nomenclature.

Ist = [ﬁtl ) ﬁt27 ﬁt?)]T

The 3D target position in WCS, at time instance ¢

b = [ptlapt27pt3]T

The 3D target position in TCS, i.e., the current TCS origin at
time instance ¢. It is always equal to [0, 0, 0]7.

X; = [Z41, T2, T13]7 || The 3D UAV position in WCS, at time instance ¢
Xy = [T, Te2, T3 T |[ The 3D UAV position in TCS, at time instance ¢
0; = [f1, Gro, Ug3]” || The estimated 3D target velocity in WCS, at time instance ¢
W = [wg, Uz, Ugs 7| The estimated 3D target velocity in TCS, at time instance ¢
Vi = [041, Us2, Us3)T || The 3D UAV velocity in WCS, at time instance ¢
Vi = [Us1, Vs, vg3]T || The 3D UAV velocity in TCS, at time instance ¢
l, ¢ R3 The 3D position at which the camera looks (known as the
“LookAt point”) in WCS, at time instance ¢
; € R3 The 3D position at which the camera looks in TCS, at time instance ¢

o=l —x

The LookAt vector in WCS, at time instance ¢. It is a
scalar multiple of the camera axis.

o, =1 —x

The LookAt vector in TCS, at time instance ¢

ij,k The WCS axes unit vectors
ij,k The TCS axes unit vectors
T The camera frame-rate

N
°l
max

Fig. 14: Geometry of the Static Aerial Tilt (SAT): the line
segment connecting l,,,,, and p; is depicted. As shown, its
length is equal to n3. k is the vertical TCS unit axis vector.

target motion prescribed by the UAV/target velocity vector v;.

Because of this synchronized motion x; remains constant in
TCS for all time instances, while x; in WCS varies over time
according to vy. Similarly, 1,,,;, and l,,,,, are constant in TCS

but vary over time in WCS, since p; changes according to v;.

The parameters that must be specified are 6, w and v, with

6 referring to absolute maximum yaw camera rotation angle.

Therefore, the equations describing MAP are the Eqgs. (7)-(11)
from SAP, plus the following ones:

Vi = Vi1, Vit (24)
=V (25)

. .V
% = %o + it (26)
. ~ u
P = Do+ it @7
Xt = Xt_1,vt (28)

The mathematical description of MAT is similar to that
of MAP, but with the line segment S = (Lin, Lnaz) now
being vertical to the ground plane. The parameters that must be
specified are 6, w and v, with 6 referring to absolute maximum
pitch camera rotation angle. Therefore, the equations describing
MAT are the Eqs. (14)-(23) from SAT, plus the Eqgs. (24)-(28)
from MAP.

3) Pedestal/Elevator Shot (PS) [1] [2] and 4) Bird’s Eye Shot
(BIRD). The parameters that must be specified are d, i.e., the
vertical distance to be traversed by the UAV during filming, and
V3, 1.e., the scalar speed of the UAV during filming (constant
over time). The base mathematical description for both CMTs
is the following:

Vi = Vi1 = vk, Vi (29)
B _ v
&=m+%§ (30)
= p; (31)
Td
telo ] (32)

e
|vt3]



Additionally, the following hold for PS:

u = vy (33)
- ~ u
Pt = Po + t?t (34)
oIk ~ 0 (35)
Xt = thl,vt (36)
Doz = Toz = x93 =10 37)

and the following hold for BIRD:

Po = [Zo1,Z02,0]" (38)
Pt = Pi—1,Vt (39)
o, xk~0 (40)

5) Moving Bird’s Eye Shot (MOVBIRD) and 6) Survey Shot
(SURVEY). The parameter that must be specified is the direction
and speed of flying, i.e., the velocity vector v, lying on the
terrain tangent plane. The latter differs from the ground plane
in case of inclined terrain, otherwise they coincide. The base
mathematical description for both CMTs is the following:

u =V (41)
. u
Pt = Do+t 42)
I
Xy = %o+t 43)
l; = p; 44)

Additionally, the following holds for MOVBIRD:
Po = [Zo1, Zo2,0]" (45)
and the following holds for SURVEY:
0 X vy =0 (46)

T) Fly-Through (FLYTHROUGH). The parameters that must
be specified are the time K (in seconds) until the gap is reached
and the 3D position of the gap center (Xx7) in WCS. The
mathematical description is the following:

te[0,KT] 47)
d = Xxr — X0 (48)

. d
Vi=Vie1 =5 (49)
Po = XKkT U= V; (50)
Pt = Po + t?t (5D

- . v

X = X + t% (52)
l; = py (53)

C. Target tracking shots

1) Moving Aerial Pan with Moving Target (MAPMT) and 2)
Moving Aerial Tilt with Moving Target (MATMT). Parameter
v, must be specified. The base mathematical description for
both is fairly simple:

Vo= ViVt = R =Ko+ 2+t (54)
l; = p; (35)
Additionally, the following relation holds for MAPMT:
(@1, G2, 0][Te1, r2, 0] =~ 0 (56)
and the following relation holds for MATMT:
(g1, Gig2, 0] X [Be1, Ty2, 0] ~ 0 (57

3) Lateral Tracking Shot (LTS) [1] [2] and 4) Vertical
Tracking Shot (VTS). The base mathematical description for
both is fairly simple:

Vi =1y (58)
6l ~ 0 (59)
X =Xp_1, L =pVt (60)
Additionally, the following relations hold for LTS:
0, Xj~0, xp3=0 61)
while the following relations hold for VTS:
olj~0, x03>0 (62)

5) Orbit (ORBIT). The parameters that must be specified are
the desired 3D Euclidean distance A3p = ||X: — Pell2 = ||%¢t||2
(constant over time), the angle of the entire rotation to be
performed around the target (0) and the desired UAV angular
velocity w. Additionally, we can easily derive the initial angle
0o formed by the TCS i-axis (of time instance 0) and the vector
from pg to the projection of the known initial position xq onto
the TCS ij-plane. Then, ORBIT may be described in TCS
using a planar circular motion:

70
e, LY 63)
w
0y = arctan <g:02> (64)
o1
T3 = To3, Vt (65)

e o
+6p), Asin (t% +0o),z3]"  (67)

l; =p; (68)

The projection of the initial UAV position onto the TCS
i7-plane (xg) is shown in Figure 15.

6) Fly-Over (FLYOVER) and 7) Fly-By (FLYBY). The
common parameter that must be specified is K, i.e., the time

x; = [Acos (t

NHlE >



Po O

Fig. 15: Geometry of the Orbit (ORBIT): the projection of the
initial UAV position onto the TCS ij-plane (xq) is depicted. i
and j are two of the TCS unit axis vectors.

(in seconds) until UAV is located exactly above the target (for
FLYOVER), or until the distance vector between the target

and the UAV is minimized in Euclidean norm (for FLYBY).

Additionally, d, i.e., the length of the projection of that minimal
distance vector onto the ground plane, must be specified
for FLYBY. Below, the target velocity is assumed constant
for reasons of modeling convenience. The base mathematical
description common to both CMTs is the following:

ugr K — x
vo = [%, 0, uo3) " (69)
Vi=Vio1, W=y, Vi (70)
- N t . -
Xt :X0+ﬁ(XKT*XO) (71)
(41, Gig2, 0] X [Be1, Ty2,0]7 ~ 0 (72)

Additionally, the following hold for FLYOVER:
X1 = [Po1 + tio1 K, Poz + G2 K, Tos + s K]T  (74)

Ty~ 0, xIj~0,Vt (75)
and the following hold for FLYBY:
|zo2| =d >0 (76)
T2 = Toz, Vit 77)
xgr = [0, Zo2, T3] (78)

8) Descent (DESCENT), 9) Descent Over (DESCENTOVER)
and 10) Ascent (ASCENT). The common parameter that must be
specified is 6, i.e., the constant angle formed between the UAV
and the TCS i axis. Additionally, K, i.e., the time (in seconds)
until UAV is located exactly above the target, must be specified
for DESCENT and DESCENTOVER. The smaller K is, the
faster the UAV will move. Based on this observation, K may
also be employed for parameterizing ASCENT, although in

this motion type the UAV actually moves away from the target.

Below, the target velocity is assumed constant for reasons of
modeling convenience, while R; refers to a 3 x 3 matrix that

clockwise-rotates any vector multiplied with it along the j-axis.

The base mathematical description common to DESCENT and
DESCENTOVER s the following:

uo1 K — xo1

H= 0,07 79

Vo [ K s Yy ] ( )
cos@ 0 —sind

R; = [ 0 1 0 ] (80)
sinf 0 cos@

Vo = RjVIO (81)

Vi=Vio1, U =1y1,V (82)

Xxr = [Po1 + to1 K, o2 + G2 K, To3 + tos KT (83)

X¢ = Xo + %(XKT — Xo) (84)
[tis1, Tg2, 01T X [B41, Dy2,0]T = 0 (85)
T 0, xPjx0, 1, =p;,Vt (86)
Additionally, the following holds for DESCENT:
te [0, KT] (87)
and the following holds for DESCENTOVER:
t€[0,2KT) (88)

The mathematical description for ASCENT is similar. It is
given by Egs. (79), (80), (82), (85) and (86), while Eq. (81) is
replaced by the following one:

Vo = _ijlo (89)

11) Chase/Follow Shot (CHASE). The mathematical descrip-
tion is the following:

Vi A Oy (90)

Tyo = Xoo = 0, Vi On
X; = Xy_1,VE 92)
l; = p; 93)

D. Dynamic target shots

1) Constrained Lateral Tracking Shot (CONLTS). The
parameters that must be specified are n = [y, fi2,0]” and
s = [31, 82, 83]7, i.e., a normal vector and a scene point jointly
defining the flight plane in WCS. The mathematical description
is based on determining the intersection of the flight plane with
a line perpendicular to the plane, passing through p;:

a = o3 — Pos 94)
~ _ ~ T~
g, = 8- p)n ~Tpi) n (95)
n'n
% = dy + Py + (0,0, a]” (96)
1; = p 97)

2) Pedestal/Elevator Shot With Target (PST). The parameters
that must be specified are d, i.e., the vertical distance to be
traversed by the UAV/target during filming, and w3, i.e., the



scalar speed of the UAV/target during filming (constant over
time). The mathematical description includes the Egs. (29) -
(32) from PS, plus the following relation:

xI'j~0 (98)

3) Reveal Shot (RS). The parameters that must be specified
are K, i.e., the time (in seconds) until the target becomes fully
visible, and Xx7, i.e., a proper UAV position in 3D space
from which the target will be fully visible in K seconds. The
mathematical description is the following:

N N t . N
X; = Xo + ﬁ(XKT —Xp) (99)

l, =p;, tel0,KT] (100)



