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Abstract—Pothole detection is one of the most important tasks
for road condition assessment. Computer vision approaches are
generally based on either 2D road image analysis or 3D road
surface modeling. However, these two categories are always used
independently. Furthermore, the pothole detection accuracy is
still far from satisfactory. Therefore, in this paper, we present a
robust pothole detection algorithm that is both accurate and com-
putationally efficient. A dense disparity map is first transformed
to better distinguish between the damaged and undamaged road
areas. To achieve greater disparity transformation processing
efficiency, golden section search and dynamic programming are
utilized to estimate the transformation parameters. Otsu’s thresh-
olding method is then used to extract the potential undamaged
road areas from the transformed disparity map. The disparities in
the extracted areas are modeled by a quadratic surface using least
squares fitting. To improve disparity map modeling robustness,
the surface normal is also integrated into the modeling process.
Furthermore, random sample consensus is utilized to reduce the
effects caused by outliers. By comparing the difference between
the actual and the modeled disparity maps, we consider that the
potholes can be accurately detected. Finally, the point clouds of
the detected potholes are extracted from the reconstructed 3D
road surface. The experimental results show that the successful
detection accuracy of the proposed system is around 98.7% and
the overall pixel-level accuracy is approximately 99.6%.

Index Terms—pothole detection, road condition assessment,
golden section search, dynamic programming, disparity map
modeling.

I. INTRODUCTION

ROAD potholes are considerably large structural failures
on the road surface, which are caused by contraction

and expansion of the road surface and by rainwater, which
permeates into the ground [1]. To ensure traffic safety, it is
crucial and necessary to frequently inspect and repair road
damage, e.g., cracks and potholes [2]. Currently, potholes are
regularly detected and reported by certified inspectors and
structural engineers [3]. This task is, however, tedious and
time-consuming [4]. Furthermore, the detection results are
always subjective, because they entirely depend on personnel
experience [5]. Therefore, automated pothole detection sys-
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tems have been developed to detect, i.e., to recognize and
localize potholes both objectively and efficiently [2].

Over the past decade, various technologies, such as active
or passive sensing and the global positioning system (GPS),
have been utilized to acquire road data and aid personnel in
localizing road damages [5]. For example, Buza et al. [6]
mounted two laser scanners on a digital inspection vehicle
(DIV) to collect 3D road surface data. Such data were then
processed either semi or fully automatically for damaged road
area detection. Such systems ensure personnel safety, but
also reduce manual interventions to produce pothole detection
results [6]. Furthermore, Bristol City Council [7] set up an
online system for citizens to report the GPS locations of road
damages, which alleviates a significant amount of workload
for the qualified personnel. Moreover, by comparing the road
data collected over different periods, the traffic flow can be
evaluated and the future road condition can be predicted [2].
The remainder of this section presents the state of the art,
motivation, contributions and outline of this paper.

A. State of the Art in Road Pothole Detection

1) 2D Image Analysis-Based Pothole Detection Algorithms:
There are typically three main steps used in 2D image analysis-
based pothole detection algorithms: image segmentation, shape
extraction and object recognition [3]. In the first step, a color
or gray-scale road image is segmented using histogram-based
thresholding methods, such as Otsu [6] or triangle [8] methods.
Otsu’s method minimizes the intra-class variance and performs
better, in terms of separating the damaged and undamaged
road areas [6]. The road image is first processed, e.g., using
morphological filters [9], to reduce noise and enhance the
target region outline [5], [10], before image segmentation. The
extracted region is then modeled by an ellipse [8]. Finally,
the image texture within the ellipse is compared with the
undamaged road area texture. If the former is grainier and
coarser than the latter, the elliptical region is considered to be
a pothole [5].

However, color or gray-scale image segmentation is always
severely affected by various factors, notably illumination con-
ditions. Therefore, some authors proposed to perform seg-
mentation on depth maps, which has shown to achieve better
performance when separating the damaged and undamaged
areas [11], [12]. Furthermore, the shapes of actual potholes are
always irregular, making the geometric and texture assump-
tions occasionally unreliable. Moreover, the 3D spatial pothole
structure cannot always be explicitly illustrated in 2D road
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images [4]. Therefore, 3D road surface information is required
to measure pothole volumes. In general, 3D road surface
modeling-based pothole detection algorithms are more than
capable of overcoming the disadvantages mentioned above.

2) 3D Road Surface Modeling-Based Pothole Detection
Algorithms: The 3D surface information used for pothole de-
tection is generally provided by laser scanners [11], Microsoft
Kinect sensors [12], or passive sensors [13]–[16]. Laser scan-
ners mounted on DIVs are typically used for road condition
assessment and accurate road surface reconstruction. However,
the laser scanning equipment purchase and long-term main-
tenance are still very expensive [3]. The Microsoft Kinect
sensors were initially designed for indoor use. Therefore,
they greatly suffer from infra-red saturation in direct sunlight
[17]. For this reason, passive sensors, such as single movable
camera or multiple synchronized cameras, are more suitable
for acquiring 3D road data and for pothole detection [4], [18].
For example, Zhang and Elaksher [13] mounted a single cam-
era on an unmanned aerial vehicle (UAV) to reconstruct the
road surface via Structure from Motion (SfM) [18]. A variety
of stereo vision-based pothole detection methods have been
developed as well [14]–[16]. The 3D point cloud generated
from a disparity map was interpolated into a quadratic surface
using least squares fitting (LSF) [15]. The potholes were then
recognized, by comparing the difference between the 3D point
cloud and the fitted quadratic surface. In [16], the surface
modeling was performed on disparity maps instead of the point
clouds, and random sample consensus (RANSAC) was used to
improve the pothole detection. An efficient stereo vision-based
road surface 3D reconstruction algorithm was proposed in [4]
to provide highly accurate disparity information. Therefore,
the road surface 3D reconstruction results obtained using [4]
were used as the input of our system presented in this paper.

B. Motivation

Currently, laser scanning is still the main technology that
is used to provide 3D road information for pothole detection.
Other technologies, such as passive sensing, are under-utilized
[2]. However, the DIVs are expensive and not widely used.
Furthermore, their routine operation and long-term mainte-
nance are still very expensive [8]. Therefore, the trend is to
equip DIVs with inexpensive, portable and durable sensors,
such as digital cameras, for road data acquisition. Stereo road
image pairs can be used to calculate the disparity maps [4],
which essentially represent the 3D road surface geometry.
Recently, due to some major advances in stereo computer vi-
sion, road surface geometry can be reconstructed with a three-
millimeter accuracy [4], [19]. Additionally, stereo cameras
used for road condition assessment are inexpensive, portable
and adaptable for different DIV types. Therefore, there is
a strong motivation to explore the use of stereo vision for
pothole detection.

So far, comprehensive studies have been made in both 2D
image analysis-based and 3D road surface modeling-based
pothole detection. Unfortunately, these algorithms are always
used independently. Furthermore, pothole detection accuracy
is still far from satisfactory [5]. Therefore, there is a strong

motivation to explore efficient approaches for disparity pre-
processing by applying 2D image processing algorithms. Only
the disparities in the potential undamaged road areas are then
used for disparity map modeling.

Moreover, the surface normal vector is a very important
descriptor, which is rarely utilized in existing 3D road surface
modeling-based pothole detection algorithms. In this paper, we
improve disparity map modeling by eliminating the disparities,
in regions where surface normals differ significantly from the
expected ones.

C. Novel Contributions

In this paper, a robust stereo vision-based pothole detection
system is introduced. The main contributions are: a) a novel
disparity transformation algorithm; b) a robust disparity map
modeling algorithm. Finally, in order to assess pothole detec-
tion accuracy, we created three stereo pothole datasets using
a ZED stereo camera and made them publicly available for
research purposes.

Since the disparities in damaged road areas can severely
affect the accuracy of disparity modeling, we first transform
the disparity maps to better distinguish between the damaged
and undamaged road areas. To achieve greater processing
efficiency, we use golden section search (GSS) [20] and dy-
namic programming (DP) [21] to estimate the transformation
parameters. Otsu’s thresholding method is then performed on
the transformed disparity map to extract the undamaged road
areas, where the disparities can be modeled by a quadratic
surface using LSF [22]. To improve the robustness of dis-
parity map modeling, the surface normal information is also
integrated into the modeling process. Furthermore, RANSAC
is utilized to reduce the effects caused by any potential
outliers. By comparing the difference between the actual and
modeled disparity maps, the potholes can be detected effec-
tively. Finally, different potholes are labeled using connected
component labeling (CCL) and their point clouds are extracted
from the reconstructed 3D road surface.

D. Paper Outline

The remainder of this paper is structured as follows: Section
II details the proposed pothole detection system. The exper-
imental results for performance evaluation are illustrated in
Section III. Finally, Section IV summarizes the paper and
provides some recommendations for future work.

II. POTHOLE DETECTION ALGORITHM

The block diagram of the proposed pothole detection al-
gorithm is illustrated in Fig. 1, where the algorithm consists
of three main components: a) disparity transformation; b)
undamaged road area extraction; c) disparity map modeling
and pothole detection.

A. Disparity Transformation

The input of this procedure is a dense disparity map having
subpixel accuracy. Since the performance of disparity map
modeling relies entirely on the disparity estimation accuracy,
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Fig. 1. The block diagram of the proposed pothole detection algorithm.
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Fig. 2. Disparity map when the roll angle does not equal to zero; (a) stereo
road images; (b) disparity map; (c) v-disparity map.

the dense disparity map was obtained from a stereo road image
pair (see Fig. 2(a)) through our disparity estimation algorithm
[4], where the stereo matching search range propagates itera-
tively from the bottom of the image to its top, and the subpixel
disparity map is refined by iteratively minimizing an energy
with respect to the interpolated correlation parabolas. The 3D
reconstruction accuracy of [4] is around 3 mm. The disparity
map is shown in Fig. 2(b), and its corresponding v-disparity
map is shown in Fig. 2(c). A v-disparity map can be created
by computing the histograms of each horizontal row of the
disparity map. The proposed pothole detection algorithm is
based on the work presented in [16], where the disparities of
undamaged road surface are modeled by a quadratic surface
model as follows:

g(u, v) = c0 + c1u + c2v + c3u2 + c4v
2 + c5uv, (1)

where u and v are the horizontal and vertical disparity map
coordinates, respectively. The origin of the coordinate system

in (1) is at the center of the disparity map. Since in our
experiments the stereo rig is mounted to a relatively low
height, the curvature of the reconstructed road surface is not
very high. This makes the values of c1, c3 and c5 in (1) very
close to zero when the stereo rig is perfectly parallel to the
horizontal road surface. In this case, the projection of the road
disparities on the v-disparity map can be assumed to be a
parabola of the form [21]:

f (v) = α0 + α1v + α2v
2. (2)

However, in practice, the stereo rig baseline is not always
perfectly parallel to the horizontal road surface. This fact can
introduce a non-zero roll angle θ, illustrated in Fig. 3, into the
imaging process, where Tc and h represent the baseline and the
height of the stereo rig, respectively. oC

l
and oC

r are the origins
of the left and right camera coordinate systems, respectively.
OW is the origin of the world coordinate system. An example
of the resulting disparity map is shown in Fig. 2, where readers
can clearly see that the disparity values change gradually in the
horizontal direction, which makes the approach of representing
the disparity projection using (2) somewhat problematic. In
this regard, we first estimate the value of the roll angle. The
effects caused by the non-zero roll angle are then eliminated
by rotating the disparity map by θ. Finally, the coefficients of
the disparity projection model in (2) are estimated, and the
disparity map is transformed to better distinguish between the
damaged and undamaged road areas.

1) θ Estimation and Disparity Map Rotation: Over the past
decade, great effort has been made to improve the estimation
of the roll angle defined in Fig. 3 The most commonly used
device for this task is the inertial measurement unit (IMU). An
IMU can measure the angular rate of a vehicle by analyzing the
data acquired using different sensors, such as accelerometers,
gyroscopes and magnetometers [23], [24]. In these approaches,
the road bank angle is always assumed to be zero, and only the
roll angle is considered in the estimation process. However, the
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Fig. 3. Roll angle definition in a stereo camera rig.

estimation of both these two angles is always required in many
real-world applications. Unfortunately, this cannot be realized
with the use of only IMUs [25], [26].

In recent years, many authors have turned their focus
towards estimating the roll angle from disparity maps [21],
[27]–[29]. For example, the road surface is assumed to be a
horizontal ground plane, and an effective roll angle estimation
algorithm was proposed based on v-disparity map analysis
[27], [28]. In [21], the disparities in a selected small area were
modeled by a plane g(u, v) = c0+c1u+c2v. The roll angle was
then calculated as arctan(−c1/c2). However, finding a proper
disparity map area for plane fitting is always challenging,
because the area may contain an obstacle or a pothole, which
can severely affect the fitting accuracy [29]. Furthermore, the
above-mentioned algorithms are only suitable for planar road
surfaces. Hence, in this subsection, we introduce a roll angle
estimation algorithm, which can work effectively for both
planar and non-planar road surfaces.

When the roll angle is equal to zero, the vector α =
[α0, α1, α2]

> containing the disparity projection model coef-
ficients can be estimated by solving a least squares problem
as follows:

α = arg min
α

E0, (3)

where
E0 = e>e, (4)

and
e = d − Vα. (5)

The column vector d = [d0, d1, · · · , dn]> stores the disparity
values. V is an (n + 1) × 3 matrix shown as follows:

V =


1 v0 v0

2

1 v1 v1
2

...
...

...
1 vn vn

2


. (6)

This optimization problem has a closed form solution [30]:

α = (V>V )−1V>d. (7)

The minimum energy E0min can also be obtained by combining
(4), (5) and (7):

E0min = d>d − d>V (V>V )−1V>d. (8)

However, when the roll angle does not equal to zero, the
disparity distribution on each row becomes less compact (see

Fig. 4. E0min function versus θ.

Algorithm 1: θ estimation using GSS.
Data: disparity map
Result: θ

1 set θ1 and θ2 to −π/2 and π/2, respectively;
2 compute E0min (θ1) using Eq. 13;
3 compute E0min (θ2) using Eq. 13;
4 while θ2 − θ1 > εθ do
5 set θ3 and θ4 to κθ1 + (1 − κ)θ2 and

κθ2 + (1 − κ)θ1, respectively;
6 compute E0min (θ3) using Eq. 13;
7 compute E0min (θ4) using Eq. 13;
8 if E0min (θ3) > E0min (θ4) then
9 θ1 is replaced by θ3;

10 else
11 θ2 is replaced by θ4;
12 end
13 end

Fig. 2(c)). This greatly affects the accuracy of least squares
fitting and produces a much higher E0min .

To rotate the disparity map around a given angle θ, each set
of original coordinates [u, v]> is transformed to a set of new
coordinates [x, y]> as follows [31]:

x = u cos θ + v sin θ,
y = v cos θ − u sin θ.

(9)

(5) can now be rewritten as follows:

e(θ) = d − Y (θ)α(θ), (10)

where Y (θ) is the (n + 1) × 3 matrix:

Y (θ) =


1 y0(θ) y0(θ)

2

1 y1(θ) y1(θ)
2

...
...

...

1 yn(θ) yn(θ)
2


. (11)

(7) is rewritten as follows:

α(θ) = (Y (θ)>Y (θ))−1Y (θ)>d. (12)

(4), (10) and (12) result in the following expression [32]:

E0min (θ) = d>d − d>Y (θ)(Y (θ)>Y (θ))−1Y (θ)>d. (13)

Therefore, the main consideration of the proposed roll angle
estimation algorithm is to rotate the disparity map at different
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(a) (b)

Fig. 5. Elimination of the effects caused by the non-zero roll angle; (a)
disparity map; (b) the y-disparity map of Fig. 5(a).

angles, and find the angle proving the minimum E0min . E0min

with respect to different θ is illustrated in Fig. 4. Giving a set
of coordinates [u, v]>, the new coordinate y can be calculated
using (9). The corresponding E0min can be computed from (13).
Due to the fact that cos(θ+π) = − cos θ and sin(θ+π) = − sin θ,
the disparity maps rotated around θ and θ + π are symmetric
with respect to the origin of the coordinate system. Namely,
(13) outputs the same E0min no matter how the disparity map
is rotated around θ or θ + π. Therefore, we set the interval of
θ to (−π/2, π/2]. The estimation of θ is achieved by finding
the position of the local minima between −π/2 and π/2.

However, finding the local minima is a computationally
intensive task, because it involves performing the necessary
calculations through the whole interval of θ. Furthermore, the
step size εθ has to be set to a very small and practical value,
in order to obtain an accurate value of θ. Hence in this paper,
GSS is utilized to reduce the searching times. The procedure
of the proposed θ estimation algorithm is given in Algorithm
1, where κ = (

√
5 + 1)/2 is the golden section ratio [20].

The disparity map is then rotated around θ, as illustrated in
Fig. 5(a). A y-disparity map (see Fig. 5(b)) can be created by
computing the histograms of each horizontal row of the rotated
disparity map. We can observe that the disparity values on each
row become more uniform. The evaluation of the proposed roll
angle estimation algorithm will be discussed in Section III-B.

2) α Estimation and Disparity Transformation: In this
subsection, we utilize DP [21] to extract the road disparity
projections from the y-disparity map. For notational conve-
nience, the path of the projections is also referred to as target
path. The energy of every possible solution is first computed
as follows:

E1(d, y) = −m(d, y)

+min
τ
[E1(d + 1, y − τ) − λτ] s.t. τ ∈ [τmin, τmax],

(14)

where m(d, y) represents the y-disparity value at the position
[d, y]> and λ is a smoothness term [21]. E1 represents the
energy of a possible target path in the y-disparity map. τmin is
typically set to 0. τmax depends entirely on α, and it is set to 8
in this paper. The target path M = {(di, yi), i = 0,1, . . . ,n} can
be found by minimizing the energy function in (14), where
(di, yi) stores the horizontal and vertical coordinates of the
target path, respectively.

By substituting the horizontal and vertical coordinates of
the target path into (3), (4), (10) and (11), we can obtain the

Algorithm 2: α estimation using DP.
Input : The target path
Output: α

1 create a t × (s + 3) matrix T ;
2 for i ← 1 to t do
3 randomly select p pairs of coordinates from the

target path;
4 estimate α using Eq. 3;
5 T (i, s + 1 : s + 3) ← α>;
6 for j ← 1 to s do
7 set the tolerance to εα/2j−1;
8 compute the number of inliers ninlier;
9 compute the number of outliers noutlier;

10 compute the ratio η = ninlier/noutlier;
11 T (i, j) ← η;
12 end
13 end
14 j = 0;
15 do
16 j ← j + 1;
17 find the highest η in the jth column of T ;
18 while the highest η in the jth column of T

corresponds to more than one α;
19 find α which corresponds to the highest η in the jth

column of T ;

coefficients of the disparity projection model. The disparity
map can therefore be transformed using θ and α. However, the
outliers in the target path may greatly affect the accuracy of α
estimation. We, therefore, use RANSAC to update the values
in α. The full list of procedures involved for α estimation are
detailed in Algorithm 2.

RANSAC is iterated t times. The selection of a higher t
raises the possibility of finding the best α, but on the other
hand, increases the processing time. In order to minimize the
trade-off between speed and robustness, t is set to 50 in this
paper. In each iteration, we select p pairs of coordinates [d, y]>

from the target path to estimate α. For a smaller p, there
is less chance that any outliers will influence optimization.
In this paper p is set to 3, which is the bare minimal value
to determine the values of α. The ratio η of inliers versus
outliers can then be computed with respect to a given tolerance
εα, where εα determines the inliers and outliers. The best α
corresponds to the highest ratio η. However, the selection of
an appropriate εα can be challenging, as it is possible that
there could be more than one satisfying value for α. Hence,
in this paper, the value of εα also changes s times. In each
iteration of Algorithm 2, the value of εα reduces by half and
η is computed. The best α can be determined by finding the
highest ratio η. In this paper, the values of εα and s are both
set to 4.

Finally, each disparity is transformed using the following
equation:

d̃ = [1 y(θ) y(θ)2]α(θ) − d + δ, (15)

where δ is a constant value set to guarantee that all the
transformed disparity values are non-negative. In this paper,
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(a) (b)

Fig. 6. Disparity transformation and undamaged road area extraction; (a)
transformed disparity map; (b) extracted undamaged road area.

we set δ to 30. The transformed disparity map is shown in
Fig. 6(a). It can be clearly seen that the disparity values in
the undamaged road areas become more uniform, while they
differ significantly from those in the damaged areas (potholes).
This makes the extraction of undamaged road regions much
simpler.

B. Undamaged Road Area Extraction

Next, we utilize Otsu’s thresholding method to segment
the transformed disparity map. The segmentation threshold To
can be obtained by maximizing the inter-class variance σ2

o as
follows [33]:

σ2
o (To) = ω0(To)ω1(To)[µ0(To) − µ1(To)]

2, (16)

where:

P0(To) =

To−1∑
i=d̃min

p(i), P1(To) =

d̃max∑
i=To

p(i) (17)

represent the probabilities of damaged and undamaged road
areas, respectively. p(i) is the probability of d̃ = i. The average
disparity values of the damaged and undamaged road areas are
given by:

µ0(To) =
1

P0(To)

To−1∑
i=d̃min

ip(i),

µ1(To) =
1

P1(To)

d̃max∑
i=tro

ip(i)

(18)

The segmentation result is shown in Fig. 6(b). We can see that
the undamaged road area is successfully extracted. However,
Otsu’s thresholding method will always classify the disparities
into two categories, even if the transformed disparity map does
not contain any road damage. We therefore carry out dispar-
ity map modeling to ensure that the potholes are correctly
detected.

C. Disparity Map modeling and Pothole Detection

A common practice in 3D modeling-based pothole detection
algorithms [15], [16] is to fit a quadratic surface to either a
3D point cloud or a 2D disparity map. In parallel axis stereo
vision, the point cloud is generated from the disparity map as
follows [34]:

XW =
uTc

d
, YW =

vTc

d
, ZW =

f Tc

d
, (19)

Fig. 7. Normal surface vector mapping on a sphere.

where f and Tc are the focal length in pixels and the stereo rig
baseline shown in Fig. 3, respectively. A disparity error larger
than one pixel may result in a non-negligible difference in the
point cloud [35]. Therefore, disparity map modeling can avoid
such errors generated from (19), producing greater accuracy
compared to point cloud modeling.

To model the disparity map, c = [c0, c1, c2, c3, c4, c5]
>,

the quadratic surface model coefficients can be estimated as
follows:

c = (W>W )−1W>d, (20)

where

W =


1 v0 u0 v0

2 u0
2 v0u0

1 v1 u1 v1
2 u1

2 v1u1
...

...
...

...
...

...
1 vn un vn

2 un2 vnun


. (21)

However, potential outliers can severely affect the accuracy
of disparity map modeling and therefore need to be discarded
beforehand. In this subsection, a disparity map point is deter-
mined as an outlier if it fulfills one of the following conditions:
• it is located in one of the damaged road areas.
• its surface normal vector differs greatly from the optimal

one.
• its disparity value differs greatly from the one computed

using Eq. 1.
In Section II-B, the undamaged road areas are successfully

extracted and we only use the disparities in this area to model
the disparity map. The rest of this subsection presents the
approaches for determining the outliers which satisfy the last
two conditions and the process of modeling the disparity map
without using these outliers.

1) Optimal Normal Vector Estimation: For each point pi =
[ui, vi, di]> in the undamaged road area, we would like to
estimate a normal vector ni = [niu, niv, nid]> from a set of k
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(a) (b)

Fig. 8. Disparity map modeling and pothole detection: (a) modeled disparity
map, (b) detected potholes.

points in its neighborhood Qi = [qi1, qi2, · · · , qik]
>, where

qi j , pi . Here, we define the augmented neighbour matrix Q+i
which contains all neighbors and the point pi itself as follows:

Q+i = [pi, Qi
>]>. (22)

Existing normal vector estimation methods are generally
classified into one of two categories: optimization-based and
averaging-based [36]. Although the performance of normal
vector estimation depends primarily on the application itself,
PlanePCA [37], an optimization-based normal vector estima-
tion method, has superior performance in terms of both speed
and accuracy. Hence in this subsection, we utilize PlanePCA
to estimate the normal vectors of the disparities. ni can be
estimated as follows:

ni = arg min
ni

������ [Q+i − Q̄
+
i

]
ni

������
2
, (23)

where
Q̄
+
i = 1k+1

( 1
k + 1

Q+i
>1k+1

)>
. (24)

1m represents an m × 1 vector of ones. Due to the fact that
the normal vectors are normalized, they can be projected on
a sphere as shown in Fig. 7, where we can clearly see that
the projections are distributed in a small area. Therefore, the
optimal normal vector n̂ can be determined by finding the
position at which the projections distribute most intensively.

Since the projection of n̂ is also on the sphere, it can be
written in spherical coordinates as follows:

n̂ = [sin ϕ1 cos ϕ2, sin ϕ1 sin ϕ2, cos ϕ1]
>

s.t. ϕ1 ∈ [0, π], ϕ2 ∈ [0,2π).
(25)

It can be estimated by minimizing E2:

E2 = 1n+1
>m, (26)

where
m = [−n0 · n̂, −n1 · n̂, · · · , −nn · n̂]

>. (27)

By applying (25) and (27) to (26), the following expressions
are derived:

tan ϕ1 =
1n+1

>nu cos ϕ2 + 1n+1
>nv sin ϕ2

1n+1
>nd

, (28)

tan ϕ2 =
1n+1

>nv

1n+1
>nu

. (29)

Due to the fact that ϕ2 is between 0 and 2π, (29) will have
two solutions:

ϕ2 = arctan
1n+1

>nv

1n+1
>nu

+ kπ, k ∈ {0,1}. (30)

Fig. 9. The point clouds of the detected potholes.

Substituting each ϕ2 into (28) produces a value for ϕ1. The
two pairs of [ϕ1, ϕ2]

> correspond to the maxima and minima
of E2, respectively. By substituting each pair of [ϕ1, ϕ2]

> into
Eq. 26 and comparing the two obtained values, we can find the
optimal normal vector. If the angle between n̂ and ni exceeds
a pre-set threshold εn, the corresponding disparity will be
considered as an outlier and will not be used for disparity map
modeling. In our experiments, we assumed that the second
category of outliers account for 10% of the undamaged road
areas, and therefore, εn is set to π/36. The outliers satisfying
the first two conditions can then be successfully removed. The
third category of outliers are removed along with the disparity
map modeling.

2) Disparity Map Modeling: To model the disparity map
with more robustness, we use RANSAC to reduce the effects
caused by the third category of outliers described in Section
II-C. Here, RANSAC iterates t times. In each iteration, a sub-
set of disparities are selected randomly to estimate the values
in c. To ensure uniform distribution of the selected disparities,
we equally divide the disparity map into a group of square
blocks and select one disparity from each block. The disparity
block size is r × r . As r becomes smaller, more disparities
will be used for surface fitting, which makes computational
complexity more intensive. In contrast, the selection of a
higher value for r results in less computational complexity, but
potentially increases noise sensitivity. In this paper, the value
of r is set to 125, which produces approximately 100 square
blocks for our disparity maps. In each iteration, the differences
between the actual and fitted disparities are computed and
the ratio η between the inliers and outliers are obtained. The
values c which correspond to the highest η are then selected
as the desirable surface coefficients. Algorithm 2 presents
more details on the least squares fitting using RANSAC. The
modeled disparity map is shown in Fig. 8(a).

3) Pothole Detection: The potholes can then be detected by
finding the regions where the differences between the actual
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Fig. 10. Experimental set-up for acquiring stereo road images.

and modeled disparities are larger than a pre-set threshold εd .
Before labeling different potholes using CCL, the connected
components containing fewer than w pixels are removed,
because they severely affect the accuracy of the pothole la-
beling process. Furthermore, the small connected components
are filled, as they are considered to be noise. The selection
of εd and w is discussed in Section III-D. The detected
potholes are shown in Fig. 8(b). Finally, the point clouds of
the detected potholes are extracted from the 3D point cloud.
The corresponding results are shown in Fig. 9.

III. EXPERIMENTAL RESULTS

In this section, the performance of the proposed pothole
detection algorithm is evaluated both qualitatively and quan-
titatively. The proposed algorithm was implemented in MAT-
LAB on an Intel Core i7-8700K CPU using a single thread.
The following subsections provide details on the experimental
set-up and of the evaluation of the proposed algorithm.

A. Experimental Set-Up

In this work, we utilized a ZED stereo camera1 to capture
visual road data. An example of the experimental set-up is
shown in Fig. 10. The stereo camera is calibrated manually
using the stereo calibration toolbox in MATLAB R2018b.
Using the above-mentioned experimental set-up, we created
three datasets containing 67 pairs of stereo images. The
image resolutions of dataset 1, 2 and 3 are 1028 × 1730,
1030 × 1720, 1028 × 1710 pixels, respectively. The disparity
maps are estimated using our previously published algorithm
[4]. All datasets are publicly available and can be found at:
http://www.ruirangerfan.com.

The following subsections analyze the accuracy of roll angle
estimation, disparity transformation and pothole detection.

B. Evaluation of Roll Angle Estimation

In this subsection, we first analyze the computational com-
plexity of the proposed roll angle estimation algorithm. When
estimating the roll angle without using GSS, we have to
search through the whole interval of (− π2 ,

π
2 ] to find the local

minima. Therefore, the computational complexity is O( πεθ ).
In our method, GSS reduces the interval size exponentially.
As a result, the interval size then becomes κnπ after the
n-th iteration. Therefore, the proposed roll angle estimation

1https://www.stereolabs.com/

(a)

(b)

(c)

Fig. 11. Experimental results of the EISATS synthesized stereo dataset: (a)
left stereo images (the areas in magenta are our manually selected road areas);
(b) ground truth disparity maps; (c) transformed disparity maps.

algorithm reduces the computational complexity to O(logκ
εθ
π ).

The proposed roll angle estimation algorithm needs 21 itera-
tions to produce a roll angle, whose accuracy is higher than
π

18000 .
To evaluate the accuracy of the proposed roll angle estima-

tion algorithm, we utilize a synthesized stereo dataset from
EISATS [38], [39] where the roll angle is perfectly zero.
Some experimental results are shown in Fig. 11. The road
areas (see the magenta regions in the first column of Fig. 11)
are manually selected and the disparities in these areas are
utilized to estimate the roll angle θ̂. The absolute difference
between the actual and estimated roll angles, i.e., ∆θ = |θ− θ̂ |,
is computed for each frame. The average values of ∆θ is
approximately 1.129×10−4 rad which is lower than π

18000 rad.
Therefore, the proposed algorithm is capable of estimating the
roll angle with high accuracy.

C. Evaluation of Disparity Transformation

Since the datasets we created only contain the ground truth
of potholes, KITTI stereo datasets [40], [41] are utilized to
quantify the performance of our proposed disparity transfor-
mation algorithm (the number of disparity maps in the KITTI
stereo 2012 and 2015 datasets are 194 and 200, respectively).
Some experimental results are shown in Fig. 12. Due to the
fact that the proposed algorithm focuses entirely on the road
surface, we manually selected a region of interest (see the
purple areas in the first row) in each image to evaluate the
performance of our algorithm. Our manually labeled road sur-
face areas are also available at http://www.ruirangerfan.com.
The corresponding transformed disparity maps are shown in
the third row of Fig. 12, where readers can clearly see that
the disparities in the road areas tend to have similar values. To
quantify the accuracy of the transformed disparity maps, we
compute the standard deviation σd of the transformed disparity
values as follows:

σd =

√√√
1

m + 1

d̃ − d̃
>1m+1
m + 1

2

2

. (31)
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(a)

(b)

(c)

Fig. 12. Experimental results of the KITTI datasets: (a) left stereo images (the areas in purple are the labeled road areas); (b) ground truth disparity maps;
(c) transformed disparity maps.

Fig. 13. The sum of ∆nPD with respect to different εd and w.

where d̃ = [d̃0, d̃1, · · · , d̃m]> is a column vector storing the
transformed disparity values. The average σd values of the
KITTI stereo datasets are provided in Table I.

TABLE I
COMPARISON OF THE AVERAGE σd VALUES BETWEEN THE TWO CASES.

Dataset Case 1 Case 2
KITTI stereo 2012 training dataset 0.4862 0.7800
KITTI stereo 2015 training dataset 0.5506 0.9428

In case 1, the effects caused by the non-zero roll angle
are eliminated, while in case 2, the roll angle is assumed
to be zero. From Table I, we can observe that the average
σd values of these two datasets reduces by approximately
half when the effects caused by the non-zero roll angle are
eliminated. The average σd value of these two datasets is
only 0.5188 pixels. Therefore, the proposed disparity trans-
formation algorithm performs accurately and the transformed
disparity values become more uniform. The runtime of the
disparity transformation algorithm is about 0.142 seconds. In
the next subsection, we will analyze the accuracy of pothole
detection.

D. Evaluation of Pothole Detection

In Section II-C, a set of randomly selected disparities are
modeled as a quadratic surface. The potholes are detected by

(a) (b)

(c) (d)

Fig. 14. Experimental result of the incorrect pothole detection: (a) left stereo
image; (b) transformed disparity map; (c) detection result; (d) ground truth.

comparing the difference between the actual disparity map
and the modeled quadratic surface. If a connected component
contains more than w pixels and the disparity difference of
each pixel exceeds εd , it will be identified as a pothole. In
our experiments, we utilize the brute-force search method to
find the best values of εd and w. The search range for εd
and w are set to [3.0,8.5] and [100,5000], respectively. The
step sizes for searching εd and w are set to 0.1 and 100,
respectively.

For the first step, we go through the whole search range and
record the number of detected potholes n̂PD in each frame. The
absolute difference ∆nPD between each n̂PD and the expected
pothole number nPD is then computed. The sum of ∆nPD with
respect to a pair of given εd and w can therefore be obtained,
as illustrated in Fig. 13. In our experiments, the least sum of
∆nPD is equal to one and it is achieved only when εd = 6.2
and εd = 3100. The corresponding incorrect pothole detection
result is shown in Fig. 14. Incorrect detection occurs when the
middle of the first pothole subsides and the selected parameters
causes the system to detect two potholes instead of one. Some
examples of successful detection results are shown in the fifth
row of Fig. 15, and the corresponding ground truth is shown
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Fig. 15. Experimental results of pothole detection: (a) left stereo images. (b) transformed disparity maps. (c) pothole detection results obtained using the
algorithm proposed in [15]. (d) pothole detection results obtained using the algorithm presented in [16]. (e) pothole detection results obtained using the
proposed algorithm. (f) pothole ground truth.

TABLE II
COMPARISON OF POTHOLE DETECTION ACCURACY.

Dataset Method Total
Potholes

Correct
Detection

Incorrect
Detection Misdetection

Dataset 1
algorithm in [15] 11 11 0
algorithm in [16] 22 22 0 0

our algorithm 22 0 0

Dataset 2
algorithm in [15] 42 10 0
algorithm in [16] 52 40 8 4

our algorithm 51 1 0

Dataset 3
algorithm in [15] 5 0 0
algorithm in [16] 5 5 0 0

our algorithm 5 0 0

Total
algorithm in [15] 58 21 0
algorithm in [16] 79 67 8 4

our algorithm 78 1 0

in the sixth row.

We also compare our proposed algorithm with those pro-
duced in [15] and [16]. The pothole detection results obtained

using the algorithms presented in [15] and [16] are shown
in the third and forth rows of Fig. 15, respectively. The
comparative pothole detection results are provided in Table
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II, where we can see that the successful detection accuracy
achieved using [15] and [16] are 73.4% and 84.8%, respec-
tively. Compared to these, our proposed algorithm can detect
potholes more accurately with a successful detection accuracy
of 98.7%.

We also compare the proposed algorithm with [15] and [16]
with respect to the pixel-level precision, recall, F-score and
accuracy:

precision =
nTP

nTP + nFP
, (32)

recall =
nTP

nTP + nFN
, (33)

F-score = 2 ·
precision · recall
precision + recall

, (34)

accuracy =
nTP + nTN

nTP + nTN + nFP + nFN
, (35)

where nTP, nFP, nFN and nTN are true positive, false positive,
false negative and true negative pixel numbers, respectively.

The comparisons with respect to these four indicators are
illustrated in Table III. It can be seen that our proposed
algorithm outperforms [15] and [16], in terms of the pixel-
level accuracy and it achieves an intermediate performance in
terms of precision and recall. In addition, the precision and
recall achieved using our proposed algorithm are very close
to the highest values between [16] and [15]. Therefore, the
proposed pothole detection algorithm performs both robustly
and accurately.

TABLE III
COMPARISON OF PIXEL-LEVEL PRECISION, RECALL, ACCURACY AND

F-SCORE.

Dataset Method precision recall F-score accuracy

Dataset 1
[15] 0.5199 0.5427 0.5311 0.9892
[16] 0.4622 0.9976 0.6317 0.9936

proposed 0.4990 0.9871 0.6629 0.9940

Dataset 2
[15] 0.9754 0.9712 0.9733 0.9987
[16] 0.8736 0.9907 0.9285 0.9968

proposed 0.9804 0.9797 0.9800 0.9991

Dataset 3
[15] 0.6119 0.7714 0.6825 0.9948
[16] 0.5339 0.9920 0.6942 0.9957

proposed 0.5819 0.9829 0.7310 0.9961

Total
[15] 0.7799 0.8220 0.8004 0.9942
[16] 0.6948 0.9921 0.8173 0.9954

proposed 0.7709 0.9815 0.8635 0.9964

IV. CONCLUSION AND FUTURE WORK

The main contributions of this paper are novel disparity
transformation and disparity map modeling algorithms. Using
our method, undamaged road areas are better distinguishable
in the transformed disparity map and can be easily extracted
using Otsu’s thresholding method. This greatly improves the
robustness of disparity map modeling. To achieve greater
processing efficiency, GSS and DP were utilized to estimate
the transformation parameters. Furthermore, the disparities,
whose normal vectors differ greatly from the optimal ones,
were also discarded in the process of disparity map modeling,
which further improves the accuracy of the modeled disparity
map. Finally, the potholes were detected by comparing the

difference between the actual and modeled disparity maps. The
point clouds of the detected potholes were then extracted from
the reconstructed 3D road surface. In addition, we also created
three datasets to contribute to stereo vision-based pothole
detection research. The experimental results show that the
overall successful detection rate of our proposed algorithm is
around 98.7% and the pixel-level accuracy is approximately
99.6%.

However, the parameters set for pothole detection cannot
be applied to all cases. Therefore, we plan to train a deep
neural network to detect the potholes from the transformed
disparity map. Furthermore, a road surface cannot always
be considered as a quadratic one. Thus, we aim to design
an algorithm to segment the reconstructed road surfaces and
perform the proposed pothole detection algorithm on each
segmented quadratic surface.
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