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Abstract:

Deep Learning (DL) models are capable of successfully tackling several difficult tasks. However, training
deep neural models is not always a straightforward task due to several well known issues, such as the
problems of vanishing and exploding gradients. Furthermore, the stochastic nature of most of the used
optimization techniques inevitably leads to instabilities during the training process, even when state-of-
the-art  stochastic  optimization  techniques  are  used.  In  this  work  we  propose  an  advanced  temporal
averaging technique that is capable of stabilizing the convergence of stochastic optimization for neural
network  training.  Six  different  datasets  and  evaluation  setups  are  used  to  extensively  evaluate  the
proposed  method  and  demonstrate  the  performance  benefits.   The  more  stable  convergence  of  the
algorithm also reduces the risk of stopping the training process when a bad descent step was taken and the
learning rate was not appropriately set.

1. Introduction 
Deep Learning (DL) models are capable of successfully tackling several difficult  tasks, such as large
scale visual recognition [28], object detection [19, 26], realistic voice synthesis [22], and others [16]. This
has led to a number of spectacular applications ranging from drones that autonomously perform various
tasks [23, 29], to systems that outperform doctors on diagnosing diseases [1, 12, 20, 34], and malware
detection systems [36]. 

However, training deep neural models is not always a straightforward task due to several well
known issues, such as the problems of vanishing and exploding gradients [2, 32]. Various methods have
been proposed to stabilize and smoothen the convergence of the training procedure [5, 9, 10, 11, 13, 31,
32]. The stochastic nature of most of the used optimization techniques inevitably leads to instabilities
during the training process, even when state-of-the-art stochastic optimization methods are used [13],
requiring careful fine-tuning of their hyper-parameters. If a slightly larger learning rate than the optimal is
selected, then the training process will be unstable (and might not even converge). On the other hand, if
the learning rate is too small, then the optimization process will slow down significantly. Recognizing
these difficulties, parameter averaging has been proposed to reduce the effect of noise on the stochastic
updates and achieve better generalization [13, 21, 25, 27]. 
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The aforementioned problems are often more evident in specific applications. For example, among
the  most  crucial  components  of  an  intelligent  system capable  of  performing  automated  drone-based
shooting is estimating the pose of the main actors [23]. To this end, a Convolutional Neural Network
(CNN)  can  be  trained  to  perform the  task  of  facial  pose  estimation.  However,  such  CNNs  exhibit
especially  unstable  behavior  that  can  be  also  partially  attributed  to  the  noisy  nature  of  the  data.  To
understand this, consider the process of facial pose estimation. First, a face is detected using an object
detector, such as the YOLO detector [26], or the SSD detector [19]. Then, the bounding box of the face is
cropped, resized and fed to the pose estimation CNN. However, the object detector is usually incapable of
perfectly centering and determining the bounds of the face introducing a significant amount of noise into
the aforementioned process. 

In  this  paper,  an  advanced  temporal  averaging  technique  that  is  capable  of  stabilizing  the
convergence  of  stochastic  optimization  for  deep  neural  network  training  is  proposed.  The  proposed
method employs an exponential averaging technique to bias the parameters of the neural network towards
stabler states. As it is demonstrated in Section 3, this is equivalent to first taking big descent steps to
explore the solution space and then annealing towards stabler states. Six different datasets and evaluation
setups are used to extensively evaluate the proposed method and demonstrate the performance benefits.
The more stable convergence of the algorithm also reduces the risk of stopping the training process when
a bad descent step was taken and the learning rate was not appropriately set, ensuring that the network
will perform well at any point of the training process (after a certain number of iterations have been
performed). 

This paper is an extended version of our previous paper [24]. The contributions of this paper are
the following. First, after careful analysis of the proposed algorithm, a more robust version is derived, in
which the stable states are selected according to the loss observed during the training and update rate
annealing is not required. This also makes the proposed method easier to use, since only two hyper-
parameters are to be selected and it is demonstrated that the default values for these hyper-parameters
work well for a wide range of problems. Also, the proposed method is more extensively evaluated using
additional datasets and evaluation setups. The effect of the hyper-parameters on the performance of the
method  is  also  thoroughly  evaluated.  Furthermore,  recognizing  the  difficulties  in  the  evaluation  of
stochastic methods, a more careful experimental protocol is used to ensure a fair comparison between the
evaluated methods (the experiments were repeated multiple times and the same initialization was used for
the corresponding runs between different methods). 

The rest of the paper is structured as follows. First,  the related work is briefly introduced and
discussed in Section 2. Then, the proposed method is presented in detail in Section 3 and the experimental
evaluation is provided in Section 4. Finally, conclusions are drawn in Section 5. 

2. Related Work 
Several  methods have been proposed for training deep  neural  networks as well  as for improving the
convergence  of Stochastic  Gradient  Descent  (SGD). For example,  using rectifier  activation units  [9],
batch  normalization  [11],  and  residual  connections  [10,  31],  allows  for  effectively  dealing  with  the
problem of vanishing gradients. Furthermore, advanced optimization techniques, such as the Adagrad [4],
Adadelta [37], and Adam [13] algorithms are capable of effectively dealing with gradients of different
magnitude, improving the convergence speed. Each of these techniques deal with a specific problem that
arises during the training of deep neural networks. The method proposed in this paper is complementary
to these methods since it addresses a different problem, i.e., improves the stability of the training process.
This  is  also  demonstrated  in  Section  4  where  the  proposed  method  is  combined  with  some  of  the
aforementioned methods to improve the stability of the training process. 

Parameter averaging techniques were also proposed in some works to deal with the noisy updates
of stochastic gradient descent [21, 25, 27], while also studying the convergence properties after averaging



the stochastic updates. In these works, after completing the optimization process, the parameters were
replaced  with  the  averaged  parameters,  as  calculated  during  the  training  process.  A more  deliberate
technique was proposed in [13], where an exponential moving average over the parameters of the network
was used to ensure that higher weight is given to the recent states of the network. However, in these
approaches the averaged parameters are not used during the optimization. In [18, 42], a similar approach
is used to stabilize the convergence of Q-learning for deep neural networks by keeping a separate slowly
changing neural network used for providing the target  values.  The method proposed in  this  paper  is
different from the aforementioned methods, since the weights of the network are not averaged after each
iteration. Instead, a number of descent steps are taken, e.g., 10 optimization steps, and after them the
parameters of the networks are updated according to the observed loss. This allows for better exploring
the solution space, while maintaining the stability that the averaging process offers, as demonstrated in
Section 4. Note that global parameter averaging, i.e., averaging the parameters after the training process
as in [13, 21, 25, 27], can be also used on top of the proposed method, further improving the stability of
the proposed method. 

3. Proposed Method 
In this Section the used notation is briefly introduced and the proposed Long-Term Temporal Averaging
(LT-TA)  algorithm  is  presented  in  detail.  Then,  we  examine  the  behavior  of  the  proposed  LT-TA
algorithm by analyzing the employed parameter update technique.  

Let θ denote the parameters of the neural network that is to be optimized towards minimizing a
loss function L(θ, x), where x denotes a batch of the training data. The notation θt is used to denote the
parameters after t optimization iterations. Also, let f(θ, x, η) be an optimization method that provides the
updates  for  the  parameters  of  the  neural  network,  where  η  denotes  the  hyper-parameters  of  the
optimization method, e.g., the learning rate. Any optimization technique can be used ranging from the
simple Stochastic Gradient Descent method [7], to more advanced techniques, such as the Adagrad [4],
Adadelta [37], or, the more recently proposed, Adam method [13]. 

The proposed method is shown in Algorithm 1. The LT-TA algorithm keeps track of a stable
version  of  the  parameters  of  the  network,  as  determined  by  observing  the  mean  loss  during  the
optimization process. If the optimization process proceeds smoothly, then the stable state is not used. On
the other hand, if multiple bad descent directions were taken during the last optimization steps, then the
network is biased towards a previously stable state, by performing exponentially averaging. Of course,
any other averaging or update method can be used to this end. Furthermore, exponential averaging can
also be used to update the stable state of the network. However, this approach slightly slowed down the
convergence in the conducted experiments, without providing any significant stability improvement, since
the stable states are already selected according to a reliable criterion, i.e., the loss observed during the
optimization. 

The proposed method works as follows. First, the initial version θstable is set to the initial state of
the network (line 2) and the loss inducted by the stable state is initialized to an arbitrary large number
(line 3). Also, the variable used to measure the mean current loss is initialized to 0 (line 4). During the
optimization (lines 5-16) the proposed algorithm performs regular optimization updates (lines 6-7) and
keeps track of the mean loss during the optimization (line 8). However, every NS iterations the mean loss
observed during the last iterations (line 10) is compared to the loss of the latest stable state (line 11). If the
current loss is lower, then the stable stable is updated using the current weights (lines 12-13), since the
current  state can be considered stable.  Otherwise,  the weights of the network are biased towards the
previous stable state using exponential averaging (line 15). Finally, the current loss variable is reset after
NS iterations (line 16).



Algorithm 1: Long-Term Temporal Averaging Algorithm

This is equivalent to performing large exploration descent steps during the  NS iterations
and then slowing down the learning in order to update the network when bad descent directions were
taken. Thus, the stable states work as attractors that bias the network towards them. The parameter α
(also called update rate) controls the influence of the stable states on the optimization procedure. The
update rate is a positive number that ranges from 0 to 1. For α = 1 no temporal averaging is used, while
for α = 0 the network remains at the stable state. The effect of these hyper-parameters on the performance
of the proposed method is thoroughly examined in Section 4. After performing N iterations the algorithm
returns the parameters of the network. 

In  the  preliminary  version of  our  technique  presented  in  [24],  we used an exponential  decay
strategy to reduce the update rate during the optimization. However, after careful analysis of the proposed
technique we concluded that this process was not critical.  Decaying the update rate allows for faster
convergence  for  the  first  few  iterations.  Omitting  this  strategy  can  initially  slightly  slow down the
convergence speed, but the overall effect after the first few iterations is usually minimal. Therefore, this
strategy was removed from the proposed algorithm, effectively making the method easier to use (one less
hyper-parameter has to be selected). Furthermore,  the stable states are now selected according to the loss
observed during the optimization, instead of simply running an exponential averaging on the weights,
further increasing the stability and the convergence speed of the proposed method.

To better understand how the proposed algorithm works consider the first NS iterations when the
simple stochastic  gradient  descent  algorithm with learning rate  η is  used to provide the optimization
updates and the method starts from a initially stable state (θstable=θ0.): 

(1)

Input: A training set of data X, the initial parameters of the network θ0, a loss function L(•), and an 
optimization method f(•) along with its hyper-parameters η
Parameters: The update rate α, the exploration window NS, and the number of iterations N 
Output: The optimized parameters θΝ

1: procedure LT-TA Algorithm
2:      θstable ← θ0

3:      Lstable ← ∞
4:      Lcurrent ← 0 
5:      for t ← 1; t ≤ N; t++ do
6:            Sample a batch x from X
7:            θt ← f(θt-1, x, η)
8:            Lcurrent  ←  Lcurrent + L(θt, x)
9:            if  mod(t, NS) = 0 then
10:                   Lcurrent ← Lcurrent / NS

11:                    if Lstable > Lcurrent then
12:                           θstable ← θt

13:                           Lstable ← Lcurrent

14:                    else
15:                           θt ← α θt + (1-α) θstable

16:                    Lcurrent ← 0
17:      return θΝ



It is easy to see that after NS optimization steps the weights of the network can be expressed as a
weighted sum over the descent steps: 

(2)

since θstable=θ0. 

If we arrive at a new stable state (the loss is reduced during the NS optimization steps), the we simply
update the stable state with the new weights. On the other hand, if the new state increases the mean loss,
then we bias the current state towards the last current stable state:

(3)

Therefore, updating the weights by employing the stable state θstable is equivalent to lowering the
learning rate of the previous updates to αη while  updating the parameters  θstable.  However this  is not
equivalent to performing optimization with the lowered learning rate. To understand this note that the
intermediate  states   θ1,  θ2,  θ3,  …, θNS  are calculated using the original  learning rate η instead of the
lowered rate (1-α)η: 

(4)

That is,  during the NS steps the proposed algorithm explores the solution space by taking large steps
towards the descent direction, while the stable state θstable is employed to ensure that the network remains
stable, even when the optimization process becomes unstable for a few training steps. This also ensures
that  relatively  large  descent  steps  that  overshoot  the  local  minima,  which  also  possibly  allow  for
discovering  better  local  minima,  will  not  affect  the  stability  of  the  training  procedure.  To  better
understand this consider that the stable state will be used to bias the network parameters only if we end up
into a consistently worse optimization point after NS optimization steps.

4. Experiments 
In this Section the proposed method is extensively evaluated and compared to other techniques. First, the
effect of the two hyper-parameters (update rate α and exploration window ΝS) on the stability of the
proposed method is examined. Then, the proposed method is evaluated using several different deep neural
network architectures, learning setups, and six datasets. Note that the evaluation focuses on lightweight
network architectures that process small images, e.g., 32 x 32 pixels. This ensures that the developed
networks can be deployed on embedded and mobile  systems with limited  processing power,  such as
drones that will assist several cinematography-oriented tasks [23, 43, 44, 45, 46], meeting the real-time
requirements of these applications.

The Adam optimizer, with the default hyper-parameters, i.e., learning rate η=0.001, first moment
decay rate β1=0.9, and second moment decay rate β1=0.999, was used for all the experiments conducted in
this paper [13]. It is well known that fine-tuning these parameters (especially the learning rate) for each
dataset  can  improve  the  obtained  results.  However,  this  kind  of  fine-tuning  is  a  manual  and  time-
consuming process. The proposed LT-TA technique was combined with the Adam algorithm, which was
used to provide the parameter updates. A plain temporal averaging (TA) method was also derived by



setting the exploration window to 1, i.e., NS=1, providing a second baseline for comparing the proposed
technique.  Note  that  plain  parameter  averaging  techniques,  such  as  [13,  21,  25,  27],  can  be  also
implemented on top of all  the evaluated methods,  possibly further increasing the performance of the
methods. The keras library  [40] was used for implementing the proposed method and conducting all the
experiments. 

For all the conducted experiments the mean value of each evaluated metric (loss or classification
error)  and the standard deviation  of  the calculated  sample  mean are reported.  The experiments  were
repeated  30  times  and the  corresponding metrics  are  monitored  over  the  course  of  the  optimization
process (the test metrics are monitored only during the last 5 epochs), unless otherwise stated.  The bars
in  the  figures  are  used  to  mark  the  95%  confidence  intervals  for  each  value.  Furthermore,  the
setup/method with the best performance has been underlined in the following tables. Note that this does
not necessary imply that the underlined metric is statistically significantly better than the others.  

Table 1: Network architecture used for the MNIST dataset (conv. refers to convolutional layers)

Layer Type Output Shape
Input 28 x 28 x 1

Conv. (3 x 3, 32 filters) 26 x 26 x 3
Max Pooling (2 x 2) 13 x 13 x 32

Conv. (3 x 3, 64 filters) 11 x 11 x 64
Max Pooling (2 x 2) 5 x 5 x64
Dense (512 neurons) 512

Dropout (p=0.5) 512
Dense (10 neurons) 10

4.1 Parameter Selection 
The effect of the update rate α and exploration window NS on the convergence of the optimization process
is examined using the MNIST database of handwritten digits (abbreviated as MNIST) [17]. The MNIST
database is a well-known dataset that contains 60,000 train and 10,000 test images of handwritten digits.
There are 10 different classes, one for each digit (0 to 9), and the size of each image is 28 x 28. Some
sample images are shown in Figure 1. The network architecture used for the conducted experiments is
summarized in Table 1. The rectifier activation function was used for all the layers except of the last one,
where the softmax activation function was combined with the cross-entropy loss for training the network
[8]. The network was regularized using the dropout technique [30].  The optimization ran for 10 epochs
with batch size 32 and and the average of the evaluated metrics during the 80% of the optimization (last 8
epochs) are reported. The experiments were repeated 5 times and the mean and the standard deviation are
reported.  

Figure 1: Samples images from the MNIST dataset

The  experimental  results  for  different  update  rates  α  are  shown in  Table  2.  The  exploration
window was set to NS=100, the optimization ran for 10 epochs with batch size 32, while the experiments
were repeated 5 times and the mean and the standard deviation are shown. The mean loss and the mean
classification error during the last epochs are reported. The best results were obtained for α=0.995. Note
that smaller values tend to reduce the optimization speed by strongly biasing the network towards the
older  stable  states.  The  obtained  results  highlight  the  ability  of  temporal  averaging  to  improve  the
convergence of the optimization process over the plain SGD/Adam, since the error and the loss decreases
(lower values demonstrate improved performance) as the value of α decreases (up to a certain point). 



After selecting the value of α=0. 995 for the update rate, the effect of the exploration windows NS

is  evaluated in Table 3.  Large exploration  windows tend to  provide more reliable  estimation for the
quality of the stable states by calculating the loss over larger temporal windows. The best results were
obtained  for  NS=50.  The  selected  values  (α=0.995  and  NS=50)  were  used  for  all  the  conducted
experiments in this Section, except otherwise stated, and proved to provide good performance for a wide
range of different datasets, evaluation setup and network architectures. 

Table 2: Evaluating the effect of the update rate α on the behavior of the proposed LT-TA method. 

α Train loss (x 10-2) Train error (%)
0.999 0.878 ± 0.097 0.276 ± 0.032
0.995 0.832 ± 0.050 0.258 ± 0.013
0.99 0.832 ± 0.094 0.263 ± 0.031
0.95 0.939 ± 0.077 0.297 ± 0.025
0.9 1.140 ± 0.112 0.360 ± 0.038

Table 3: Evaluating the effect of the update rate ΝS  on the behavior of the proposed LT-TA method. 

NS Train loss (x 10-2) Train error (%)
1 0.844 ± 0.065 0.267 ± 0.023
20 0.931 ± 0.130 0.293 ± 0.042
50 0.826 ± 0.061 0.256 ± 0.026
100 0.832 ± 0.050 0.258 ± 0.013
200 0.857 ± 0.042 0.272 ± 0.019

4.2 MNIST Evaluation 
Apart  from the  parameter  selection  experiments,  the  MNIST dataset  was  also  used  to  compare  the
proposed method both to the plain Adam algorithm, as well  as to a plain Temporal  Averaging (TA)
baseline. Again, note that for all the conducted experiments (TA and LT-TA methods) the value of α was
set 0.995. The evaluation results are shown in Table 4. The optimization ran for 10 epochs with batch size
32.

The proposed LT-TA method performs slightly  better  than both the plain  Adam (reported  as
“Baseline'” method in Table 4) and TA methods. The same behavior is also observed for the test set
(Table 5), where the proposed method achieves the lowest classification error (0.726% vs. 0.740% for the
next best performing method). Note that actually the TA method fails to improve the convergence, since
it cannot reliably select the stable states (the loss is calculated over a window with size 1).  For the test
set, instead of reporting the accuracy at the last epoch, the average over the last 5 epochs is reported to
evaluate  the  stability  of  the  obtained  solutions.  A  low  average  test  error  over  the  last  5  epochs
demonstrates that the optimization could be stopped at any of these epochs, i.e., the risk of stopping when
a bad descent step was taken is smaller. 

Table 4: MNIST Train Evaluation: Comparing the proposed LT-TA method to both the plain Adam
(Baseline) and Temporal Averaging during the optimization. 

Method Train loss (x 10-2) Train error (%)
Baseline 1.241 ± 0.071 0.386 ± 0.023
TA 3.243 ± 0.392 1.004 ± 0.122
LT-TA 1.214 ± 0.078 0.374 ± 0.026



Table  5: MNIST Test  Evaluation:  Comparing  the proposed LT-TA method to both  the plain  Adam
(Baseline) and Temporal Averaging using the supplied test set. 

Method Test loss (x 10-2) Test error (%)
Baseline 2.654 ± 0.166 0.740 ± 0.055
TA 3.395 ± 0.357 1.096 ± 0.118
LT-TA 2.552 ± 0.170 0.726 ± 0.049

To demonstrate the improved stability of the proposed method, the loss during the optimization
process (learning curve) is also provided in Figure 2.  The proposed LT-TA method leads to slightly
reduced loss at almost all of the optimization epochs, while it is also capable of slightly reducing the
fluctuations caused by the stochastic nature of the updates.

Figure 2: MNIST Evaluation: Loss during the optimization process. Figure best viewed in color.

The proposed method was also evaluated using a different setup for the employed optimizer by
increasing  the  learning  rate  to  η=0.005.  The  train  evaluation  is  provided  in  Table  6,  while  the  test
evaluation in Table 7. Since the convergence was significantly more noisy, the update rate was reduced to
0.99 in order to more strongly bias the network towards the stable states. Again, the same behavior as
before is observed. The proposed LT-TA method improves slightly the convergence, reducing the train
loss from 4.397 (Baseline) to 4.147 and the test loss from 6.319 (Baseline) to 6.081. The same behavior is
also observed in the learning curves plotted in Figure 3. Note that again the plain TA method  was not
capable of reliably selecting the stable states and, thus, failed to improve the convergence. 

Table 6: MNIST Train Evaluation (higher learning rate): Comparing the proposed LT-TA method to both
the plain Adam (Baseline) and Temporal Averaging during the optimization. 

Method Train loss (x 10-2) Train error (%)
Baseline 4.397 ± 0.875 1.328 ± 0.292
TA 51.840 ± 89.162 19.557 ± 34.605
LT-TA 4.147 ± 0.604 1.270 ± 0.212

Table 7: MNIST Test Evaluation (higher learning rate): Comparing the proposed LT-TA method to both
the plain Adam (Baseline) and Temporal Averaging using the supplied test set. 

Method Test loss (x 10-2) Test error (%)
Baseline 6.319 ± 0.370 1.666 ± 0.195
TA 51.749 ± 89.194 19.523 ± 34.565
LT-TA 6.081 ± 0.552 1.629 ± 0.235



Figure 3: MNIST Evaluation (higher learning rate):  Loss during the optimization process. 

4.3 CIFAR10 Evaluation
The CIFAR10 dataset [15], contains 60,000  32x32 color images that belongs to 10 different categories:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. Some sample images are shown in
Figure 4. The dataset is already split into 50,000 train and 10,000 test images. The CIFAR10 dataset is a
labeled subset of the 80 million tiny images dataset [33]. A deeper and more complex network was used
for the CIFAR10 dataset, since it is a significantly more complex dataset than the MNIST dataset. The
used network architecture is shown in Table 8. Again, rectifier activation functions were used for all the
layers except of the last one, where the softmax activation function was combined with the cross-entropy
loss for training the network. Padded convolutions were used for some layers to avoid reducing too much
the size of the output feature maps. 

Figure 4: Samples images from the CIFAR10 dataset

Table 8: Network architecture used for the CIFAR10 dataset (conv. refers to convolutional layers)

Layer Type Output Shape
Input 32 x 32 x 3

Padded Conv. (3 x 3, 32 filters) 32 x 32 x 3
Conv. (3 x 3, 64 filters) 30 x 30 x 64

Max Pooling (2 x 2) 15 x 15 x 64
Dropout (p = 0.25) 15 x 15 x 64

Padded Conv. (3 x 3, 64 filters) 15 x 15 x 64
Conv. (3 x 3, 128 filters) 13 x 13 x 128

Max Pooling (2 x 2) 6 x 6 x 128
Dropout (p = 0.25) 6 x 6 x 128

Dense (512 neurons) 512
Dropout (p=0.5) 512

Dense (10 neurons) 10



Table 9: CIFAR10 Train Evaluation: Comparing the proposed LT-TA method to both the plain Adam
(Baseline) and Temporal Averaging during the optimization. 

Method Train loss (x 10-2) Train error (%)
Baseline 54.550 ±1.792 19.123 ± 0.649
TA 75.302 ± 7.327 26.608 ± 2.661
LT-TA 52.921 ± 2.360 18.564 ± 0.846

Table 10: CIFAR10 Test Evaluation:  Comparing the proposed LT-TA method to both the plain Adam
(Baseline) and Temporal Averaging using the supplied test set. 

Method Test loss (x 10-2) Test error (%)
Baseline 53.973 ± 1.263 17.740 ± 0.358
TA 73.756 ± 7.542 25.478 ± 2.796
LT-TA 53.400 ± 1.348 17.615 ± 0.473

Figure 5: Loss during the optimization process. Figure best viewed in color.

The evaluation results for the train set are shown in Table 9, while the test evaluation results are
provided in Table 10. The optimization ran for 50 epochs with batch size 32, while all the epochs were
used to evaluate the quality and stability of the optimization process using the train data.  The proposed
LT-TA method leads to slightly improved results than the other techniques for both the training and
testing evaluations. The learning curves for the evaluated methods are provided in Figure 5. 

4.4 Fashion MNIST Evaluation 
The Fashion MNIST [35] is a dataset that contains 60,000 train samples and 10,000 test samples that
belong to one of the following 10 classes: t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
and ankle boot. Some sample images are shown in Figure 6. Fashion MNIST was designed as a drop-in
replacement for the MNIST dataset. The same evaluation setup as with the MNIST dataset (Section 4.2)
is  used,  apart  from using  a  slightly  more  complex  network  architecture  (Table  11)  and running  the
optimization for 20 epochs.

Figure 6: Samples images from the Fashion MNIST dataset



Table  11: Network architecture  used  for  the  Fashion MNIST dataset  (conv.  refers  to  convolutional
layers)

Layer Type Output Shape
Input 28 x 28 x 1

Conv. (3 x 3, 32 filters) 26 x 26 x 32
Conv. (3 x 3, 64 filters) 24 x 24 x 64

Max Pooling (2 x 2) 12 x 12 x 64
Conv. (3 x 3, 64 filters) 10 x 10 x 64

Max Pooling (2 x 2) 5 x 5 x 64
Dense (512 neurons) 512

Dropout (p=0.5) 512
Dense (10 neurons) 10

Table 12: Fashion MNIST Train Evaluation: Comparing the proposed LT-TA method to both the plain
Adam (Baseline) and Temporal Averaging during the optimization. 

Method Train loss (x 10-2) Train error (%)
Baseline 10.372 ± 0.673 3.804 ± 0.267
TA 27.328 ± 2.543 10.132 ± 0.974
LT-TA 10.214  ± 0.370 3.744 ±  0.141

Table 13: Fashion MNIST Test Evaluation:  Comparing the proposed LT-TA method to both the plain
Adam (Baseline) and Temporal Averaging using the supplied test set. 

Method Test loss (x 10-2) Test error (%)
Baseline 32.284    ± 1.330  7.691    ± 0.164  
TA 29.579  ± 2.544 10.821  ± 0.935
LT-TA 32.312  ± 0.854 7.725  ± 0.126

For the training evaluation the results are similar to the regular MNIST data (Table 12). That is,
the  proposed LT-TA method  performs slightly  better  than  both  the  baseline  and plain  TA methods.
However, for the test evaluation shown in Table 13, the Baseline method performs slightly better than the
LT-TA method. This behavior can attributed to overfitting phenomena that might occur when the LT-TA
method  manages  to  find  a  better  local  minimum  of  the  loss  function  than  the  simple  TA method.
Therefore, even though the LT-TA actually performs better on the training set, it can sometimes lead to
overfitting lowering the accuracy on the test set. This behavior is well known and can be prevented using
more aggressive regularization, e.g., dropout with higher rate [30]. 



Figure 7: Fashion MNIST Evaluation: Loss during the optimization process. Figure best viewed in color.

4.5 HPID Evaluation 

Figure 8: Cropped face images from the HPID dataset

The Head Pose Image Dataset (HPID) [6] is a dataset that contains 2,790 face images of 15 subjects in
various poses taken in a constrained environment. All images were resized to 32x32 pixels before feeding
them to the used CNN. Some sample images are shown in Figure 8. The horizontal  pose of the face
images (pan) is to be predicted. The HPID dataset provides discrete targets (13 steps) that were converted
into a continuous value used for training/testing the model. The predefined train/test splits were used. The
network architecture used for predicting the pose is shown in Table 14. The rectifier activation function
were  used  for  the  hidden  layers  (no  activation  was  used  for  the  output,  since  the  yaw  is  directly
predicted), while the mean squared loss was used for training. 

During  the  training  the  following  data  augmentation  techniques  were  also  used  to  prevent
overfitting the network and ensure good generalization performance: 

1. random vertical flip with probability 0.5 

2. random horizontal shift up to 5% 

3. random vertical shift up to 5% 

4. random zoom up to 5% 

5. random rotation up to 10 degrees 

The  vertical  and horizontal  shifts  simulate  the  behavior  of  face  detectors  that  are  usually  unable  to
perfectly align the face in the images, while the zoom and rotation transformations further increase the
scale/rotation invariance of the network. 

Table 14: Network architecture used for the HPID dataset (conv. refers to convolutional layers)

Layer Type Output Shape
Input 32 x 32 x 3

Padded Conv. (3 x 3, 32 filters) 32 x 32 x 32
Max Pooling (2 x 2) 16 x 16 x 32

Dropout (p=0.25) 16 x 16 x 32
Padded Conv. (3 x 3, 64 filters) 16 x 16 x 64

Max Pooling (2 x 2) 8 x 8 x 64
Dropout (p=0.5) 8 x 8 x 64

Dense (256 neurons) 256
Dropout (p=0.5) 256

Dense (10 neurons) 1



The evaluation results for the optimization process are reported in Table 15. The optimization ran
for 50 epochs with batch size 32. The LT-TA perform slightly better than the plain Adam (Baseline)
method and the TA method achieving the lowest overall loss/error. This behavior is also reflected in the
test evaluation (Table 16), where the evaluated method improves slightly the test error, as well as in the
learning curves shown in Figure 9. Finally, note that due to differences in the used network architecture
and the removal of the Local Constrant Normalization (LCN) layers (LCN is not available in the keras
framework used for implementing the proposed method [3])  the evaluation results  are different from
those reported in [24]. 

Table 15: HPID Train Evaluation:  Comparing the proposed LT-TA method to both the plain Adam
(Baseline) and Temporal Averaging during the optimization. 

Method Train loss (x 10-2) Train error (%)
Baseline 0.168 ± 0.064 10.102 ± 1.730
TA 0.185 ± 0.062 10.808 ± 1.644
LT-TA 0.167 ± 0.056 10.030 ± 1.465 

Table  16: HPID Test  Evaluation:  Comparing  the  proposed  LT-TA method  to  both  the  plain  Adam
(Baseline) and Temporal Averaging using the supplied test set. 

Method Test loss (x 10-2) Test error (%)
Baseline 0.077 ± 0.008 7.753 ± 0.383
TA 0.081 ± 0.011 7.949 ± 0.551
LT-TA 0.077 ± 0.008 7.740 ± 0.419

Figure 9: HPID Evaluation: Loss during the optimization process. Figure best viewed in color.



4.6 AFLW Evaluation 
The Annotated Facial Landmarks in the Wild (AFLW) dataset [14], is a large-scale dataset for facial
landmark localization.  The 75% of the images were used to train the models, while the rest 25% for
evaluating  the  accuracy  of  the  models.  The  face  images  were  cropped  according  to  the  supplied
annotations and then resized to 32x32 pixels. Face images smaller than  16x16 pixels were not used for
training  or  evaluating  the model.  Some sample  images  are  shown in Figure  10.  The AFLW dataset
provides  continuous  pose  targets  that  were  directly  used  for  training  the  network.  The  same  data
augmentation technique as for the HPID dataset was used (Section 4.5). The network architecture used for
predicting the pose is shown in Table 17. The rectifier activation function was used for the hidden layers
(no activation was used for the output, since the yaw is directly predicted), while the mean squared loss
was used for training. As before, the optimization ran for 30 epochs with batch size 32. 

Figure 10: Cropped face images from the ALFW dataset

Table 17: Network architecture used for the AFLW dataset (conv. refers to convolutional layers)

Layer Type Output Shape
Input 32 x 32 x 3

Padded Conv. (3 x 3, 16 filters) 32 x 32 x 16
Padded Conv. (3 x 3, 16 filters) 32 x 32 x 16

Max Pooling (2 x 2) 16 x 16 x 16
Dropout (p = 0.25) 16 x 16 x 16

Padded Conv. (3 x 3, 64 filters) 16 x 16 x 64
Padded Conv. (3 x 3, 64 filters) 16 x 16 x 64

Max Pooling (2 x 2) 8 x 8 x 64
Dropout (p = 0.25) 8 x 8 x 64

Dense (256 neurons) 256
Dropout (p=0.5) 256

Dense (10 neurons) 10

Table 18: AFLW Train Evaluation: Comparing the proposed LT-TA method to both the plain Adam
(Baseline) and Temporal Averaging during the optimization. 

Method Train loss (x 10-2) Train error (%)
Baseline 0.257 ± 0.039 12.838 ± 0.907
TA 0.286 ± 0.041 13.700 ± 0.942
LT-TA 0.257 ± 0.039  12.835 ± 0.933 

Table 19: AFLW Test Evaluation:  Comparing the proposed LT-TA method to both the plain Adam
(Baseline) and Temporal Averaging using the supplied test set. 

Method Test loss (x 10-2) Test error (%)
Baseline 0.160 ± 0.010 10.013 ± 0.343
TA 0.195 ± 0.020  11.192 ± 0.599
LT-TA 0.160 ± 0.011 10.017 ± 0.384



Figure 11:  AFLW Evaluation: Loss during the optimization process. Figure best viewed in color.

The evaluation results are reported in Tables 18 and 19, while the corresponding learning curves
are  shown in  Figure  11.  The  proposed  method  slightly  improves  the  results  all  the  other  evaluated
methods both for the metrics evaluated during the optimization and for the testing evaluation. 

4.7 IMDB Evaluation 
Finally,  the  proposed method  was  evaluated  using  the  IMDB Movie  review sentiment  classification
dataset [38].  The preprocessed dataset that contains 25,000 training reviews and 25,000 testing reviews,
as  supplied  by the keras  library [40],  was used for  the  conducted  experiments.  A Long Short  Term
Memory (LSTM) network was used for the classification into the two possible sentiments [39]: positive
and negative. The maximum length of a document was restricted to 500 words, while only the 10,000
most frequent words were used for constructing the word embedding model used for the classification.
The network architecture used for the conducted experiments is shown in Table 20. Rectifier activation
units [9] were used for the first fully connected layer, while the sigmoid activation function was used for
the output layer. The network was trained using the binary cross-entropy loss.

Table 20: Network architecture used for the AFLW dataset (conv. refers to convolutional layers)

Layer Type Output Shape
Input 500

Embedding Layer 
(10000 words, 32-dimensional vectors)

500 x 32

LSTM Layer (32 units) 32
Dense Layer  (500 neurons) 500

Dense Layer (1 neuron) 1

The evaluation results for the train set are reported in Table 21, while the test evaluation results
are reported in Table 22. The proposed method improves the train loss and error (the loss is reduced from
22.133 to 21.273, while the train error from 10.625% to 10.039%). The same behavior is also observed
for the test loss and error (Table 22), as well as in the learning curves shown in Figure 12. Note that in
this experiment a recurrent network architecture was used (LSTM) to evaluate the proposed method under
a more challenging setup. Recall that recurrent networks are more prone to undesired phenomena that can
cause instabilities during the training process, such as vanishing or exploding gradients. Even though the
proposed method cannot directly mitigate such phenomena, biasing the network towards stabler states can
improve both the stability of the training process as well as the training/testing accuracy,  when such
phenomena occur.



Table 21: IMDB Train Evaluation:  Comparing the proposed LT-TA method to both the plain Adam
(Baseline) and Temporal Averaging during the optimization. 

Method Train loss (x 10-2) Train error (%)
Baseline 22.133 ± 5.927 10.625 ± 3.864
TA 31.138 ± 6.927 14.971 ± 4.862
LT-TA 21.273 ± 5.111 10.039 ± 3.245  

Table  22: IMDB Test  Evaluation:  Comparing  the proposed LT-TA method to both the  plain  Adam
(Baseline) and Temporal Averaging using the supplied test set.

Method Test loss (x 10-2) Test error (%)
Baseline 48.457 ± 5.032 14.518 ± 0.941 
TA 39.245 ± 3.075 15.736 ± 2.353 
LT-TA 48.357 ± 5.739 14.318 ± 0.695

Figure 12:  IMDB Evaluation: Loss during the optimization process. Figure best viewed in color.

4.8 Statistical Significance Analysis
The statistical significance of the obtained results was also evaluated using the Wilcoxon signed

rank test considering all the datasets [41]. For conducting the statistical test we directly used the average
loss values observed for the train and test sets using all the available datasets, as they are reported in
Tables 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21 and 22. By performing hypothesis testing on the data



collected from all the datasets we can conclude that the average loss of the proposed method is lower than
the baseline approach (p-value = 0.008). The statistical test was conducted using the SciPy library [47]. 

5. Conclusions 
In this work we proposed a Long-Term Temporal Averaging technique that first takes big descent steps to
explore the solution space and then employs an exponential  running averaging technique  to bias the
current parameters towards stabler states, if the optimization process becomes unstable. The more stable
convergence of the algorithm also reduces the risk of stopping the training process when a bad descent
step was taken and the learning rate was not appropriately set.  It  was demonstrated,  using extensive
experiments on six datasets and different evaluation setups, that the proposed technique can improve the
behavior of stochastic optimization techniques for training deep neural networks. 
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