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Unsupervised Knowledge Transfer using Similarity
Embeddings

Nikolaos Passalis and Anastasios Tefas

Abstract—With the advent of deep neural networks there is a
growing interest in transferring the knowledge from a large and
complex model to a smaller and faster one. In this work, a method
for unsupervised knowledge transfer between neural networks is
proposed. To the best of our knowledge the proposed method
is the first method that utilizes similarity-induced embeddings
to transfer the knowledge between any two layers of neural
networks regardless of the number of neurons in each of
them. This way, the knowledge is transferred without using any
lossy dimensionality reduction transformations or requiring any
information about the complex model, except for the activations
of the layer used for the knowledge transfer. This is in contrast
with most existing approaches that only generate soft-targets for
training the smaller neural network or directly use the weights
of the larger model. The proposed method is evaluated using
six image datasets and it is demonstrated, through extensive
experiments, that the knowledge of a neural network can be
successfully transferred using different kinds of (synthetic or not)
data, ranging from cross-domain data to just randomly generated
data.

Index Terms—Knowledge Transfer, Unsupervised Learning,
Similarity Embeddings, Neural Network Distillation

I. INTRODUCTION

With the advent of deep neural networks [1], [2], there
is a growing interest in transferring the knowledge from a
large and complex model to a smaller and faster one. This
process is known in the literature as model compression [3],
neural network distillation [4], or simply knowledge transfer
(KT) [5]. Usually the knowledge transfer process works by
using the large neural network to produce soft-targets that
are then used to train the smaller model [4]. These soft-
labels implicitly encode the similarities between the training
samples thus carrying more information than hard binary
labels. Matching the soft-labels also acts as a regularizer
for the training process allowing a model to achieve higher
accuracy than directly training it with the original labels. In
this paper the large model, from which the knowledge is
transferred, is called donor model, while the smaller model,
which is trained using the knowledge from the donor model,
is called receiver model.

The vast majority of neural network knowledge transfer
approaches follows, to a greater or lesser degree, the basic
distillation idea: a transfer set of data is labeled using the
donor model and these annotations are used to train the re-
ceiver model. However this approach suffers from a significant
drawback: it cannot be used to transfer the knowledge between
layers of networks with different number of hidden units since
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there is no way to measure the distance/similarity between
feature vectors of different dimensionality. This also implies
that the distillation approach cannot be used when the number
of targets does not match, e.g., the large network predicts 20
classes, while the smaller one predicts only 10 classes.

These observations lead us to the following questions. Is
it possible to extract the information contained in a neural
layer without simply performing regression on its output?
Can we directly transfer the knowledge between any two
layers of two neural networks, regardless their architecture
(e.g., number of units, activation functions, etc.)? Furthermore,
even though existing knowledge transfer approaches work
in an unsupervised fashion, many of them, e.g,. [4], are
combined with a supervised loss function in order to train
useful networks. Is is possible to perform purely unsupervised
knowledge transfer instead of merely using the knowledge
transfer as a regularizer?

In this paper the aforementioned problems are addressed by
sampling the geometry of the feature space, as induced by the
donor model, and then training the receiver model to mimic
this geometry using similarity-induced embeddings [6]. To this
end, the similarity matrix of the transfer set is calculated
using the donor model. Then, the receiver model is trained
to “follow” the similarities given by the donor model. That
way, the geometry of the feature space, as induced by the
donor model, is recreated in a space of arbitrary dimensionality
using the receiver model. In contrast to other approaches, such
as [5], and [7], the proposed method does not require any
knowledge of the donor network’s architecture (except from its
output) and it does not use dimensionality reduction to match
the number of units in the receiver model. Instead, it is the
first method that supports directly transferring the knowledge
between layers of different dimensionality.

The proposed method is capable of performing unsupervised
knowledge transfer using different types of transfer sets,
ranging from pure noise to data from other domains. This
can be especially useful in cases where the original training
data may not be publicly available due to privacy concerns,
license restrictions or confidentiality agreements, even though
the trained neural network might be freely distributed. After
the knowledge transfer, the network can be finetuned using the
regular distillation process or a light-weight classifier, e.g., a
nearest centroid classifier, can be learned using a very small set
of labeled data (3-4 examples per class). Even though the focus
of this paper is unsupervised knowledge transfer, the proposed
method can be used to regularize the training procedure when
labeled data are available. Nonetheless, we demonstrate that
even when used for purely unsupervised knowledge transfer it
can achieve remarkable results.
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The main contribution of this paper is the proposal of a
method for knowledge transfer using similarity embeddings.
In contrast to other knowledge transfer methods, the proposed
method is model-agnostic, i.e., it can be used with any
neural network architecture. As experimentally demonstrated
in Section IV, the proposed method allows for efficiently
transferring the knowledge between models, since it fully
exploits the information encoded in the similarity between
the transfer samples. Note that other methods, such as the
neural network distillation [4], also try to implicitly recover
this similarity information using heuristics, such as raising the
softmax temperature. Six different image datasets are used to
evaluate the proposed method, including a large-scale dataset
for learning a light-weight model for facial pose estimation
that can be deployed on embedded systems with limited
computational resources, such as drones.

The rest of the paper is structured as follows. In Section II
the related work is presented and compared to the proposed
approach. Next, the proposed method is presented in detail in
Section III and evaluated in Section IV. Finally, conclusions
are drawn and future work is discussed in Section V.

II. RELATED WORK

Transferring the knowledge of a trained neural network
into another one is a quite recent research topic, mainly
fueled by the growing complexity of deep neural networks and
the need to deploy them into mobile and embedded devices
with limited computational resources. Most of the proposed
methods for transferring the knowledge use soft-labels, i.e.,
targets generated by the donor model, and then train the
receiver model using these pseudo-labels [3], [4], [8], [9], [10].
Among the first attempts for knowledge transfer using soft-
labels is the model compression method proposed in [3]. In [4],
the previous approach is extended by tuning the temperature
of the softmax activation function before producing the soft-
labels. It has been shown that this approach can be used to
efficiently regularize the smaller network and achieve better
generalization than directly training the network using the
labels of the training set. The soft-targets can be also used for
pre-training a larger network, as in [11]. In [10], the distillation
process is used for domain adaptation using sparsely labeled
data. A similar approach is also used in [8], to transfer the
knowledge from a recurrent neural network (RNN) to a deep
neural network. A quite interesting method is also proposed in
[9], where the knowledge is transferred from a weaker donor
model to a more powerful receiver network. This allows for
training the more complex model using fewer labeled data and
it also highlights the regularization nature of the distillation
process.

All the previous methods use soft-labels generated by the
donor model to transfer the knowledge. In [5], a more direct
approach is used, where the weights of the donor model
are used to initialize the receiver model allowing for faster
convergence. Then the receiver model is trained using a regular
training dataset. In [7], the receiver network is trained not
only using the soft-targets, but also using hints from the
intermediate layers. Since the size of the receiver model is

usually smaller, this is achieved by using a random projection
to reduce the dimensionality of the output of the donor model
and match the dimensionality of the smaller receiver network.

To the best of our knowledge we propose the first method for
unsupervised knowledge transfer using similarity embeddings
that is able to natively handle knowledge transfer between
layers of different dimensionality. Note that in contrast to the
previously used approaches the method proposed in this paper
does not require having access to the actual weights of the
network (and/or using specific activation functions), as in [5],
or learning low dimension projections, as in [7]. Instead, a
similarity embedding is used to transfer the knowledge from
the donor model to the receiver model, regardless the actual
dimensionality of the layers involved. Note, that similarity
embeddings have been used with great success for developing
a wide range of dimensionality reduction techniques [6].
However, this is the first time that they are used to transfer
knowledge between different neural networks and not merely
perform dimensionality reduction.

Transfer learning and domain adaptation techniques, e.g.,
[10], [12], [13], [14], [15], are also related to KT methods.
However, in these techniques the aim is to provide a model
that can withstand input distribution changes and/or transfer
the knowledge across different domains and tasks. On the
other hand, KT techniques mainly aim to efficiently distill the
knowledge contained in a large and complex network into a
smaller one.

III. PROPOSED METHOD

Let D be the donor network from which the knowledge will
be transferred to the receiver network R. The output of the
i-th layer of each network is denoted by D(x, i) and R(x, i)
respectively, where x ∈ RL is an input vector (or tensor)
and L is the input dimensionality. Even though both networks
must receive input vectors of the same dimensionality there
is no constraint on the dimensionality of the next layers. For
example, the donor network might be a 10 × 100 × 30 × 15
MLP, while the receiver network a 10× 50× 10 MLP. Also,
let Xtrain = {x1,x2, ...,xN} be the transfer set that is used to
transfer the knowledge from the donor network to the receiver
network. The transfer set may contain the original training set,
i.e., the set used for training the donor network, data from a
relevant domain, synthetic data, or just randomly generated
data vectors.

The proposed method aims to transfer the knowledge en-
coded in the m-th layer of the donor network to the l-th
layer of the receiver model. To this end, the receiver model
is trained to recreate the pairwise similarities between the
donor’s representations of the points in the transfer set. Let
ti = D(xi,m) ∈ RLm and yi = R(xi, l) ∈ RL′

l be the output
of the m-th layer of the donor network and the output of the l-
th layer of the receiver model respectively. Note that in general
the knowledge might be transferred between different layers
(m 6= l) of networks with different architecture (Lm 6= L′l).

Let [T]ij be the similarity between the representations of the
i-th and the j-th point of the transfer set, as encoded by a layer
of the donor model. This similarity can be estimated using
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any similarity metric, such as the cosine similarity [T]ij =
tTi tj

||ti||2||tj ||2 , or a euclidean distance based metric, e.g., the heat

kernel [T]ij = exp(− ||ti−tj ||2σ ). In this work, the similarity is
calculated using the linear kernel, i.e., the dot-product between
the vectors ti and tj :

[T]ij = |tTi tj | (1)

where the absolute value function is used to ensure that Eq. (1)
is a proper similarity metric. Using the linear kernel allows
for simpler and faster implementations than other similarity
metrics, e.g., the heat kernel involves the computationally
intensive calculations of the exponential function, without
significantly reducing the quality of the knowledge transfer.
Before calculating the similarity matrix T the values ti are
normalized using min-max scaling to the range 0 . . . 1.

The receiver model is then trained to “mimic” the similarity
given by the donor model. To this end, the similarity between
the representations yi and yj using the receiver model are
similarly defined as:

[P]ij = |yTi yj | (2)

The receiver similarity matrix, as given in Eq. (2), must closely
approximate the donor similarity matrix (given in Eq. (1)). To
achieve this goal, the mean squared loss between the target
similarity and the actual similarity is used to train the network:

(3)J =
1

N2

N∑
i=1

N∑
j=1

([T]ij − [P]ij)
2

where N is the number of samples in the transfer set. Mim-
icking the pairwise similarities acts as a way to recreate the
geometry of the donor model using the receiver model. As
it is experimentally demonstrated in Section IV, this allows
for efficiently transferring the knowledge between models,
since the similarity between different samples encodes more
information than a hard binary label. Note that the actual
learned feature space might be rotated and distorted during
this process. Therefore, if the proposed method is used for
knowledge transfer between the final classification layers of
two networks, then the original class mapping can be recov-
ered using a lightweight classifier, such as the nearest centroid
classifier.

The receiver model can be trained using simple gradient
descent:

∆W = −η ∂J
∂W

(4)

where W is the matrix of the parameters of the
receiver model. The loss derivative is calculated as
∂J
∂W = − 2

N2

∑N
i=1

∑N
j=1([T]ij − [P]ij)sign(yTi yj)(

∂yT
i

∂W yj +

yTi
∂yj

∂W ), where the derivative ∂yi

∂W is used to backpropagate the
gradients to the receiver model and sign(·) is the sign function
(with sign(0) = 0). Instead of using the whole transfer set
to calculate the loss function, as in Eq. (3), smaller batches
are used. The data are shuffled between the training epochs
to ensure that different data points are used to calculate the
pairwise similarities in each batch. The complete knowledge
transfer algorithm is shown in Figure 1.

Input: A transfer set Xtrain = {x1, ...,xN} of N training
samples and the donor model D
Hyper-parameters: The number of iterations Niters, the
learning rate η, the batch size Nbatch and the layers used for
the knowledge transfer (m and l)
Output: The trained receiver model R

1: procedure KNOWLEDGE TRANSFER
2: Initialize the receiver model R
3: Initialize the donor scaler (minimum and the maximum

values of the m-th layer)
4: for i← 1; i ≤ Niters; i+ + do
5: Shuffle the transfer set Xtrain

6: for Xbatch ∈ Xtrain do
7: Calculate and scale the activations ti of the

m-th layer using the donor model
8: Update the receiver model R using Eq. (4)

return the optimized receiver model R
Fig. 1: SKT Algorithm

IV. EXPERIMENTS

Six different image datasets were used to evaluate the
proposed method. Four of them, the MNIST dataset [16],
the CIFAR10 [17] dataset, the Annotated Facial Landmarks
(ALFW) dataset [18], and the Tiny Imagenet dataset[19],
were used for both transferring the knowledge and evaluating
the quality of the learned models, while the other two, the
notMNIST [20], and the CIFAR100 [17], were only used as
cross-domain transfer sets.

The ALFW dataset was used for solving a pose estimation
task (three class classification: left (yaw less that -10 degrees),
center (yaw between -10 and 10 degrees) and right (yaw
greater than 10 degrees)). The 75% of the images were
used to train the models, while the rest 25% for evaluating
the accuracy of the models. The face images were cropped
according to the given annotation and then resized to 32× 32
pixels. Face images smaller than 16 × 16 pixels were not
used for training or evaluating the model. For the rest of the
datasets, the default training/test/validation splits were used.
The images of the Tiny Imagenet were resized to 56 × 56
pixels and data augmentation techniques (random flip with
p = 0.5, random rotation up to 5 degrees and random crops
with padding up to 4 pixels) were also used.

The proposed method is evaluated using the following three
experimental setups: a) KT using noise (the transfer set is
composed solely of randomly generated data without using any
prior information about the actual distribution of the training
data), b) KT using domain data (the transfer set is composed of
a subset of the training data) and c) KT using cross-domain
data (the transfer set is composed of data of a similar, but
irrelevant to the classification task, domain.)

After the knowledge transfer, it is impossible to directly
evaluate the quality of the model, since the embedded feature
space may have been transformed, e.g., rotated. To evaluate
the quality of the knowledge transfer we use two different
approaches: a) a lightweight nearest centroid classifier (abbre-
viated as “NCC”) is trained on the learned representation using
only few training samples (3 samples per class are used in the
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Transfer Set Distill. SKT SKT+Distill.
NCC / NN NCC NCC / NN

Noise N (0.5, 0.25) 24.78 / 89.96 36.10 20.44 / 88.77
MNIST(30) 37.87 / 27.10 27.29 27.21 / 26.77
MNIST(30)+N (0, 0.25) 32.63 / 25.48 28.06 27.57 / 20.23
MNIST(F) 17.83 / 0.91 12.29 10.82 / 0.80
notMNIST 19.84 / 4.16 17.90 14.58 / 3.40
notMNIST+MNIST 16.98 / 0.86 11.98 11.23 / 0.86

TABLE I: MNIST Evaluation: Knowledge transfer using dif-
ferent transfer sets (classification error rate (%))

conducted experiments) and b) the distillation approach [4]
is used to finetune the network towards classification and the
output layer is used for the evaluation (abbreviated as “NN”).
All the methods were used in a purely unsupervised setting,
i.e., no labels were used during the training. The distillation
approach was also used in a purely unsupervised setting, i.e.,
soft-labels were generated in an fully unsupervised fashion
by the donor network and then used for training the receiver
network without using any hard labels from the dataset (the
receiver network is trained to follow the mapping between
output neurons and classes, as it is defined by the donor
network).

Training Setup: For all the evaluated datasets (except for
the Tiny Imagenet) the Adam algorithm [21], was used for the
optimization, since it generally provides faster and more stable
convergence. The batch size was set to 64, the learning rate
to 0.001, and the default parameters of the Adam algorithm
were used (β1 = 0.9, β2 = 0.999 and ε = 10−8) [21].
The knowledge transfer techniques (both the proposed and
the distillation) ran for 50 epochs (unless otherwise stated).
When noise is used for training, the same amount of synthetic
samples as the original training set are generated. For the Tiny
Imagenet dataset, the learning rate was set to 0.0001, and the
feature vectors used for the SKT were normalized to have unit
l2 norm. For the distillation approach, the softmax temperature
was raised to T = 10 (T = 2 for the Imagenet dataset).

a) MNIST Evaluation: First, the proposed method is
evaluated using the well-known MNIST dataset. The donor
model is composed of 2 pairs of convolutional layers (64 filters
of size 5× 5) and 2× 2 max pooling layers, followed by two
fully connected layers (512×10). The receiver model follows
the same architecture, but it has over 30 times less parameters
than the donor model (20k vs. 634k), since it only uses 8 filters
of size 5 × 5 for its convolutional layers and a hidden layer
with 128 units. The rectifier activation function is used for
both networks and dropout is utilized for training the models
[22]. When the donor model is trained using the full training
split of the MNIST dataset it achieves a test error of 0.64%.
On the other hand, the receiver model achieves a test error
of 1.17% when trained using the full training dataset, and a
test error of 28.33% when trained using 3 randomly sampled
training images per class (a total of 30 training images are
used, which is the same amount of data used for training the
nearest centroid classifier in the subsequent experiments).

The experimental results are shown in Table I. Two clas-
sification error rates are reported: the first one is the near-
est centroid classifier classification error using the features

extracted from the last convolutional layer (abbreviated as
NCC), while the second one is the classification error of the
output of the network (abbreviated as NN). The proposed
approach is abbreviated as SKT (Similarity-based Knowledge
Transfer). Since the SKT method is only used to transfer the
knowledge of the convolutional layers, only the NCC error
is reported. The proposed method is also compared to the
distillation approach [4] (left column of Table I). Finally,
after performing knowledge transfer using the proposed SKT
method, the network can be further finetuned using the distil-
lation approach (right column of Table I, both the NNC and
the NN classification error rates are reported).

First, randomly generated data (noise) are used as the
transfer set to train the receiver model using the donor model.
The notation “Noise N (µ, σ2)” is used to refer to Gaussian
noise with mean µ and standard deviation σ. Even though
the receiver network has never seen a real digit during the
knowledge transfer (only randomly generated data are used)
it achieves a remarkable 20.44% classification error when the
NCC classifier is used (over 4% less than using the distillation
approach alone). This result is actually better than directly
training the network with 30 training samples (28.33% error).

Next, the original training dataset is used for knowledge
transfer. Two different setups are used: the first one only uses
a limited training set of 30 training samples (30), while the
second one uses the full training dataset (F). Using just the 30
training samples leads to a relatively large classification error.
However, when the data are augmented by adding Gaussian
noise (“MNIST(30)+N (0, 25)”), the classification error drops
from 26.77% to 20.23%. In both cases it is evident how the
proposed SKT method improves the learned representation
over the distillation approach. The NCC classification error
decreases by more than 10% when the proposed method is
used. When the full training dataset is used (MNIST (F)) the
proposed method improves the NCC classification error by
7% over the distillation approach, while reaching a spectacular
0.80% classification error. Therefore, the network trained using
the proposed unsupervised SKT method performs better than
the network that was directly trained with the labeled training
dataset (1.17% classification error).

Finally, cross-domain data from the notMNIST dataset
are used for the knowledge transfer. Using the notMNIST
dataset allows for achieving a remarkable error of 3.40% (the
network has never seen a digit during the training process).
Again, the proposed approach leads to better results than the
distillation method. Note that only the notMNIST images were
used for the SKT and the distillation process. Combining
the notMNIST and the MNIST datasets further reduces the
classification error to 0.86%.

b) CIFAR10 Evaluation: Next, the CIFAR10 dataset is
used to evaluate the proposed method for knowledge transfer.
The donor model is composed of six layers, two convolutional
layers with 32 filters of size 3 × 3, one 2 × 2 max pooling
layer, 2 convolutional layers with 64 filters of size 3× 3 and
a second 2 × 2 max pooling layer, followed by two fully
connected layers (512 × 10). Local response normalization
[23], and dropout [22], were used for the training of the
donor and the baseline receiver models. The receiver model
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Transfer Set Distill. SKT SKT+Distill.
NCC/NN NCC NCC/NN

Noise N (0.5, 0.25) 77.80 / 88.85 78.32 76.81 / 88.45
CIFAR-10(30) 84.17 / 80.28 78.32 77.56 / 75.57
CIFAR-10(30)+N (0, 0.01) 83.10 / 79.55 78.48 78.35 / 74.59
CIFAR-10(F) 74.64 / 31.38 69.59 71.96 / 27.50
CIFAR-100 73.71 / 35.42 69.83 71.54 / 33.94
CIFAR-100+CIFAR-10 72.42 / 27.00 67.91 70.36 / 25.69

TABLE II: CIFAR Evaluation: Knowledge transfer using dif-
ferent transfer sets (classification error rate (%))

uses a simpler architecture: only two convolutional layer are
used instead of four (one convolutional layer is removed
before each of the max pooling layers) and the final fully
connected layer has less hidden units (128 × 10 instead of
512 × 10). When the donor model is trained using the full
training split of the CIFAR10 dataset it achieves a test error
of 20.02%. On the other hand, the receiver model achieves
a test error of 28.31% when trained using the full training
dataset, and a test error of 82.48% when trained using 3
randomly sampled training images per class. Note the severe
degeneration of the receiver model when trained using just 30
training samples. The knowledge (SKT) is transferred between
the last convolutional layers of the networks.

As in the MNIST evaluation, the proposed method is first
evaluated using randomly generated data as the transfer set.
The proposed knowledge transfer method, when combined
with finetuning, improves the classification results over the
simple distillation process. Surprisingly the receiver model
trained using only noise as the transfer set achieves better
classification error (76.81%) than the receiver model that was
trained using a subsample of the actual training data (82.48%).

When using only 30 training (domain) samples for the
knowledge transfer, the model achieves significantly better
classification error than the corresponding baseline model
(75.57% vs. 82.48%). This is mainly due to the proposed SKT
transfer method, since the distillation method achieves 80.28%
classification error instead of 75.57%. When noise is added to
the data the error of the model is further reduced to 74.59%.
When the whole training dataset is used the model achieves
a classification error of 27.50% (with finetuning), which is
better than the baseline model trained on the same data
(28.31%). Again, the proposed method greatly outperforms
the distillation process and allows for improving the quality of
the knowledge transfer. Finally, the proposed SKT method is
evaluated using cross-domain data from the CIFAR100 dataset
leading to 33.94% classification error (35.42% when only the
distillation process is used). When both the CIFAR100 and the
CIFAR10 datasets are used as the transfer set the classification
error is further reduced to 25.69%. Again, this is better than
directly training the baseline model with the labeled dataset
(28.31% classification error).

c) ALFW Evaluation: The proposed SKT method is also
evaluated using the AFLW dataset for transferring the knowl-
edge into a lightweight neural network that can be deployed
on embedded devices. The donor network is composed of
2 convolutional layers with 16 3 × 3 filters, followed by a
2× 2 max pooling layer, another 2 convolutional layers with

Method Accuracy (NCC) Accuracy (NN)
Distillation 78.21% 81.76%
SKT 77.99% -
SKT + Distill. 80.81% 83.11%

TABLE III: AFLW Evaluation

Method top-1 accuracy top-5 accuracy
Baseline 37.05% 64.00%
Distillation 39.75% 66.73%
SKT + Distill. 40.42% 67.40%

TABLE IV: Tiny Imagenet Evaluation

32 3× 3 filters, a 2× 2 max pooling layer and 128× 3 fully
connected layers. The receiver model is composed of one 3×3
convolutional layer with 8 filters, a 3× 3 max pooling layer,
another one 3×3 convolutional layer with 16 filters, followed
by a 3×3 max pooling layer and 16×3 fully connected layers.
Local contrast normalization is used after each pooling layer,
rectifier activation functions are used for all the layers (except
for the output layer where the softmax activation function is
used) and the dropout technique (p = 0.5) was used before
the fully connected layers. The receiver model is significantly
simpler than the donor model reducing the number of used
parameters by almost two orders of magnitude (the donor
model requires more than 110k parameters, while the receiver
model less than 2k parameters). The networks were trained
using the cross-entropy loss for 50,000 iterations (batch size
of 32 samples) achieving pose estimation accuracy of 87.19%
for the donor model and 82.83% for the receiver model.

The experimental results using the proposed method are
shown in Table III. For both the distillation and the SKT
methods 50,000 training iterations were used (batch size of
32). For the SKT method the knowledge is transferred from
the first fully connected layer of the donor to the first fully
connected layer of receiver. The proposed SKT + Distillation
method increases the pose estimation accuracy over 2.5% for
the NCC classifier and over 1.3% (when compared to the plain
distillation method). Again, note that this result is better than
directly training the receiver network with the available labels
highlighting the effectiveness of the proposed approach, even
though no labeled samples were used for this process.

d) Tiny ImageNet Evaluation: The proposed method
was also evaluated on a more challenging dataset, the Tiny
ImageNet dataset [19]. A larger donor network pre-trained on
the whole Imagenet dataset, the ResNet-18 [24], was used.
On the other hand, a well established lightweight model, the
SqueezeNet v.1.1 [25], was used as the receiver network. After
finetuning both models on the used dataset (5 epochs for
the fully connected layer, followed by 150 full optimization
epochs with learning rate decay (0.001 → 0.0001)), they
achieved 61.74% top-1 and 83.97% top-5 accuracy for the
ResNet-18, and 37.05% top-1 and 64% top-5 accuracy for the
SqueezeNet. The experimental results are shown in Table IV.
For the conducted experiments the finetuned SqueezeNet was
used to initialize all the models and ensure a fair comparison
between the evaluated methods. The knowledge was trans-
ferred between the penultimate layers of the networks. Again,
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both the distillation and the proposed approach outperform the
baseline SqueezeNet demonstrating that even purely unsuper-
vised training can increase the accuracy of the models. Also,
the proposed approach (combined with distillation) further
increases the accuracy to 40.42% top-1 (67.40% top-5).

V. CONCLUSIONS

In this paper, a method for unsupervised knowledge transfer
between any two layers of neural networks was proposed. The
proposed method samples the geometry of the feature space, as
induced by the donor model, and then trains the receiver model
to mimic this geometry using similarity-induced embeddings.
In contrast to existing approaches, the proposed method does
not require having access to the original training dataset or
to the weights of the donor model and it supports directly
transferring the knowledge between neural networks without
using dimensionality reduction to match the dimensionality
of the layers. The effectiveness of the proposed method was
demonstrated through extensive experiments.
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