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Abstract

Word embedding models are able to accurately model the semantic content of words. The process of

extracting a set of word embedding vectors from a text document is similar to the feature extraction step

of the Bag-of-Features (BoF) model, which is usually used in computer vision tasks. This gives rise to the

proposed Bag-of-Embedded Words (BoEW) model that can efficiently represent text documents overcoming

the limitations of previously predominantly used techniques, such as the textual Bag-of-Words model. The

proposed method extends the regular BoF model by a) incorporating a weighting mask that allows for

altering the importance of each learned codeword and b) by optimizing the model end-to-end (from the

word embeddings to the weighting mask). Furthermore, the BoEW model also provides a fast way to fine-

tune the learned representation towards the information need of the user using relevance feedback techniques.

Finally, a novel spherical entropy objective function is proposed to optimize the learned representation for

retrieval using the cosine similarity metric.

Keywords: Word Embeddings, Bag-of-Words, Bag-of-Features, Dictionary Learning, Relevance Feedback,

Information Retrieval

1. Introduction

The textual Bag-of-Words (BoW) representation [1], is among the prevalent techniques used for textual

Information Retrieval (IR). In the textual BoW model a set of predefined words, called dictionary, is selected

and then each document is represented by a histogram vector that counts the number of appearances of

each word in the document. Its great success in IR tasks has led a great deal of research to be devoted5

to improve the textual BoW model. For example, some techniques focused on pruning the dictionary [2],

while other methods on improving the extracted histograms by applying a weighting scheme, such as the

tf-idf (term frequency/inverse document frequency) method [1, 3, 4]. Furthermore, other more advanced
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techniques, such as the Latent Dirichlet Allocation (LDA) [5], also use word occurrence statistics to model

each document as a mixture of topics.10

Word embedding models are capable of extracting semantically-enriched representations of words. How-

ever, it is not straightforward to use them to encode whole documents. Perhaps the most commonly used

technique to overcome this limitation is to simply calculate the average word embedding vector of a doc-

ument [6, 7, 8, 9, 10]. Also, a few sophisticated techniques, such as the Paragraph Vector [11, 12], have

been proposed to directly calculate embeddings of documents. However, the averaging process ignores part15

of the information that the document contains, while the paragraph embedding requires a computationally

intensive inference step to provide out-of-sample embeddings, which limits its applicability.

In this paper we propose a method that is capable of overcoming the aforementioned limitations by

using an efficient end-to-end trainable text representation scheme that exploits the representation power of

semantic-enriched word embeddings and is inspired by the well known Bag-of-Features (BoF) model. The20

proposed method also aims at providing a link between the textual Bag-of-Words model, mainly used by the

natural language processing and information retrieval communities, and the feature-based Bag-of-Features

model, mainly used by the computer vision community. That way, this work paves the way for developing

powerful text representation machines for information retrieval building upon the extensive existing research

on the BoW-based techniques [1, 2, 3, 4, 5], as well as on the BoF-based methods [13, 14, 15, 16, 17, 18].25

To better understand the link between the BoW and BoF methods, note that the process of extracting

a word embedding (feature) vector for each word of a document is similar to the feature extraction step

that is used in order to represent multimedia objects, such as images and videos [19, 20]. For example, for

image recognition/retrieval tasks it is common to extract multiple SIFT vectors [21], from an image and

then use the Bag-of-Features technique, also known as Bag-of-Visual Words (BoVW), to extract a constant30

dimensionality vector from each image [22, 13]. Thus, a text document comprises of a set of feature vectors

(word embeddings) in a similar way to an image that comprises of a set of visual feature vectors (e.g., SIFT

vectors). The pipeline of the BoF model can be summarized as follows:

1. feature extraction, in which multiple features, such as SIFT descriptors [21], are extracted from each

object, e.g., image. That way, the feature space is formed where each object is represented as a set of35

features.

2. codebook learning, in which the extracted features are used to learn a codebook of representative features

(also called codewords),

3. feature quantization and encoding, in which each feature vector is represented using a codeword from

the learned codebook and a histogram is extracted for each object. That way, the vector space (also40

referred to as representation space or histogram space in BoF-based dictionary learning literature) is

formed, where each object is represented by a constant dimensionality term/histogram vector, similarly
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to the vector space model [1].

The similarity between extracting a set of word embedding vectors from a text document and extracting a

set of feature vectors from a multimedia object was noticed quite recently [7, 23, 24]. Exploiting this similarity45

allows us to use the BoF model to extract representations from text documents using the extracted word

embedding vectors as feature vectors. The application of the BoF model in the context of text representation

is called Bag-of-Embedded Words (BoEW) model. In [24] the BoF model is used to encode text documents

using the extracted word embedding vectors, while in [23], and [7], Fisher vector encoding was used instead

to represent each document.50

Also, it has been well established that using unsupervised algorithms, such as k-means [25], to learn the

codebook of the BoF/BoEW representation leads to suboptimal results [14, 26]. Therefore, the codebook of

the BoF/BoEW model must be optimized towards the task at hand. Although a wide range of methods exist

for learning discriminative dictionaries, e.g., [14, 27, 28, 29], many of them produce highly discriminative

representations that are not always optimal for retrieval tasks. This phenomenon was studied and explained55

in [13], where an entropy-based retrieval-oriented objective function was proposed. In the case of [13],

and [24], the Euclidean distance was used to calculate the entropy. Therefore, the learned representation

was optimized for retrieval using the Euclidean distance. However, in most cases using the cosine similarity

instead of the Euclidean distance significantly increases the retrieval precision. Motivated by this observation

a new type of entropy is proposed in this work, the spherical entropy, that optimizes the representation for60

retrieval using the cosine similarity. In Section 4 it was experimentally demonstrated that this can lead to

significant improvements in the retrieval precision.

Furthermore, the BoEW model is extended using a weighting mask that allows us to alter the importance

of each codeword. Note that this is similar to the weighting schemes used in the classical BoW schemes,

such as the tf-idf. The purpose of using the proposed weighting mask is two-fold: a) it allows for further65

optimizing the learned representation towards the task at hand and b) allows for quickly fine-tuning the

representation towards the information need of the user using relevance feedback techniques [30, 31, 32]. The

latter is especially important, since a) it provides a very fast way to adjust the representation using the user’s

feedback without having to re-encode the whole database and b) allows for optimizing the representation

when only a few annotated documents are available.70

The main contributions of this paper are briefly summarized below. First, the BoF model is adjusted

towards representing text documents using word embeddings leading to the proposed BoEW model. The

proposed model utilizes a histogram-space weighting mask, inspired by the weighting schemes used in the

BoW models, that increases the flexibility of the model and allows for further fine-tuning the representation

towards different tasks. Also, the proposed BoEW model is optimized end-to-end, i.e., all the parameters of75

the model (the word embedding, the codebook, the scaling factor and the weighting mask) are simultane-
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ously learned using the proposed spherical entropy objective, which optimizes the learned representation for

retrieval using the cosine similarity. Furthermore, two different optimization algorithms are proposed for the

BoEW model: a) an offline algorithm for optimizing the representation using an annotated set of documents

and b) a relevance feedback algorithm that allows for quickly optimizing the representation and re-querying80

the database using the feedback from the user. Finally, both algorithms are evaluated using three collections

of text documents from a diverse range of domains and it is demonstrated that they can both increase the

retrieval precision and reduce the size of the extracted representation (increasing the retrieval speed and

reducing the storage requirements) for both in-domain and out-of-domain retrieval tasks.

The rest of the paper is structured as follows. The related work is discussed in Section 2 and the proposed85

method is presented in Section 3. The experimental evaluation of the proposed method is presented in

Section 4 and conclusions are drawn in Section 5. Finally, note that a reference implementation of the

proposed method will be provided at http://github.com/passalis/boew to enable other researcher easily

use and extend the proposed technique.

2. Related Work90

Early text retrieval approaches used the term frequency/inverse document frequency (tf-idf) method to

represent documents as vectors. Then, relevant documents can be retrieved by measuring the similarity

between a query vector and document vectors stored in the database (vector space model) [1]. Several

methods were subsequently developed building upon this model, ranging from tf-idf variants and extensions,

such as [3, 4], to more advanced topic-based analysis techniques, e.g,. Latent Semantic Indexing (LSI) [33],95

Probablistic Latent Semantic Indexing (PLSI) [34], and Latent Dirichlet Allocation (LDA) [5].

Even though the aforementioned techniques were used with great success for several information retrieval

tasks [1], they ignore part of the semantic relationships between the words that compose the dictionary (the

term vectors are equidistant to each other and, thus, fail to capture the semantic similarity between different

words). This problem gave rise to word embedding models, such as [35] and [36], where each word is mapped100

to a dense real-valued vector that captures the semantic properties of the corresponding word and encode

the underlying linguistic patterns. That is, vectors that correspond to words with similar meaning are closer

to each other than vectors for words with irrelevant semantic content. Among the most well known word

embedding models is the word2vec model [35], and the GloVe model [36]. Both use unsupervised algorithms

to learn word embeddings either by predicting the words in a given window or by using word co-occurrence105

statistics. In contrast to these methods, the proposed approach concerns document representation instead

of learning embeddings of individual words.

However, it is not straightforward to use word embeddings to represent a document that is composed of

multiple words. Among the most commonly used, yet naive, approaches is to average all the word embedding
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vectors that correspond to the words that a document contains. Even though this approach is widely used110

in many natural language processing tasks [6, 7, 8, 9, 10], the averaging process leads to loss of valuable

information that a document contains. To overcome this limitation, Paragraph Vector [11, 12, 37], and word

embedding-based document-level distance metrics [38], have been proposed. Paragraph Vector is a state-

of-the-art document representation technique that is capable of directly extracting document embeddings.

Word Mover’s Distance (WMD) [38], provides a way to calculate the distance between two documents that115

are composed of multiple word embedding vectors. However, note that paragraph embedding requires a

computationally intensive inference step to provide out-of-sample embeddings, which often limits its practical

applicability. Similar computational constrains also exist for the WMD, for which usually approximate

solutions are used. In contrast to these techniques, the proposed method uses trainable quantization to

learn how to represent a document, instead of just averaging the word embedding vectors, and does not120

require any optimization during the inference for providing out-of-sample embeddings or the calculation of

computationally demanding distance metrics.

The proposed method also concerns dictionary learning for the BoF representation, where a rich literature

exists. The related methods can be classified into two categories according to the used optimization objective.

The methods of the first category assume that the feature vectors of an object carry the same label as the125

object and set the optimization objective in the feature space [27, 39, 40]. The methods of the second

category tie the classifier and the codebook learning and rely on the classifier’s decisions to optimize the

codebook. In [14], [41], and [28], max-margin formulations are used to learn the codebook, while in [42]

a multilayer perceptron (MLP) is used to backpropagate the error to the dictionary. In [43] multiple

dictionaries with complementary discriminative information are learned. Some other approaches used a130

discriminative criterion in the histogram space instead of a classifier to optimize the codebook. These

methods focused on learning class-specific dictionaries [29], [44], or adjusting the dictionary in order to

increase a specific objective such as the mutual information [45], or the ratio of intra/inter class variation [16,

26, 46].

However, these methods focus on learning highly discriminative dictionaries optimized towards classifi-135

cation tasks. In [13] the use of an entropy-based retrieval-oriented objective function was proposed. This

objective was also successfully used to optimize a simple BoEW model towards retrieval using the Euclidean

distance [24]. In this paper the entropy objective is extended to allow us to optimize the representation for

retrieval using the cosine similarity. Also, to the best of our knowledge, this is the first work that incorpo-

rates a weighting mask into the BoEW model that alters the importance of each codeword and allows for a)140

the end-to-end optimization of the the parameters of model towards information retrieval and b) providing

a way to quickly fine-tune the representation using relevance feedback.
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3. Proposed Method

In this Section the proposed Bag-of-Embedded-Words (BoEW) model is described. Then, the concept

of entropy, which is used as a retrieval-oriented objective, is briefly introduced and the proposed spherical145

entropy is described. Finally, the proposed method for the optimization of the BoEW model using the

spherical entropy as well as a BoEW-based relevance feedback technique are derived.

3.1. BoEW Model

Let D be the textual dictionary, i.e., a list of the unique words that appear in a collection of text

documents. Let xi ∈ RD be the word embedding vector of the i-th word of the dictionary D, where150

D is the dimensionality of the word embedding. The set of all word embedding vectors is denoted by

E = {xi, i = 1...|D|}. Also, let N be the number of the text documents that are to be encoded using the

proposed BoEW model. The i-th document is described by Ni word embedding (feature) vectors: xij ∈ E

(i = 1...N , j = 1...Ni), where Ni is the number of words of the i-th document. As described before, each

feature vector corresponds to a word of the document, i.e., the feature vector xij is the embedding vector for155

the j-th word of the i-th text document. The number of the extracted feature vectors may vary according

to the number of the words that appear in each text document. However, the BoEW model is capable

of representing each document using a fixed-length vector of its quantized feature vectors regardless the

number of the extracted word embedding vectors.

To quantize the word embedding vectors a set of “prototype” word embedding vectors, is learned. This160

set is corresponds to the codebook that is used in the regular BoF model. When hard assignment is used each

feature vector is quantized to its nearest codeword, while when soft-assignment is used every feature vector

contributes, by a different amount, to each codeword [17]. In this work only soft-assignments are considered,

since hard-assignments does not allow for the end-to-end optimization of the model. The codebook is learned

by clustering the set of all word embedding vectors E into NK clusters. Then, the corresponding centroids165

(codewords) vk ∈ RD(k = 1...NK) are used to form the codebook V ∈ RD×NK , where each column of V

is a centroid vector. These centroids are used to quantize the word embedding vectors. It should be noted

that the codebook is learned only once and then it can be used to encode any new document.

To encode the i-th document, the similarity between each word embedding vector xij and each codeword

vk is computed as:170

dijk = exp(−||vk − xij ||2
σ2

) ∈ R. (1)

The parameter σ (scaling factor) controls the quantization process: for harder assignment a small value,

e.g., σ < 0.1, is used, while for softer assignment larger values, e.g., σ > 0.1, are used. Note that in contrast

to other soft BoF formulations, e.g., [13, 14, 16, 17], the square of the quantization parameter is used. Even

though this is equivalent to the other soft BoF formulations (simply by setting
√
σ as the quantization
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parameter) it allows for learning the optimal scaling factor without having to guard for negative values175

(since the scaling factor must be always a positive number).

Then, the l1 normalized membership vector of each feature vector xij is obtained by:

uij =
dij
||dij ||1

∈ RNK . (2)

This vector describes the similarity of feature vector xij to each codebook vector. Note that l1 normalization

is used to ensure that a histogram distribution over the codewords is obtained for each feature vector. Then,

the histogram representation for the i-th document zi is extracted as:180

zi =
1

Ni

Ni∑
j=1

uij ∈ RNK . (3)

The histogram zi has unit l1 norm, since ||uij ||1 = 1 for every j. These histograms describe each document

and they can be used to classify or retrieve relevant documents. Furthermore, a weighting mask r ∈ RNK

is used (similar to the weighing schemes used in, e.g., the tf-idf model) to alter the importance of each

codeword and to form the final representation space:

si = r� zi ∈ RNK . (4)

The weighting mask is initialized to 1, i.e., zij = 1 and it is learned during the retrieval optimization of the185

BoEW model.

3.2. Spherical Entropy

To calculate the entropy of a representation a set of annotated documents is used, where the i-th doc-

ument is annotated with a label li ∈ {1, ..., NC} and NC is the number of different annotations (labels).

Intuitively, the entropy in the representation space is minimized when the document vectors are gathered190

in pure clusters, i.e., each cluster contains documents annotated with the same label.

In order to measure the entropy the vectors si are clustered into NT clusters. The centroid of the k-th

cluster is denoted by ck (k = 1...NT ). Note that these centroids are different from the codewords vk that

were used in the previous Subsection for extracting the representation of a document. Each of these centroids

lies in the representation space, instead of the feature space, and can be considered as a representative query195

that expresses a specific information need. According to the cluster hypothesis, low-entropy clusters, i.e.,

clusters that contain mostly vectors from documents of the same class, are preferable for retrieval tasks

to high-entropy clusters, i.e., clusters that contain vectors from documents that belong to several different

classes.

A smooth cluster membership vector qi ∈ RNT is defined to measure the similarity between a centroid200

and a histogram vector:

qik = exp(−dist(si, ck)

m
), (5)

7



where dist(si, ck) is a distance metric used for the retrieval process. The parameter m controls the fuzziness

of the assignment process: for m→ 0 each histogram is assigned to its nearest cluster (hard entropy), while

larger values allow for more fuzzy membership (soft entropy). In this work soft entropy (m > 0) is used,

since it is not computationally tractable to directly optimize the hard entropy. Then the corresponding205

smooth l1 normalized membership vector wi is defined as:

wi =
qi
||qi||1

∈ RNT . (6)

Note the similarity between Eq. (1), which refers to the quantization of word embedding vectors using the

codewords, and the previously defined Eq. (5), which refers to the assignment of the extracted histogram

vectors to the clusters that are used for calculating the entropy. Even though in both equations a soft

quantization approach is used, they refer to different spaces, i.e., Eq. (5) is used in the original feature210

space, while Eq. (1) is used in the vector space learned using the BoEW model. The same is also true for

Eq. (2) and Eq. (6).

If the Euclidean distance is used in Eq. (5):

dist(si, ck) = ||si − ck||2, (7)

the classical entropy is derived [13]. A cosine based distance metric can be defined similarly (since the cosine

similarity ranges from -1 to 1):215

dist(si, ck) = 1− cos θ = 1− sTi ck
||si||2||ck||2

, (8)

where θ is the angle between the si and the ck vectors. That leads to the definition of the spherical entropy

that optimizes the representation for retrieval using the cosine similarity. In Section 4, it is demonstrated

that using the proposed spherical entropy for the optimization process leads to significant improvements of

the retrieval precision. Then, the entropy of the k-th cluster can be calculated as:

Ek = −
NC∑
j=1

pjk log pjk (9)

where pjk is the probability that a document of the k-th cluster is annotated with the j-th label. This220

probability is estimated as pjk = hjk/nk, where

nk =

N∑
i=1

wik, (10)

and

hjk =

N∑
i=1

wikπij , (11)

where πij is 1 if the i-th document belongs to class j and 0 otherwise.

8



The aim of the proposed method is to learn an optimized BoEW representation that minimizes the total

entropy of a clustering configuration, which is defined as:225

E =

NT∑
k=1

rkEk, (12)

where rk = nk/N is the proportion of documents in cluster k. By substituting Eq. (9) into Eq. (12), the

final objective function is obtained:

E = − 1

N

NT∑
k=1

NC∑
j=1

hjk log pjk. (13)

3.3. Retrieval Optimization of the BoEW

In this Subsection an algorithm for optimizing the BoEW representation, i.e., the word embedding

vectors, the codebook, the scaling factor and the weighting mask, towards retrieval using the proposed230

spherical entropy objective is presented. Since both the model and the objective function are continuous

and differentiable the simple gradient descent technique can be used for the optimization process:

∆(V,XE , r, σ) = −(ηV
∂E

∂V
, ηXE

∂E

∂XE
, ηr

∂E

∂r
, ησ

∂E

∂σ
) (14)

where XE is the matrix that contains all the word embedding vectors of E and ηV , ηXE , ηr and ησ are

the learning rates for the corresponding parameters. In this work, instead of using the gradient descent

algorithm, the adaptive moment estimation algorithm, also known as Adam [47], is used, since it provides235

faster and more stable convergence. For both the gradient descent and the Adam algorithm the partial

derivatives of the objective function with the respect to each parameter must be calculated. The calculation

of these derivatives is provided in Appendix A. The optimized representation is called Retrieval Optimized

BoEW (RO-BoEW) to be distinguished from the baseline BoEW representation.

The proposed learning algorithm for the BoEW representation is described in Algorithm 1. First, the240

dictionary is constructed (line 2, Algorithm 1) and the word embedding is initialized (line 3, Algorithm

1). This can be done either using a randomly initialized embedding or using a pretrained embedding, e.g.,

the GloVe vectors [36]. In this work, the 300-dimensional GloVe vectors trained on the Wikipedia 2014 +

Gigaword 5 dataset are used. If a word in the dictionary does not exist in the GloVe corpus, then a random

300-d vector is generated (using a Gaussian distribution with µ = 1 and σ = 1). This does not negatively245

impact the learned representation (since the word embeddings are finetuned during the learning process)

and allows for learning embedding vectors for terms that were not initially in the corpus. Then, an initial

dictionary is learned by clustering the word embedding vectors (line 4, Algorithm 1) and the weighting mask

is initialized to 1 (line 5, Algorithm 1). After the model is initialized, the training documents are encoded

(line 6, Algorithm 1).250
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In order to calculate the entropy, the centers in the representation space (ck) must be selected and

appended to the list of cluster centers C (lines 7 and 10). It is reasonable to assume that each class should

be represented by at least one cluster. Instead of using k-means to select the centers, the mean vector of

each class is used (line 9, Algorithm 1) and a total of NC centers are utilized (lines 7-10, Algorithm 1). If

the distribution of some classes is multimodal, then it is reasonable to select more than one center for each255

class, e.g., by running k-means over the vectors of this class. However, in the conducted experiments it

was established that selecting one center per class yields similar results in terms of retrieval precision, while

reducing the optimization time. Therefore, one center for each class is selected (a unimodal distribution is

assumed).

As stated before, the Adam algorithm is used to optimize the RO-BoEW using the supplied training260

set X (lines 11-13, Algorithm 1). Note that the entropy is calculated in batches of NB training documents.

The training dataset is shuffled before each iteration to ensure that different batches are used. Also, the

following learning rates were used for all the conducted experiments: ηV = ηXE = ηr = 0.01 and ησ = 0.001,

since it was established that they provide stable and smooth convergence. The learning rate for the scaling

parameter σ is lower, since the gradients from all the codewords are accumulated. The RO-BoF optimization265

procedure runs for 10 iterations for all the conducted experiments, except otherwise stated.

In order to better demonstrate the concept of the entropy optimization of the BoEW representation a

toy example is provided. To this end, a toy dataset consisting of 500 documents of the 20 Newsgroup dataset

is used [48, 49]. The sampled documents belongs to the following three categories: politics, religion and

politics.guns. For the conducted experiments 8 codewords were used and the resulting vectors were projected270

into a 2-d space using the PCA technique [50]. In Figure 1 the initial BoEW representation is compared

to the RO-BoEW. In Figure 1b only the codebook and the scaling factor are optimized, in Figure 1c the

embedding is also optimized, while in Figure 1d all the parameters of the model are optimized (as described

in Algorithm 1). It is evident that the optimization of the embedding (1c) is crucial for the performance of

the RO-BoEW model, since the three classes are gathered in pure clusters. Also optimizing the weighting275

mask further improves the separability between the documents that are annotated with different labels.

The greater learning capability of the proposed RO-BoEW formulation is also confirmed in Figure 2, where

the learning curves for the three optimization variations are plotted. Optimizing all the parameters of the

RO-BoEW allows for faster and smoother training. Finally, in Figure 3 the representation space is plotted

during the optimization process (all the parameters are optimized), where the gradual transformation of280

the representation space to better discriminate the documents that serve different information needs is

illustrated.
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Algorithm 1 RO-BoEW Learning Algorithm

Input: A set X = {x1, ...,xN} of N training document and their class labels L = {l1, ..., lN}

Parameters: NK , Niters, NB , m and σ

Output: The optimized parameters of the RO-BoEW model
1: procedure RO-BoEW Learning

2: Scan the documents and create the dictionary D

3: Initialize the word embedding E using D

4: Initialize V by running k-means on E

5: Initialize the elements of vector r to 1

6: S ← ENCODE(X)

7: C ← []

8: for i← 1; i ≤ NC ; i+ + do

9: Calculate the mean vector of the documents that belongs to class i

10: Append this vector to cluster centers C

11: for i← 1; i ≤ Niters; i+ + do

12: for each batch ∈ X do

13: Apply the Adam algorithm to update the parameters V, XE , r and σ using the

corresponding learning rates (as given in Eq. (14))
return V, XE , r and σ

14: procedure encode(X) return the document vectors according to Eq. (4)
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Figure 1: Toy Example: Optimizing different parameters of the RO-BoEW model
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Figure 3: Toy Example: Representation space during the optimization

3.4. Relevance Feedback using the RO-BoEW

In some cases it is not possible to have large collections of annotated documents to optimize the RO-

BoEW representation. In that case the RO-BoEW can be optimized online using the feedback supplied285

by the user. However, optimizing the whole BoEW representation, including the codebook V, the word

embedding vectors E and the scaling factor σ, requires re-encoding the whole database, which is impractical

in most cases. The proposed RO-BoEW model provides a way to avoid this costly recalculation by optimizing

only the weighting mask r using the feedback provided by the user. Since adjusting the weighting mask

alters only the distance calculations, this method allows for fast adaptation of the representation to the290

needs of the users.

The relevance feedback algorithm is provided in Algorithm 2. First, the user annotates some of the

retrieved documents (line 2, Algorithm 2) as either relevant or irrelevant to his information need. Then, two

entropy centers are calculated (one for the relevant and one for the irrelevant documents, line 3 of Algorithm

2). Again, more centers can be used if the distribution of one class is multi-modal, which is expected to295

be the case for the irrelevant documents. However, in the conducted experiments it was established that

using just one center for each category yields satisfactory results. Finally, the Adam algorithm is used to

optimize the weighting mask (lines 4-5, Algorithm 2) and the query is repeated (line 6, Algorithm 2). The

proposed relevance feedback technique can be also combined with any other relevance feedback technique
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that adjusts the query vector, e.g., the Rocchio technique [1], to further improve the retrieval precision.300

This is also experimentally confirmed in Section 4. Finally note that the feedback provided by the users

can be also stored in order to update the learned representation offline using the algorithm described before

(Algorithm 1).

Algorithm 2 RO-BoEW Relevance Feedback Algorithm

Input: A set X = {x1, ...,xN} of N retrieved document and their annotations L = {l1, l2} (supplied by the

user)

Parameters: Niters, ηr, m

Output: The optimized weighting mask r
1: procedure RO-BoEW Relevance Feedback Learning

2: Get the annotations li from the user

3: Calculate the two entropy centers (relevant and irrelevant documents)

4: for i← 1; i ≤ Niters; i+ + do

5: Apply the Adam algorithm to update the parameter r using learning rate ηr (as given in

Eq. (14))
6: Query the database using the updated weighting mask r

return the updated results

4. Experiments

The proposed method was evaluated using three text datasets and the results are presented in this305

Section. First, the used datasets and the evaluation metrics are briefly described. Then, the evaluation

protocol and the experimental evaluation of the proposed method are provided. Note that the parameter

selection procedure and the selected parameters for the evaluated methods are presented in Appendix B.

4.1. Datasets

Three datasets were used for the evaluation of the proposed method: the 20 Newsgroups dataset, Reuters310

newswire dataset and WebKB dataset. The 20 Newsgroups dataset [48, 49], contains 18,846 documents

that belong to 20 different newsgroup categories. The train split (11,314 documents) and test split (7,532

documents) are predefined. The Reuters dataset [49], contains articles from the Reuters newswire. In

this work, the R8 split of the Reuters dataset is used which contains 5,485 train documents and 2,189

test documents that belong to 8 different classes. The WebKB dataset contains webpages from various315

computer science departments that were classified into seven different classes: student, faculty, stuff, etc.

The preprocessed WebKB dataset, provided by [49], was used in this work. This preprocessed split contains

4 different classes: project, course, faculty, student. There is a total of 2,803 train documents and 1,396 test

documents.
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4.2. Evaluation Procedures320

Two different evaluation procedures were used in this work. For the first one, which is called Retrieval

Evaluation, the train split was used to build the database and the test split was used to query the database

and evaluate the retrieval precision. For optimizing the RO-BoEW all the documents in the database were

used (using the procedure described in Section 3). Two different setups were utilized for the retrieval

evaluation [13]: a) regular (in-domain) evaluation, where the representation was optimized using documents325

that belong to the same classes as the queries and b) out-of-domain evaluation, where the representation

was optimized using documents that were annotated with different labels than the query documents.

However using large collections of annotated documents to optimize the representation is not always

possible, since acquiring document annotations is a costly process. Furthermore, the information need

of the user might not always match the existing annotations. To this end, the proposed method is also330

evaluated using a Relevance Feedback evaluation procedure, where the learned representation is adapted to

the information need of the user. Again, the train split is used to build the database and 100 randomly

selected queries are used to query the database and measure the retrieval precision. Then, the top-30 results

are returned and (at most) 5 relevant and 5 irrelevant documents are used to provide the feedback and

re-evaluate the performance of the technique.335

4.3. Evaluation Metrics

Throughout this paper, three evaluation metrics are used: precision (also abbreviated as ‘prec.’), recall

and mean average precision (mAP). The precision is defined as:

Pr(q, k) =
rel(q, k)

k
, (15)

where k is the number of retrieved objects and rel(q, k) is the number of retrieved objects that belong to

the same class as the query q. The recall is similarly defined as:340

Rec(q, k) =
rel(q, k)

nclass(q)
, (16)

where nclass(q) is the total number of database objects that belong to the same class as q. The interpolated

precision, Printerp(q, k) = maxk′, k′≥k Pr(q, k
′), is used instead of the raw precision since it reduces the

precision-recall curve fluctuation [1]. The average precision (AP) for a given query is computed at eleven

equally spaced recall points (0, 0.1, ..., 0.9, 1) and the mean average precision as the mean of APs for all

queries. Two types of curves are plotted: the precision-recall curve and the precision-scope curve. The scope345

refers to the number of objects returned to the user and the precision-scope curve allow us to evaluate the

precision at lower recall levels.

15



4.4. Retrieval Evaluation

In this Subsection the proposed method is evaluated using the retrieval evaluation setup and it is com-

pared to other five baseline and state-of-the-art text representation methods:350

1. tf-idf : The well-known tf-idf scheme was used to extract a representation from each document after

pruning dictionary terms with frequency less than 5 [1].

2. tf-idf (stop): Same as the “tf-idf’ method, but after removing the stop-words (the scikit-learn library

was used for the term extraction and stop-word removal [51]).

3. LSI: The Latent Semantic Indexing (LSI) [33], also known as Latent Semantic Analysis, was used to355

extract a compact representation (200 topics) (the scikit-learn library was used to perform SVD on

the “tf-idf (stop)” representation).

4. Mean WE: The mean word embedding vector of all the words that appear in a document was used.

For all the conducted experiments, 300-dimensional GloVe vectors trained on the Wikipedia 2014 +

Gigaword 5 dataset were used [36].360

5. Paragraph Vector (also abbreviated as PV): The state-of-the-art paragraph vector method was

also evaluated [11]. The gensim library was used to compute the paragraph embedding vectors using

the distributed bag-of-word (PV-DBOW) method and window size equal to 8 [52]. Instead of using

random initialization for the word embedding vectors (which is the standard gensim’s approach), they

were initialized using the corresponding GloVe vectors and simultaneously trained (skip-gram word365

training) during the optimization of the document embeddings. This approach led to significantly

better results than the other PV variants that were evaluated.

First, the evaluated methods were compared using the 20 Newsgroups dataset. The results are shown in

Table 1. Two variants of the proposed BoEW representation were evaluated: the unsupervised BoEW repre-

sentation (abbreviated as “BoEW ”) and the optimized BoEW representation (abbreviated as “RO-BoEW ”).370

Finally, two different retrieval distance metrics were used, the Euclidean distance and the cosine similarity,

as well as two different optimization objectives, the regular entropy and the proposed spherical entropy.

Several conclusions can be drawn from the results shown in Table 1. First, removing the stop-words before

compiling the td-idf representation leads to significant improvements in the retrieval precision. Using LSI

further improves the mAP from 24.48% (“tf-idf (stop)”) to 31.89%. The Mean WE achieves lower retrieval375

precision from both the tf-idf and LSI representations. The same is also true for the (unoptimized) BoEW

representation. Finally, using the Paragraph Vector representation further improves the performance over

all the other baseline methods to 32.09%. Every evaluated representation leads to better retrieval precision

when combined with the cosine similarity metric.

Even though the unoptimized BoEW representation performs worse than most of the other baseline and380

state-of-the-art representations, the proposed RO-BoEW technique significantly outperforms all the other
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Table 1: 20 Newsgroups: Retrieval Evaluation Results

Method Optim. Obj. Retr. Distance Repr. Length mAP top-20 prec. top-50 prec.

tf-idf - Cosine 21698 17.45 49.29 38.28

tf-idf (stop) - Cosine 21393 24.48 59.34 50.66

LSI - Euclidean 200 16.81 46.54 38.10

LSI - Cosine 200 31.89 62.80 56.76

Mean WE - Euclidean 300 19.32 46.09 39.00

Mean WE - Cosine 300 20.66 47.95 40.97

Paragraph Vector - Euclidean 300 28.11 60.13 53.83

Paragraph Vector - Cosine 300 32.09 62.01 56.14

BoEW - Euclidean 64 16.91 39.39 33.57

RO-BoEW Entropy Euclidean 64 40.70 53.93 51.28

BoEW - Cosine 64 17.20 39.69 33.92

RO-BoEW Entropy Cosine 64 41.52 55.29 52.57

RO-BoEW Spherical Ent. Cosine 64 51.79 63.16 60.93

methods (the mAP increases by more than 61.39% over the next best performing method). This is partially

due to using the proposed spherical entropy, since the spherical entropy optimization increases the mAP by

more than 20% over using the regular entropy. This is also true for the top−k precision. Note that even

though the RO-BoEW outperforms all the other evaluated techniques it uses the smallest representation385

(only 64 dimensions).

The precision-recall and the precision-scope curves for the best performing methods (LSI, Paragraph

Vector (PV), BoEW and RO-BoEW) are shown in Figures 4a and 5a respectively. The cosine similarity is

used as the retrieval metric for all the evaluated methods. Again, the RO-BoEW outperforms all the other

evaluated methods. The higher precision of the LSI and PV for the first few top-k results can be attributed390

mostly to regularized nature of the entropy optimization objective [13], that increases the precision for lower

recall levels, instead of learning a highly-discriminative representation that can possibly ovefit the data.

Nonetheless, the RO-BoEW quickly matches and outperforms all the other evaluated methods.

To evaluate the performance of the learned representation for out-of-domain retrieval tasks another set

of experiments was conducted using the 20 Newsgroups dataset. Five labels (comp.graphics, comp.sys.ibm.-395

pc.hardware, rec.autos, talk.politics.guns and talk.religion.misc) were selected and any document annotated

with them was excluded from the training set. The rest of the training documents (annotated with the follow-

ing labels: alt.atheism, comp.os.ms-windows.misc, comp.sys.mac.hardware, comp.windows.x, misc.forsale,

rec.motorcycles, rec.sport.baseball, rec.sport.hockey, sci.crypt, sci.electronics, sci.med, sci.space, soc.reli-

gion.christian, talk.politics.mideast, and talk.politics.misc) were used for optimizing the representation (20400
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Table 2: 20 Newsgroups: Out-of-domain Retrieval Evaluation

Method Optim. Obj. Retr. Distance mAP

BoEW - Euclidean 13.83

RO-BoEW Entropy Euclidean 22.71

BoEW - cosine 14.02

RO-BoEW Sph. Entropy cosine 23.07

optimization iterations were used). The test documents that were annotated with the first set of the five

labels were used to query the database. This setup evaluates the ability of the learned representation to

generalize on relevant out-of-domain data, i.e., data that belong to classes that were not seen during the

optimization process. The results are shown in Table 2. The retrieval optimization of the representation

significantly improves the precision over the BoEW representation, even though it has been optimized for405

fulfilling different information needs.

Next, the performance of the evaluated methods was measured using the Reuters (R8) dataset. The

results are shown in Table 3. Again, removing the stop-words leads to better retrieval precision for the tf-idf

representation, while LSI further improves the retrieval results. For this dataset the Mean WE representation

works slightly better than the tf-idf representation. However, the Paragraph Vector further improves the410

precision over both the Mean WE, LSI, and tf-idf methods. Optimizing the BoEW representation leads

to significant precision improvements (the mAP increases from 68.67% to 87.70%) as before. Again using

the spherical entropy as optimization objective improves the retrieval precision, but by a smaller amount.

Similar observations can be also made from the precision-recall and the precision-scope curves that are shown

in Figures 4b and 5b respectively. The RO-BoEW outpeforms all the other evaluated methods, especially415

for higher recall/scope levels.

Finally, the proposed method was evaluated using the WebKB dataset (Table 4). Since the WebKB

dataset is already preprocessed and stemmed removing the stop-words does not increase the precision of

the tf-idf method. The tf-idf scheme performs better than the MeanEW and the unoptimized BoEW

representation. As before, both the Paragraph Vector and LSI leads to better retrieval precision than the420

MeanEW and tf-idf representations. However, the proposed RO-BoEW combined with the spherical entropy

optimization objective outperforms all the other evaluated methods, even though it uses a significantly

smaller representation (16 dimensions). The precision-recall and the precision-scope curves of Figures 4c

and 5c confirm the previous findings.
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Table 3: Reuters (R8): Retrieval Evaluation Results

Method Optim. Obj. Retr. Distance Repr. Length mAP top-20 prec. top-50 prec.

tf-idf - Cosine 5283 67.28 87.45 83.55

tf-idf (stop) - Cosine 5030 69.74 88.28 85.35

LSI - Euclidean 200 60.25 87.79 83.54

LSI - Cosine 200 72.36 92.13 89.40

Mean WE - Euclidean 300 69.95 91.50 88.33

Mean WE - Cosine 300 69.96 91.45 88.30

Paragraph Vector - Euclidean 300 69.20 92.04 89.27

Paragraph Vector - Cosine 300 75.80 93.37 91.15

BoEW - Euclidean 64 68.54 89.21 85.87

RO-BoEW Entropy Euclidean 64 83.97 92.72 91.70

BoEW - Cosine 64 68.67 89.28 85.97

RO-BoEW Entropy Cosine 64 86.33 93.75 92.91

RO-BoEW Spherical Ent. Cosine 64 87.70 93.31 92.63

Table 4: WebKB: Retrieval Evaluation Results

Method Optim. Obj. Retr. Distance Repr. Length mAP top-20 prec. top-50 prec.

tf-idf - Cosine 4837 47.50 68.01 62.85

tf-idf (stop) - Cosine 4790 47.43 67.92 62.80

LSI - Euclidean 200 40.78 58.65 52.11

LSI - Cosine 200 48.48 70.11 64.85

Mean WE - Euclidean 300 41.70 65.05 59.52

Mean WE - Cosine 300 43.27 66.55 61.39

Paragraph Vector - Euclidean 300 54.28 75.84 72.01

Paragraph Vector - Cosine 300 56.98 77.14 73.06

BoEW - Euclidean 16 37.63 50.46 46.51

RO-BoEW Entropy Euclidean 16 70.68 80.07 78.78

BoEW - Cosine 16 37.62 50.49 46.49

RO-BoEW Entropy Cosine 16 70.56 80.05 78.78

RO-BoEW Spherical Ent. Cosine 16 71.54 81.02 79.39
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Figure 4: Retrieval Evaluation: Precision-Recall Curves
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Figure 5: Retrieval Evaluation: Precision-Scope Curves
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4.5. Relevance Feedback Evaluation425

As it was already mentioned, the proposed method RO-BoF method is capable of optimizing only the

weighting mask using the feedback provided by the user (using the algorithm that was described in Section 3).

That allows for quickly updating the representation of the objects (since the weighting mask only alters the

distance calculations) without re-encoding the whole database. The proposed relevance feedback technique

was evaluated using the baseline BoEW representation to demonstrate its ability to improve the retrieval430

results even when the rest of the BoEW representation is not optimized towards the specific information

needs.

The results of the relevance feedback evaluation are provided in Table 5. The following four techniques

are compared:

1. Initial (also abbreviated as ‘Init’), where no relevance feedback is used,435

2. Rocchio (also abbreviated as ‘Roc.’), where the standard Rocchio technique is used [1],

3. Proposed (also abbreviated as ‘Prop’), where the proposed method is used,

4. Proposed + Rocchio (also abbreviated as ‘Roc.+Prop’), where the proposed method is combined with

the Rocchio technique.

The default parameters for the Rocchio technique were used: the weight of the query was set to a = 1, the440

weight of the relevant documents was set to b = 0.8 and no weight was used for the irrelevant documents

(c = 0). The Rocchio technique can be also combined with the proposed approach by simply using the

weighted vectors during the Rocchio’s calculations. Note that at most 5 positive and 5 negative samples

were selected and used during the relevance feedback procedure. These samples were selected according

to their similarity to the query, i.e., the first 5 most similar to they query positive/negative samples were445

selected. This scenario corresponds to the typical behavior of a user, who usually provides the feedback

examining only the first few results.

The proposed relevance feedback technique greatly improves both the mAP and the top−k precision for

all the used datasets (the mAP increases by over 30%). On the other hand, using only the Rocchio method

only slightly improves (or even harms, in the case of the Reuters dataset) the mAP. Also, combining the450

proposed method with the Rocchio always further improves the retrieval precision. This is also confirmed

by the precision-recall and the precision-recall scope of Figures 6 and 7.

5. Conclusions

In this paper, the similarity between the process of extracting a set of word embedding vectors from

a text document and the feature extraction step of the BoF model was exploited to develop a novel text455

representation model, inspired from the traditional BoW and BoF models. The proposed Bag-of-Embedded
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Table 5: Relevance Feedback Evaluation Results

Dataset Method mAP top-10 prec. top-20 prec. top-50 prec.

20 Newsgroups Initial 9.55 14.35 13.60 12.77

20 Newsgroups Rocchio 9.73 16.43 15.03 13.13

20 Newsgroups Proposed 14.56 34.75 30.98 26.91

20 Newsgroups Proposed + Rocchio 17.40 43.28 37.06 30.17

Reuters (R8) Initial 65.17 85.01 83.50 81.82

Reuters (R8) Rocchio 63.59 86.93 85.45 83.20

Reuters (R8) Proposed 85.42 96.12 95.59 94.53

Reuters (R8) Proposed + Rocchio 85.67 97.09 96.15 94.74

WebKB Initial 35.11 40.34 39.05 37.46

WebKB Rocchio 35.34 40.80 39.26 38.00

WebKB Proposed 46.16 67.32 64.89 61.04

WebKB Proposed + Rocchio 47.08 69.12 65.68 61.79
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Figure 6: Relevance Feedback Evaluation: Precision-Recall Curves
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Figure 7: Relevance Feedback Evaluation: Precision-Scope Curves
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Words (BoEW) model extends the regular BoF model by a) incorporating a weighting mask that allows

for altering the importance of each learned codeword and b) by optimizing the model end-to-end (from the

used word embeddings to the weighting mask). When enough training data are available, the BoEW model

can be optimized using the proposed spherical entropy objective, which optimizes the learned representation460

for retrieval using the cosine similarity. When such kind of annotations are not available, the proposed

approach can use relevance feedback to quickly fine-tune the representation and re-query the database to

fulfill the information needs of the user. Finally, the ability of the proposed method to improve the retrieval

performance, both in terms of retrieval precision and speed, was demonstrated using three text datasets

from a diverse range of domains.465

Appendix A - RO-BoEW Derivatives

The derivative of E with respect to vm can be calculated as the product of two other partial derivatives:

∂E

∂vm
=

N∑
l=1

NK∑
κ=1

∂E

∂slκ

∂slκ
∂vm

. (17)

In order to reduce the entropy in the representation space the vectors sl that, in turn, depend on the

codebook V, must be shifted. The partial derivative ∂E
∂sl

provides the direction in which the vector sl must470

be moved. Since each codeword vm lies in the feature space, the derivative ∂slκ
∂vm

projects the previous

direction into the codebook. Therefore, the representation space derivative is computed as:

∂E

∂slκ
= − 1

N

NT∑
k=1

NC∑
j=1

log pjkπlj
∂wlk
∂slκ

, (18)

where:

∂wlk
∂slκ

= −wlk
m

(dist(sl, ck)
dist(sl, ck)

∂slκ
−

NT∑
k′=1

wlk′dist(sl, ck′)
dist(sl, ck′)

∂slκ
). (19)

If the regular (Euclidean) entropy is used, the derivative dist(sl,ck′ )
∂slκ

is calculated as:

dist(sl, ck)

∂slκ
=

slκ − ckκ
||sl − ck||22

, (20)

while for the spherical entropy (assuming, without loss of generality, that sli > 0) as:475

dist(sl, ck)

∂slκ
= −

NK∑
i=1

δiκckκ
||sl||1||ck||1

− slicki
||sl||21||ck||1

, (21)

where δab is 1 if a = b and 0 otherwise.

The codebook projection derivative (last term of (17)) is derived as:

∂slκ
∂vm

= − rκ
σ2Nl

Nl∑
j=1

uljm(δκm − uljκ)
vm − xlj
||vm − xlj ||2

. (22)
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Then, the derivative of E with respect to each xij is similarly derived as:

∂E

∂xij
=

N∑
l=1

NK∑
κ=1

∂E

∂slκ

∂slκ
∂xij

. (23)

The word embedding projection derivative, i.e., the last term of (23), is calculated as:

∂slκ
∂xij

=
1

σ2Nl

Nl∑
j=1

NK∑
t=1

uljt(δκt − uljκ)
vt − xlj
||vt − xlj ||2

. (24)

Since different feature vectors xij might correspond to the same word vector xi, the gradients are accumu-480

lated for the same words, i.e., the vectors xij are tied if they correspond to the same word.

The derivatives of E with respect to the weighting mask r, i.e., ∂E∂r , and the derivative of E with respect

to the scaling factor σ, i.e, ∂E
∂σ , can be similarly derived by observing that:

∂slk
∂rk

= zlk, (25)

and
∂dljk
∂σ

= 2
dljk
σ3
||vk − xlj ||2. (26)

Finally, note that the representation space derivative does not exist when a representation space vector and485

an entropy centroid coincide (when the Euclidean distance is used for the entropy). The same holds for the

codebook and the word embedding derivatives when a codebook center and a feature vector also coincide.

When that happens, the corresponding derivatives are set to 0.

Appendix B - Parameter Selection

In this Appendix the effect of several parameters on the quality of the learned (RO)-BoEW representation490

is examined. For all the conducted experiments 1000 randomly chosen training documents were used to build

the database and another 1000 randomly chosen training documents were used as validation set (to query

the database). First, the effect of the scaling parameter σ on the learned representation is evaluated in

Figure 8. The abbrevation ‘(e)’ is used to denote that the Euclidean distance was used for the retrieval

process, while the abbreviation ‘(c)’ is used for the cosine similarity. For the BoEW representation the effect495

of σ on the mAP is minimal. On the other hand, a good initial value of σ is crucial for the optimization

of the RO-BoEW representation. In most cases a value around σ = 0.4 − 0.7 provides the best results.

The importance of the supervised optimization of the representation is evident, since the RO-BoEW greatly

outperforms the BoEW in any case.

Next, the effect of the entropy fuzziness parameter m is evaluated in Figure 9. Large values of m make500

every document to belong to every cluster, while very small values leads to vanishing gradients and numerical

stability problems. Therefore it is important to select an appropriate value to allow for smooth optimization
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Figure 8: Effect of the scaling parameter σ on the learned representation
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Figure 9: Effect of the scaling parameter m on the learned representation

of the RO-BoEW representation. As shown in Figure 9 the optimal value depends of the used dataset

(0.005 ≤ m ≤ 0.1).

Since the entropy is computed in mini-batches, the batch size can also effect the quality of the learned505

representation as shown in Figure 10. Batch sizes around 50-100 lead to the best results in terms of mAP.

Note that using large batch size leads to slower convergence and that the optimization runs for a fixed

number of epochs (10 epochs over the all training data).

The effect of the number of codewords is examined in Figure 11. Using more codewords only slightly

improves the retrieval precision for the BoEW. On the other hand, the precision is constantly increasing510

with the number of codewords (except for the WebKB dataset where it is kept constant) when the optimized
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Figure 10: Effect of the scaling parameter NB on the learned representation
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Figure 11: Effect of the number of codewords NK on the learned representation

Table 6: Selected Parameters

Dataset Distance σ m NB NK

20 Newsgroups Euclidean 1/0.4 0.01 100 64

20 Newsgroups Cosine 0.5/0.5 0.005 100 64

Reuters (R8) Euclidean 1/0.4 0.05 50 64

Reuters (R8) Cosine 1/0.4 0.1 50 64

WebKB Euclidean 1/0.7 0.005 50 16

WebKB Cosine 1/0.7 0.005 50 16

RO-BoEW representation is used. Also, note that using just 8 codewords with the RO-BoEW representation

greatly outperforms the BoEW, even when one order of magnitude more codewords are used. That highlights

the ability of the proposed technique to reduce the storage requirements and increase the retrieval speed

(since both depend on the size of the used representation).515

Finally, the selected parameters are summarized in Table 6. For the σ parameter two values are reported:

the first one is used for the BoEW model, while the second one for the RO-BoEW model. Note that when

the mAP was relatively stable for a wide range of parameters, the median value was chosen for the specific

parameter. The proposed method was implemented using the Theano library [53] and for technical reasons

the maximum length of any document was restricted to 1000 words. However, this restriction only affects520

the optimization process and it does not affect the deployment of the method.
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