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Training Lightweight Deep Convolutional Neural
Networks using Bag-of-Features Pooling

Nikolaos Passalis and Anastasios Tefas

Abstract

Convolutional Neural Networks (CNNs) are predominantly used for several challenging computer vision tasks achieving state-
of-the-art performance. However, CNNs are complex models that require the use of powerful hardware, both for training and
deploying them. To this end, a quantization-based pooling method is proposed in this paper. The proposed method is inspired from
the Bag-of-Features (BoF) model and can be used for learning more lightweight deep neural networks. Trainable Radial Basis
Function (RBF) neurons are used to quantize the activations of the final convolutional layer, reducing the number of parameters in
the network and allowing for natively classifying images of various sizes. The proposed method employs differentiable quantization
and aggregation layers leading to an end-to-end trainable CNN architecture. Furthermore, a fast linear variant of the proposed
method is introduced and discussed, providing new insight for understanding convolutional neural architectures. The ability of
the proposed method to reduce the size of CNNs and increase the performance over other competitive methods is demonstrated
using seven datasets and three different learning tasks (classification, regression and retrieval).

Index Terms
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I. INTRODUCTION

Convolutional Neural Networks (CNNs) are predominately used for several challenging computer vision tasks, e.g., action
recognition [1], image classification [2]–[4], and supervised hashing [5], [6]. A typical CNN is composed of a convolutional
feature extraction block followed by a fully connected block. The convolutional feature extraction block consists of a series
of convolutional layers and pooling layers. Several different architectures for the feature extraction block have been proposed
in the literature [7]–[11]. After extracting the feature maps from the convolutional feature extraction block, they are flattened
into a feature vector that is used by the fully connected block to perform the task at hand. Note that the parameters of a CNN
are learned using the well-known back-propagation algorithm [12].

Many CNN architectures require the input images to have a predefined size and are incapable of handling arbitrary sized
images, since the dimensionality of the output of the convolutional feature extraction block depends on the input image size.
Furthermore, the cost of feed-forwarding the network also depends on the size of the input images. Therefore, the cost of
the feed-forward process cannot be adjusted to fit the available computational resources without re-training the network. This
renders applications on embedded and mobile systems, e.g., real-time systems on drones, that often requires adjusting to the
available computational resources, especially difficult. Also, often the size of the feature vector extracted from the feature
extraction block is large, leading to exceptionally large fully connected layers. For example, it is worth noting that for the
well-known VGG-16 network [10], the 90% of the network’s parameters are spent on the fully connected block, while only
10% of the network’s parameters are used on the previous 13 layers of the network.

To overcome some of the previous limitations global pooling operators have been proposed [8], [13]. Global pooling methods
are capable of extracting a relatively small feature vector from the feature extraction layers, which is fixed and does not depend
on the size of the network’s input. However, even though global pooling allows a network to handle images of arbitrary size,
its ability to provide scale invariance is limited, as it is also shown in Section IV. This can be attributed to the fact that the
scale invariance is not achieved by learning a scale-invariant pooling layer along with the convolutional filters, but merely by
learning scale-invariant convolutional filters. Learning both the convolutional layers and the pooling layer can often provide
better scale-invariance, while also reducing the number of parameters needed, as demonstrated in this paper. Finally, note that
compression methods, e.g., [14]–[16], can be used in conjunction with the aforementioned methods to further reduce the size
of CNNs.

A novel layer inspired by the Bag-of-Feature model (also known as Bag-of-Visual-Words (BoVW) model) [17], [18], is
proposed in this paper. The proposed layer works as a trainable quantization-based pooling layer and allows for overcoming
the aforementioned limitations. The choice of the BoF model for this task was motivated by the fact that the BoF model
was originally proposed to resolve similar problems, i.e., to provide a compact representation, while handling objects that
are composed of a variable number of feature vectors, and provide better scale and position invariance. This can be better
understood by considering the way that the BoF model works: First, a feature extractor, e.g., SIFT extractor [19], is employed
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Fig. 1. Transforming feature maps into feature vectors that can be used with BoF-based techniques.

to extract multiple feature vectors from an image. The number of the extracted feature vectors might vary according to the type
of the feature extractor that it is used. Then, a quantization process follows, where the extracted feature vectors are assigned
to a predefined number of bins, that are called codewords. The set of all codewords is also called codebook or dictionary. The
representation of an object is compiled by counting the number of feature vectors in each bin and then extracting the final
histogram representation of the corresponding object. Note that a feature map can be readily converted into a set of feature
vectors, as shown in Figure 1. Therefore, the proposed BoF pooling is used to extract a compact histogram representation from
the last convolutional layer, instead of having the fully connected layer to directly handle the extracted feature maps, reducing
the size of the subsequent layers and allowing the network to operate with arbitrary sized images.

The main contribution of this work is the proposal of a neural formulation of the BoF model, called Convolutional BoF
(CBoF), that works as a trainable pooling layer. In this way, a unified end-to-end trainable convolutional architecture, that can
be optimized using the back-propagation algorithm, is formed. It is demonstrated that the proposed method can a) reduce the
number of parameters needed in a network, b) allow the network effectively handle images of any size, and c) provide better
distribution-shift invariance that competitive methods, such as the Spatial Pyramid Pooling (SPP) [8]. Note that the BoF model
ignores most of the spatial information, which is expressed by the position from which each feature vector was extracted, and
can be used to further increase the accuracy of the models. Therefore, a spatial pyramid scheme is also proposed to retain some
spatial information from the extracted feature vectors. Furthermore, note that it is straightforward to combine the proposed
CBoF model with fully convolutional networks [20], simply by setting the appropriate stride/window for the CBoF pooling.

This paper is an extended version of our previous work presented in [21]. We further extend our previous work by providing
a detailed derivation of a faster linear approximation of the proposed (highly non-linear) pooling technique, that can be
directly used for embedded applications where devices with limited resources are used [22], [23]. The proposed method is also
evaluated on a real problem, where lightweight models that can be used to aid drone-based cinematography tasks are needed.
Furthermore, we present additional experiments as well as a more thorough analysis of the proposed method. To demonstrate
the generality of the proposed method, the proposed pooling layer was also combined and evaluated with a deep supervised
hashing technique [6]. Finally, apart from providing a practical way to train and deploy lightweight CNNs, this paper aims
at linking the CNNs with the extensive BoF-based work that has been done before the deep learning era and providing new
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Fig. 2. Convolutional BoF Model

insight for understanding convolutional neural architectures. The proposed method can be extended beyond CNNs to any other
type of deep differentiable feature extractors, e.g., recurrent models [24]. It also provides a practical link between CNNs and
the existing literature on dictionary-based image representation [25]–[28]. An open-source implementation of the proposed
method is publicly available at https://github.com/passalis/cbof.

The paper is structured as follows. The related work is briefly introduced in Section II. The proposed methods are presented
and discussed in detail in Section III. Next, the proposed methods are evaluated and compared to other competitive methods
using seven different datasets and three different evaluation setups in Section IV. Finally, conclusions are drawn in Section V.

II. RELATED WORK

Reducing the size of CNNs and increasing the inference speed is an increasingly important issue with many recent methods
proposed to tackle this problem [8], [14]–[16], [29]–[31]. Some of these works employ pruning or compression methods to
reduce the size and increase the speed of CNN models [14]–[16], [31], [32]. However, these methods mainly aim to compress
an already trained CNN model, instead using a smaller/faster CNN architecture at the first place. Furthermore, they inherit
the limitations of the used architecture, i.e., they might not be able to work efficiently with smaller input images and adapt
to the available computational resources without re-training. It is worth noting that vector quantization is also employed by
some of these methods, e.g., [16]. However, in contrast to these works, that use quantization merely for reducing the size of
a neural layer, the proposed CBoF method utilizes a differentiable quantization scheme that is actually part of the network
architecture and allows for training the network in and end-to-end fashion. Thus, CNN models with less parameters can be
directly trained (instead of compressing them after training), while providing a way for natively handling differently sized
images. Furthermore, group convolutions can be also used to make networks more compact [33], while sparse representations
can be also utilized to reduce the storage requirements and increase the inference speed [34]. Of course, the proposed CBoF
method can be combined with these techniques, e.g., group convolutions [33], or use depth-wise separable convolutions, e.g.,
[30], to increase the speed of the feed-forward process and reduce the model size.

Several global pooling operators have been used to allow CNNs work with images of any size [8], [13], [35]. Spatial
global pooling [8], [35], has been used to overcome the loss of spatial information that occurs when naive global pooling
operators, such as Global Max Pooling (GMP) [13], are used. Both the proposed approach and the aforementioned methods
allow a CNN to handle images of any size and reduce the number of required parameters. However, the proposed CBoF
method significantly increases the accuracy of the networks and requires less parameters, as experimentally demonstrated in
Section IV. The proposed method learns how to perform pooling, which allows for increasing the distribution shift invariance
of the network, as well as for more efficiently compressing the extracted feature maps.

Cross Channel Parametric Pooling (CCPP) [36], was proposed as a way to recombine various channels of the extracted feature
maps and reduce the complexity of the network by performing dimensionality reduction. In contrast to the CCPP technique
the proposed method is capable of extracting a constant length representation and allowing the network to natively operate
with arbitrary sized input images. The Vector of Locally Aggregated Descriptors (VLAD) [37], and bilinear pooling [38], can
also be used to perform CNN pooling. However, for these methods the size of the extracted representation is still bound to
the original dimensionality of the extracted feature vectors. On the other hand, the BoF-based pooling completely decouples
the size of the learned representation from the architecture of the used convolutional feature extractor allowing for learning
significantly smaller networks. Some recently proposed methods attempt to reduce the dimensionality of the representation
extracted using bilinear pooling [39], [40], even though they still yield significantly larger representations than the proposed
approach (one to two orders of magnitude larger than the representations used in this work).

The proposed method is also related to traditional supervised dictionary learning methods [41]–[45]. In [44], and its extension
for large-scale retrieval [46], a neural formulation of the BoF model is employed to learn how to aggregate the extracted feature
vectors. However, these methods are designed to work with fixed handcrafted extractors instead of trainable convolutional
feature extractors. In [47], the features extracted from a CNN were combined with the BoF representation. However, in [47]

https://github.com/passalis/cbof
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the CNN was pretrained and it was not possible to fine-tune (or train from scratch) the resulting architecture. To the best of
our knowledge, this is the first method that allows for combining a BoF-based pooling layer with CNNs and allows for the
supervised end-to-end training of the resulting unified architecture using the back-propagation algorithm leading to extracting
smaller representations and deploying more lightweight networks.

III. PROPOSED METHOD

The proposed Convolutional BoF layer is used between the regular feature extraction layer block and the fully connected
classification block of a CNN. Figure 2 illustrates the structure of a CNN that includes the proposed BoF pooling layer. In
the next subsection, the structure of the proposed layer is described in detail and a learning algorithm is derived. Next, a
linear approximation of the BoF pooling layer is derived and discussed in detail. Finally, the computational complexity of the
proposed approaches is discussed and compared to other methods.

A. Convolutional BoF Pooling

Let X be a collection of N images. A feature map is extracted from the i-th image using the feature extraction layer block,
as shown in Figure 2. Note that there is no restriction on the architecture that can be used for the feature extraction process.
Let L denote the number of layers that the feature extraction block is composed of. The notation xij ∈ RNF is used for the
j-th feature vector extracted for the i-th image of X , where NF denotes the number of channels of the L-th convolutional
layer (from which the features are extracted). Note that the size of the extracted feature map defines the number of the feature
vectors that will be available to the BoF layer. For example, if a 20 × 20 feature map is extracted, then 400 feature vectors
will be available for the quantization process. The notation Ni is used to refer to the number of feature vectors extracted from
the i-th image.

The i-th image can be represented by a set of Ni feature vectors xij ∈ RNF (j = 1, . . . , Ni), extracted using a trainable
convolutional feature extractor. The BoF layer compiles a histogram vector for each image after quantizing the extracted feature
vectors. Note that this in contrast with existing naive global pooling methods, that either simply fuse the feature vectors [2],
[7], [9], [10], or employ pyramid-based polling to introduce spatial information into the extracted representation, like SPP
[8]. It is worth noting that the proposed approach completely decouples the size of the extracted representation from both the
number of the extracted feature vectors as well as from their dimensionality. This allows to independently control the size of
the extracted representation allowing for reducing the number of parameters needed in the fully connected layer and allowing
for handling images of any size.

Two sublayers are used to express the BoF model as a unified neural layer [44]: a layer that measures the similarity of the
input feature vectors to the codewords and quantizes the input feature vectors, and an accumulation layer that compiles the
final histogram representation by aggregating the quantized feature vectors. Therefore, these two layers form a unified pooling
architecture that can be used to extract a compact representation, which is then fed to the employed classifier.

Any differentiable similarity function can be used to measure the similarity between the extracted feature vectors and the
codewords. Following the soft BoF formulation proposed in [44], the RBF kernel is used as similarity metric. Therefore RBF
neurons, one for each codeword, are used in the first sublayer. The output of the k-th RBF neuron [φ(x)]k is defined as:

[φ(x)]k = exp(−||x− vk||2/σk) ∈ R, (1)

where x is a feature vector and vk is the center of the k-th RBF neuron. A scaling factor σk is also used to individually adjust
the Gaussian function of each RBF neuron. The size of the extracted representation can be controlled by adjusting the number
of RBF neurons used in the BoF layer. The notation NK is used to refer both to the size of the extracted representation and
the number of neurons used in the BoF layer.

Following the l1 scaling, which is used in soft BoF formulations [44], [48], a normalized RBF architecture is employed.
The output of the k-th RBF neuron is calculated as:

[φ(x)]k =
exp(−||x− vk||2/σk)∑NK

m=1 exp(−||x− vm||2/σm)
∈ R. (2)

The normalization employed in (2) contributes to the ability of the proposed method to withstand, to some extent, mild
distribution shifts, improving the scale invariance of the method. This can be better understood by observing that (2) effectively
quantizes the extracted feature vectors, ensuring that a meaningful normalized membership vector, that correctly identifies the
codewords with the highest similarity to the feature vectors, will be always obtained after this process. The improved scale
invariance of the proposed method is experimentally demonstrated in Section IV and in the supplementary material (Fig. 3).

The final representation of each image is extracted by accumulating the responses of the RBF neurons for each feature
vector that is fed to the BoF layer:

si =
1

Ni

Ni∑
j=1

φ(xij) ∈ RNK , (3)
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Fig. 3. A spatial pyramid scheme is used to introduce spatial information into the representation extracted using the proposed model.

where φ(x) = ([φ(x)]1, . . . , [φ(x)]NK
)T ∈ RNK is the output vector of the RBF layer. The histogram si defines a distribution

over the RBF neurons and describes the visual content of each image. The vector si, which have unit l1 norm, is then fed to
the fully connected layer.

The BoF model compiles a histogram that expresses only the distribution of the extracted feature vectors, discarding most
of the spatial information (expressed by the position from which they were extracted). To this end, spatial information is re-
introduced to the extracted representation using a spatial pyramid scheme, similar to the Spatial Pyramid Matching method [17].
The image is segmented into a number of regions and a separate histogram is extracted from each one. Then, the extracted
histograms are fused together to form the final histogram representation, as shown in Figure 3. The size of the extracted
representation is NKNS , where NS denotes the number of spatial regions.

A classifier must be used to infer the class of an image after extracting its histogram representation si. Any classifier/model
with differential loss function can be used to this end. To simplify the presentation of the proposed method, it is assumed
that a multilayer perceptron (MLP) with one hidden layer is used. The number of hidden neurons is denoted by NH , while
one output neuron is used for each class leading to an output layer with NC neurons (for a classification problem with NC
different classes). When regression is performed, only one output neuron is used, i.e., NC = 1. The elu activation function
[49], with the default hyper-parameters, is used for the hidden layer. Using the elu activation function in the layer that receives
the extracted histograms improves the convergence speed of the network over other evaluated activation functions (such as the
plain ReLU). The softmax activation function is used for the output layer for classification, while no activation function is used
for regression. For training the network, the categorical cross-entropy loss is used for classification tasks and the squared error
loss function is used for regression tasks. Dropout with rate p = 0.5 is used for the hidden layer, except otherwise stated.

Gradient descent is employed to learn the parameters of the proposed architecture:

(4)∆(WMLP ,V,σ,Wconv) = −(ηMLP
∂L

∂WMLP
, ηV

∂L
∂V

, ησ
∂L
∂σ

, ηconv
∂L

∂Wconv
),

where the notation L is used to refer to the used loss function, σ to the vector of scaling factors (σ = (σ1, . . . , σNK
)),

and V = (v1, . . . ,vNK
) denotes the centers of the RBF neurons. The parameters of the classification layer and the feature

extraction layer are denoted by WMLP and Wconv respectively. The learning rates for each of the parameters are denoted by
ηMLP , ηV , ηsigma and ηconv respectively. In this work, the Adam (Adaptive Moment Estimation) method [50], is employed
for performing the optimization. The derivatives of the CBoF layer used in (4) are analytically derived in the supplementary
material.

The convolutional feature extractor can be either pre-trained or be randomly initialized. In the Section IV it is demonstrated
that the proposed method can efficiently handle both cases. For the RBF neurons, k-means initialization is used: all the feature
vectors S = {xij |i = 1, . . . , N, j = 1, . . . , Ni} are clustered into NK clusters and the centroids (codewords) vk ∈ RNF (k =
1, . . . , NK) are used to initialize the centers of the RBF neurons. It is worth noting that this process is also used by the BoF
model for learning the codebook. However, the proposed method employs this step only for initializing the centers, which are
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then further optimized according to the employed objective. The scaling factors for the RBF neurons are initially set to 0.1.
Finally, random orthogonal initialization is used for initializing the parameters of the employed MLP [51].

B. Linear BoF Pooling Block

The key idea in the Linear BoF pooling is to replace the highly non-linear similarity calculations, that involve calculating
the pairwise distances and then transforming them into similarities using an RBF kernel, as described in (1), with a faster
linear operator. That is, the highly non-linear exponential operator and the scaling factor used in (1) are omitted obtaining the
following (unbounded) similarity function:

[φ(x)]k = −||x− vk||2 ∈ R. (5)

Eq. (5) can be expanded into (6) by simply using the square of the distance between the feature vectors and the codewords:

[φ(x)]k = −||x− vk||22 = 2xTvk − ||x||22−||vk||22. (6)

Therefore, the similarity between a codeword and an input feature vector can be expressed as the inner product between these
vectors after subtracting their l2 norm. Note that (after completing the training process) the norm of each codeword is constant,
i.e., ||vk||22= ck. Assuming that the norm of the input feature vector is also constant (this can be easily ensured using a simple
normalization scheme), i.e., ||x||22= cf , (6) is simplified into: [φ(x)]k = 2xTvk− c, where c = ck + cf is just a fixed constant
for each codeword. Therefore, by omitting the additive factor c the similarity function can be expressed as:

[φ(x)]k = xTvk (7)

Eq. (7) actually expresses the cosine similarity metric ( xTvk

||x||2||vk||2 ) under the unit length assumption, i.e., ||x||2= ||vk||2= 1.
However, when the unit length assumption does not hold, (7) ranges from −∞ to∞, while the cosine similarity always ranges
from -1 to 1.

To avoid costly normalizations during the training/deployment of the network, the absolute value operator is used to ensure
that (7) properly encodes a similarity metric, leading to the similarity metric used in the Linear CBoF:

[φ̃(x)]k = |xTvk| ∈ R (8)

where |·| is the absolute value operator. Large similarity values indicate a high degree of correlation (either positive or negative)
between the two vectors, while values close to 0 indicate orthogonality (no correlation) [22]. Note that the proposed similarity
metric ignores the sign of the correlation. This is not expected to harm the accuracy of the method, since a high degree of
correlation between two vectors, i.e., being collinear, conveys important information about them. Furthermore, the employed
feature extractor is adapted to the used similarity metric, since the gradients that are back-propagated to the corresponding
layers ignore the sign of the correlation.

Similarly to the soft quantization employed in the regular CBoF pooling (described in (2)), the membership vector for a
feature vector x is calculated as:

[φ̃(x)]k =
|xTvk|∑NK

m=1|xTvm|
∈ R. (9)

Then, as in the regular CBoF pooling, the histogram representation is extracted by averaging over the extracted membership
vectors (described in (3)).

Gradient descent is used for learning the parameters of the Linear CBoF layer, as before, and the corresponding derivatives are
analytically derived in the supplementary material. Also, note that using k-means initialization does not improve the accuracy
for the Linear CBoF pooling since it is no longer meaningful to use euclidean-based clustering when the inner product-based
similarity is calculated between the feature vectors and the codewords.

The aforementioned modifications allow for readily implementing the proposed method using existing deep learning tools,
since the Linear CBoF layer can be expressed as sequence of a regular convolution layer and an average pooling layer with
appropriately set pooling window and stride. To understand these note the following. First, the similarity calculations described
in (8) can be implemented as a regular convolutional layer with the codebook used as the convolutional filters and the absolute
value operator as the activation function. Therefore, NK filters of size 1 × 1 × NF can be used, where NK is the number
of codewords and NF is the number of filters in the previous convolutional layer. Furthermore, in the conducted regression
experiments it was established that skipping the normalization described in (9) does not necessarily negatively impact the
pooling performance. Finally, average pooling with window size and stride equal to the size of the extracted feature maps
can be used to extract the histogram representation of the input image as a feature map of size 1 × 1 × NK . Implementing
the proposed spatial segmentation scheme requires only to alter the used window size, e.g., reducing the window size by half
is equivalent to using spatial segmentation at level 1, since four independent histograms are extracted. However, note that
implementing spatial segmentation this way shares the same codebook over the spatial regions. Even though this reduces the
learning capacity of the model, it can have a positive regularizing effect reducing the risk of over-fitting.
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Note that the architecture used for implementing the linear variant of the method has some similarities with the Network-
in-Network approach that also uses 1 × 1 convolutions to reduce the dimensionality of the extracted features [52]. Under
this consideration, the Network-in-Network architecture (with one 1x1 layer followed by a global pooling operator) can be
thought as a primitive way to extract a BoF-inspired representation, giving further insight on the success of the aforementioned
technique.

C. Computational Complexity Analysis

The asymptotic cost of feed forwarding the proposed architecture, along with its storage requires are calculated in this
Section. The conducted analysis focuses on the part of the network after the last convolution layer. The notation NF is used
to refer to the number of filters used in the last convolutional layer, while Ni is the number of feature vectors extracted from
this layer. Also, it is assumed that an MLP with NH hidden neurons is used. The number of used spatial regions is denoted by
NS . Finally, to simplify the conducted analysis, it assumed that NF < NH (as in the conducted experiments) and the quantity
CL = NHNC is defined and used to refer to the storage requirements/feed-forward cost for the layers after the first fully
connected layer. The same analysis is also conducted for the Global Max Pooling (GMP) and the Spatial Pyramid Pooling
(SPP) methods.

A plain CNN requires O(NiNFNH + CL) parameters in the fully connected layer, the GMP pooling method requires
O(NFNH +CL) parameters, the SPP pooling method requires O(NSNFNH +CL) parameters, while the proposed CBoF and
Linear CBoF methods require O(NSNKNF + NSNKNH + CL) parameters. If the codebook is shared between the spatial
regions, then the number of parameters is reduced to O(NKNF +NSNKNH+CL). The CBoF method is capable of decoupling
the extracted representation both from the input feature dimensionality NF and the number of extracted feature vectors Ni,
allowing for using significantly smaller networks.

The cost (number of mathematical operations) of performing the feed-forward process is O(NiNFNH +CL) for the CNN,
O(NiNF + NFNH + CL) for the GMP method, O(NiNF + NSNFNH + CL) for the SPP method and O(NiNKNF +
NSNKNH + CL) for the CBoF-based methods. Note that an extra cost incurs for the feature aggregation/quantization step
for both the SPP and CBoF methods (O(NiNF ) and O(NiNKNF ) respectively). However, this cost is amortized by the
smaller number of calculations required after this step (assuming that NK < NH , as in the conducted experiments). The
asymptotic cost for calculating the similarity between the feature vectors and the codebook is the same for both the regular
CBoF and Linear CBoF, since the distance between two vectors can be calculated using three inner product calculations, i.e.,
||x− y||22= xTx + yTy − 2xTy for any two vectors x and y. Finally, note that the number of the extracted feature vectors
(Ni) depends on the size of the input image. Therefore, the complexity of feed forwarding the network can be readily adjusted
for the GMP/SPP and CBoF methods by using an appropriately-sized input image.

IV. EXPERIMENTS

In this Section the proposed method is evaluated using seven datasets and three different evaluation setups. Due to space
constraints, the datasets and the networks used for the evaluation are described in detail in the supplementary material.

A. Classification Evaluation

1) MNIST Evaluation: First, the MNIST dataset [53], was used to compare the proposed CBoF method (spatial level 1,
32 RBF neurons) to other pooling techniques. The same feature extraction block, as with the CBoF method, was used for the
baseline CNN combined with a 2×2 pooling layer before the fully connected layer (1000×10). Dropout with rate p = 0.5 was
used for both the input and the hidden classification layers of the CNN, since this further lowers the classification error. The
GMP/SPP pooling layers are connected after the last convolutional layer instead of using max pooling. For the SPP technique
one spatial level was used. Digit images of 20× 20, 24× 24, 28× 28, 32× 32 and 36× 36 pixels were used (except of the
CNN baseline model that can be trained only using one predetermined image size). Two classification error rates are reported.
For the first one, the default image size is used (28 × 28 pixels), while the second one refers to using a reduced image size
(20 × 20 pixels). The number of parameters in the feature extraction block is common across all the model. Therefore, the
number of parameters used in the layers after the feature extraction layer are reported. The parameters of all the layers of the
networks are learned during the training.

The experimental results are reported in Table I. The CBoF method performs better than both the plain CNN and the
GMP/SPP methods. At the same time, the CBoF method requires about an order of magnitude less parameters (after the
convolutional layers) than a CNN. Furthermore, the proposed method provides better scale-invariance than the GMP/SPP
techniques, even though all the methods were trained using various image sizes. The performance of Linear CBoF was also
evaluated in Table I. The Linear CBoF performs similarly to the GMP and SPP methods, while providing better scale invariance,
e.g., GMP achieves 3.22% classification error for 20× 20 images, while Linear CBoF (0, 32) reduces the error to just 1.43%
and also requires less parameters. Note that the proposed non-linear CBoF formulation further reduces the classification error
over the Linear CBoF formulation, e.g., the classification error is reduced from 0.56% to 0.51% when spatial segmentation
and 64 codewords are used.
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TABLE I
MNIST: COMPARING CBOF TO OTHER METHODS. THE SPATIAL LEVEL AND THE NUMBER OF RBF NEURONS ARE REPORTED IN THE PARENTHESIS FOR

THE CBOF MODEL. (*TRAINING FROM SCRATCH USING 20× 20 IMAGES)

Method Cl. Error (28) Cl. Error (20) # Param.
CNN 0.56 (0.78)* 1,035k
GMP 0.62 3.22 75k
SPP 0.52 1.78 331k
Linear CBoF (0, 32) 0.71 1.43 44k
Linear CBoF (1, 32) 0.60 1.24 141k
Linear CBoF (1, 64) 0.56 1.52 271k
CBoF (0, 32) 0.68 1.44 44k
CBoF (1, 32) 0.55 0.94 147k
CBoF (1, 64) 0.51 0.83 284k
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Fig. 4. 15-scene: Comparing test accuracy of CBoF for different number of codewords and spatial levels

The GMP and SPP networks were also evaluated with an added 1×1 convolutional layer with 64 filters. The proposed CBoF
method still outperforms both the GMP and SPP methods, which lead to 3.52% and 1.66% classification error respectively
(when 20× 20 images are fed to the networks). The effect of the number of codewords, spatial levels and multi-size training
are extensively evaluated and discussed in the supplementary material.

2) 15-scene Evaluation: First, the performance of the CBoF was evaluated for different codebook sizes and spatial levels
using the 15-scene dataset [17]. The pretrained feature extraction layer block C, as described in the supplementary material,
was used for the conducted experiments using the 15-scene dataset. The network was trained for 100 epochs. Also, the fully
connected layers were pretrained for 10 epochs before training the whole network to avoid back-propagating gradients from
the randomly initialized layers. The precision on the test set using different number of codewords (evaluated on one test split)
are shown in Figure 4. Even when a small number of codewords is used, e.g., 32-64 codewords/RBF neurons, the network
is capable of achieving remarkable high classification accuracy. Nonetheless, using more RBF neurons allows for further
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TABLE II
15-SCENE: CBOF ACCURACY (%) FOR DIFFERENT IMAGE SIZES AND TRAIN SETUPS: TRAIN A (227× 227 IMAGES), TRAIN B (203× 203, 227× 227

AND 251× 251 IMAGES) AND TRAIN C (ALL THE AVAILABLE IMAGE SIZES).

Im. Size 179 203 227 251 275
Train A 88.01 90.42 90.66 90.32 88.82
Train B 89.66 91.61 92.01 91.45 90.03
Train C 90.44 92.05 92.38 91.64 90.39

TABLE III
15-SCENE: COMPARING CBOF TO OTHER METHODS (*TRAINING FROM SCRATCH USING 179× 179 IMAGES)

Method Accuracy (227) Accuracy (179) # Param.
CNN 88.79± 0.62 (87.90± 1.14)* 9,232k
GMP 86.74± 0.40 84.62± 0.32 272k
SPP 89.94± 0.73 87.70± 0.46 1,296k
Linear CBoF (0, 256) 90.10± 0.83 87.77± 0.95 337k
CBoF (0, 256) 91.38± 0.63 89.86± 0.80 337k

increasing the classification accuracy. Due to the nature of the dataset, the best classification accuracy is achieved when no
spatial segmentation is used (spatial information is less important when recognizing natural scenes than when detecting the
edges of aligned digits, as in the MNIST dataset). The CBoF model was also trained using images of different sizes (using
the same setup as before). The experimental results, reported in Table II, indicate that multi-size training indeed improves the
classification accuracy for any image size (the classification accuracy increases from 90.66% to 92.38%, when multiple image
sizes are used for training).

The CBoF model using 256 RBF neurons and no spatial segmentation is also compared to other competitive techniques in
Table III. All the evaluated methods share the same feature extraction layer (Feature Extraction Layer Block C). For the plain
CNN, a 1000× 15 fully connected layer is used after adding a max pooling layer, while the GMP/SPP layer is added after the
last convolutional layer, as before. To ensure a smooth convergence during training, the learning rate for the convolutional layers
was set to ηconv = 10−5 for the CNN/GMP/SPP techniques. Note that slightly different results from [54] are reported, since
the fully connected layer of the pretrained network was not used, but trained from scratch (along with the rest of the layers of
the network). The proposed CBoF and Linear CBoF methods outperform both the CNN and the GMP/SPP techniques, while
using significantly less parameters. The same is also true when smaller images are fed to the network. Again, the non-linear
CBoF formulation outperforms the Linear CBoF method. The GMP/SPP techniques were also evaluated with one added 1× 1
convolutional layer (86.32% for the GMP, 89.55% for the SPP, 256 1× 1 filters were used). The proposed CBoF method still
outperforms these techniques, even though one extra layer was added.

3) MIT67 Evaluation: The CBoF method was also evaluated using the MIT Indoor Scene dataset (MIT67) [55]. No spatial
segmentation was used for these experiments and a BoF layer with 512 RBF neurons was used. The CNN, GMP, and SPP
techniques were also evaluated using the same convolutional feature extraction layers, the feature extraction block C, as before.
Three image sizes were used for the training process, i.e., 203×203, 227×227, and 251×251 pixels. The learning rate for the
convolutional layers was set to ηconv = 10−5 for the CNN/GMP/SPP techniques. Note that for the Linear CBoF the learning
rate was set to ηV = 0.001. All the networks were trained for 20 epochs, while the fully connected layer was pre-trained
until reaching 30% training accuracy (to avoid back-propagating gradients from a randomly initialized fully connected layer to
the pretrained convolutional layers). The training set was augmented using random horizontal flips. The results for the MIT67
dataset are shown in Table IV. The Linear CBoF method performs better than the GMP and SPP methods for 227×227 images
(60.42% classification accuracy), while achieving similar accuracy for 179 × 179 images and using overall less parameters.
Again, the CBoF method outperforms all the other evaluated methods using less parameters and achieving higher classification
accuracy.

TABLE IV
MIT67: COMPARING CBOF TO OTHER METHODS (*TRAINING FROM SCRATCH USING 179× 179 IMAGES)

Method Accuracy (227) Accuracy (179) # Param.
CNN 58.16 (54.16)* 9,284k
GMP 58.52 55.07 324k
SPP 60.42 55.55 1,348k
Linear CBoF(0, 512) 62.41 54.94 711k
CBoF(0, 512) 64.02 57.58 711k
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TABLE V
AFLW: COMPARING CBOF TO OTHER METHODS

The mean absolute angular error in degrees and the amortized feed-forward time (using batch size of 32 samples) are reported. The feed-
forward time was not measured for the CBoF method since the implementation was not as highly optimized as in the rest of the models.

Method Angular Error (24) Angular Error (32) Angular Error (48) # Parameters Feed-forward Time
CNN - 12.87 - 1,602k - / 9.21 / - msec
GMP 12.60 12.55 14.10 131k 5.18 / 8.75 / 19.74 msec
SPP 11.92 11.78 13.09 387k 5.71 / 9.50 / 20.52 msec
CBoF (0, 64) 12.74 12.60 14.13 70k N/A
CBoF (1, 16) 10.14 9.47 10.34 70k N/A
Linear CBoF (0, 64) 12.88 12.36 13.06 70k 5.40 / 9.24 / 20.59 msec
Linear CBoF (1, 16) 10.84 10.20 10.70 67k 5.49 / 8.98 / 19.90 msec
Linear CBoF (1, 64) 11.16 10.31 10.79 70k 5.23 / 9.10 / 20.39 msec

B. Regression Evaluation

The Annotated Facial Landmarks in the Wild (AFLW) dataset [56] was also used to perform the regression evaluation. The
proposed model was trained to regress the horizontal facial pose (yaw). The motivation behind this experiment was to evaluate
the proposed method on a real problem where lightweight models, that can be deployed on embedded systems with limited
memory and computing resources, are needed [22]. The Feature Extraction Layer Block B was employed as feature extractor,
while an MLP with 1000 hidden units was employed to regress the yaw. Please refer to the supplementary material for more
details regarding the used feature extraction architecture. Three image sizes, i.e., 32 × 32, 64 × 64, and 96 × 96 pixels were
used during the training, while batches from each image size were fed to each network. For the evaluated models 50,000
optimization iterations were performed. The mean squared error was used as the objective function to train the networks to
regress the horizontal facial pose. The Linear CBoF pooling was also evaluated to examine its behavior in this challenging
real-world problem.

The results are reported in Table V. The mean absolute angular error in degrees and the amortized mean feed-forward time
using a batch size of 32 samples are reported. For the regular CBoF method the feed-forward time is not reported, since the
used implementation is not as highly optimized as the rest. The proposed regular CBoF method achieves the lowest angular
error using spatial segmentation level 1 (9.47 angular error vs. 11.78 angular error for the next best performing competitive
method), while significantly reducing the number of used parameters. Even though the CBoF (0, 64) and CBoF (1, 16) have
the same number of parameters, the spatial scheme used in CBoF (1, 16) increases the accuracy, since the spatial information
seems to be especially important for the task of facial pose estimation. The Linear CBoF achieves slightly higher error than
the regular CBoF, while still outperforming the other methods (CNN, GMP, and SPP). Note that the codebook is shared over
the spatial regions in the Linear CBoF reducing the number of used parameters even more.

Regarding the feed-forward time the differences are quite small (usually less than 5% between different models) due to the
massive parallelism that modern GPUs provide (a mid range GPU capable of 2.2 TFLOPs was used). However, the results
clearly demonstrate the ability of both the proposed Linear CBoF and the GMP/SPP techniques to adapt to the available
computing power (by reducing the input image size) and handle images of various sizes. Nonetheless, it should be noted again
that the proposed method reduces both the required memory as well as the pose estimation error over the GMP and SPP
methods.

C. Retrieval Evaluation

For the retrieval evaluation the proposed method was combined with a recently proposed deep supervised hashing tech-
nique [6]. For the experiments conducted in this Subsection a fully connected layer with k linear units is used after the last
pooling layer, where k is the length of the learned hash code in bits. The networks were trained using the loss function proposed
in [6]. Following [6], the regularizer weight was set to α = 0.01 and the margin to m = 2k. To obtain the representation
(binary code) of each image in the hamming space the output of the network was passed through the sign(·) function. Since
most of the activations are expected to lie outside the (−1, 1) interval (due to the used regularizer), this is a simple and effective
way to get the binary codes for the images.

First, the INRIA Holidays (Holidays) dataset [57], was used to evaluate the proposed method. During the training 1,500,000
randomly chosen (similar or dissimilar) image pairs were fed to the network. A pretrained residual network (ResNet-50, trained
on the Imagenet dataset [7]) was used for the feature extraction block, and the Adam algorithm was used for training the layers
that were added after the pretrained feature extraction layers (no gradients were back-propagated to the feature extraction layers
for this setup). The learning rate was set to η = 10−4. The results for different code lengths are shown in Table VI. The mean
average precision (mAP) is reported [58]. The “DSH” method refers to directly using the hashing layer after the last global
pooling layer of the ResNet50. For the “CBoF (256) + DSH” method the global pooling layer of the ResNet-50 is replaced by
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TABLE VI
HOLIDAYS: RETRIEVAL EVALUATION USING DEEP SUPERVISED HASHING (THE MEAN AVERAGE PRECISION (MAP) IS REPORTED)

Method k = 12 k = 24 k = 32 k = 48

DSH 0.313 0.539 0.629 0.720
Linear CBoF(256) + DSH 0.428 0.644 0.681 0.730

TABLE VII
CIFAR10: RETRIEVAL EVALUATION USING DEEP SUPERVISED HASHING (THE MEAN AVERAGE PRECISION (MAP) IS REPORTED)

Method k = 12 k = 24 k = 32 k = 48

CNNH [63] 0.543 0.560 0.564 0.557
DLBHC [64] 0.550 0.580 0.578 0.589
DNNH [65] 0.571 0.588 0.590 0.590
DSH [6] 0.616 0.651 0.661 0.676
DSH 0.703 0.800 0.820 0.841
Linear CBoF(256) + DSH 0.874 0.883 0.887 0.890

the Linear CBoF method with 256 codewords. Combining the proposed pooling layer (that performs an intrinsic quantization
of the extracted feature vectors) with the deep supervised hashing technique further improves the retrieval precision.

The proposed technique is also evaluated on the CIFAR10 dataset [59]. The same setup as before is used, however instead
of using the ResNet-50 for the feature extraction, another pretrained residual network, the Wide ResNet (WRN-40-4) [11], is
used (the network was pretrained to perform classification on the CIFAR10 dataset and its last fully connected layer is not
used). The optimization ran for 10 epochs. The pairwise similarities between the samples of each batch (the batch size was set
to 64) were fed to the network during the training. The experimental results are reported in Table VII. Using a Wide Residual
Network instead of a more shallow network significantly boosts the mean average precision over the other techniques. Again,
combining the Linear CBoF method with the DSH further increases the retrieval precision.

The proposed method was also evaluated on the NUS-WIDE dataset [60], following the same setup as in the previous
experiments and using a state-of-the-art DenseNet201 as the employed feature extractor [61]. The DenseNet201 was pretrained
on the Imagenet dataset and the same evaluation setup as in [62] was used for the hashing evaluation. The optimization ran
for 10 epochs using batches of 128 samples, an MLP with 2048 hidden ReLU neurons was used to extract the hashing codes
and the learning rate was set to 0.001. The evaluation results are reported in Table VIII. As before, combining the proposed
Linear BoF method with the DSH method significantly increases the retrieval precision over directly using the global average
pooling layer employed by the DenseNet201.

V. CONCLUSIONS

In this paper, the BoF model was formulated as a neural pooling layer that can be combined with convolutional layers
to form a powerful convolutional architecture that is end-to-end trainable using the regular back-propagation algorithm. The
ability of the proposed method to reduce the size of CNNs and increase the performance over other competitive techniques was
experimentally demonstrated using seven image datasets and three different settings (classification, regression and retrieval).
The proposed method provides a lightweight CNN architecture that can readily adapt to the available computational resources
and it is invariant to mild distribution shifts. Furthermore, the proposed method can be combined with CNN compression
techniques, such as [14]–[16], or use depth-wise separable convolutions in the feature extraction layers, e.g., [30], to further
improve the speed and the size of the networks. Note that the proposed method is capable of reducing the parameters only in
the first fully connected layer of a deep CNNs, which is usually the layer that uses the most parameters in a CNN. However,
the proposed method can be used to extract compact layer-wise representations that can be combined with methods that employ
features extracted from multiple layers, such as DenseNets [61]. This will allow for reducing the number of parameters needed
in the various layers of the network, further improving the performance of these methods.
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