
PySEF: A Python Library for Similarity-based

Dimensionality Reduction

Nikolaos Passalis and Anastasios Tefas
passalis@csd.auth.gr, tefas@aiia.csd.auth.gr

Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki 54124, Greece

Abstract

PySEF is an efficient and modular implementation of the Similarity Embed-
ding Framework (SEF) in Python that allows for easily performing similarity-
based dimensionality reduction (DR) as well as defining custom similarity
targets and embedding functions. PySEF contains a collection of prede-
fined target functions that can be used to perform DR using various existing
techniques, ranging from Principal Component Analysis (PCA) to providing
out-of-sample extensions for the t-Distributed Stochastic Neighbor Embed-
ding (t-SNE). Furthermore, developing novel DR techniques within PySEF
becomes a matter of just defining a new similarity target function using a
few lines of code. PySEF also allows for transparently switching between
the CPU and the GPU for the optimization, follows the scikit-learn calling
conventions, and it is optimized to efficiently handle large-scale datasets.

Keywords: Dimensionality Reduction, Similarity Embedding Framework

1. Introduction1

Dimensionality reduction (DR) methods are among the fundamental pre-2

processing steps for a wide range of knowledge-based systems, ranging from3

medical diagnosis systems [1], to recommendation systems [2]. Most DR tech-4

niques rely on second-order statistics to define their optimization objective.5

However, using unbounded distance metrics comes with several drawbacks.6

Most methods cannot effectively handle outliers, carefully designed regular-7

izers are needed and it is not always clear how to manipulate the distances8

to derive new DR techniques [3].9

Preprint submitted to Knowledge-Based Systems April 5, 2018

2. Background10

The aforementioned drawbacks are addressed in a recently proposed DR11

framework that builds upon the notion of similarity, the Similarity Embed-12

ding Framework (SEF) [3]. SEF defines a generic optimization objective that13

uses the pairwise similarities between the data samples instead of their dis-14

tances. This allows for expressing different DR techniques by simply setting15

the appropriate target similarity matrix. Let f : Rd → Rm be an embedding16

function that projects the high dimensional data samples xi ∈ Rd to a lower17

dimensional space Rm, where yi ∈ Rm is the low dimensional representation18

of xi. Also, let S(xi,xj) be a function that measures the similarity between19

two data points xi and xj. Any differentiable similarity function can be used20

to define S(xi,xj). In [3], the Gaussian kernel is used to define the similarity21

measure:22

S(xi,xj) = exp(−||xi − xj||22/σ2
P), (1)

where σP is the scaling factor of the Gaussian kernel. SEF aims to learn23

an embedding function f that projects the data into a lower dimensional24

space where the similarities between the data are transformed according to25

a given target. To this end, the following loss function is used during the26

optimization:27

Js =
1

2||M||1

N∑
i=1

N∑
j=1

[M]ij([P]ij − [T]ij)
2, (2)

where N is the number of training samples, [P]ij = S(f(xi), f(xj)) denotes28

the similarity between two data samples in the low-dimensional space, [T]ij is29

the target similarity between the i-th and the j-th sample and M ∈ RN×N is a30

weighting mask that defines the importance of achieving the target similarity31

between two points in the low-dimensional space. That way, SEF can perform32

different types of dimensionality reduction just by defining a different target33

similarity matrix T.34

3. The PySEF Library35

PySEF is an efficient and modular implementation of the SEF in Python36

that allows for performing similarity-based dimensionality reduction without37

dealing with the implementation details of the SEF. PySEF contains a col-38

lection of predefined target functions that can be used to perform DR using39

2

various existing techniques. Furthermore, developing novel DR techniques40

within the PySEF becomes a matter of just writing a few lines of code. That41

way, novel DR techniques can be easily implemented and evaluated, assisting42

research on similarity-based DR methods, as well as providing a practical DR43

tool.44

PySEF is built on top of the PyTorch library [4], allowing for transpar-45

ently switching between the CPU and the GPU for the optimization. Using46

the PyTorch library also significantly simplifies the process of the developing47

custom embedding functions. Also, the implementation was optimized to-48

wards handling large-scale datasets, e.g., optimization in batches using h5py49

is supported [5]. Finally, motivated by the fact that many machine learning50

researchers are familiar with the scikit-learn library [6], we follow the stan-51

dard scikit-learn calling conventions. That way, existing users of scikit-learn52

should be able to get familiar with PySEF in a matter of minutes, while53

providing a transparent way to interact with the PySEF library and hiding54

the complexities of the underlying implementation.55

PySEF currently supports both linear and kernel embedding functions.56

The following four similarity targets (DR methods) are already implemented57

in PySEF (extensive examples on how to use them are also included in the58

documentation): a) copy target, which can be used to provide out-of-sample59

extensions and fast linear approximations of complex DR techniques, such as60

t-SNE, etc., b) supervised target, which can be used to derive similarity-based61

LDA-like techniques, c) SVM-based target, which can be used to perform62

SVM-based analysis (more details are given in [3]), and d) fixed target, which63

can be used to perform similarity-based PCA.64

4. Using the PySEF65

PySEF is readily available in the Python Package Index (PyPI) and it66

can be easily installed just by executing the following command (all the67

dependencies, except of the PyTorch library, will be automatically installed):68

pip install pysef69

Then, a linear embedding function can learned using less than 5 lines of70

code:71

72

import sef dr73

proj=sef dr.LinearSEF(input dimensionality=784,74

output dimensionality=9)75

3

Table 1: Using PySEF to perform various types of DR

Unsupervised DR:
Method Acc.
PCA(10d) 82.88%
SEF(10d) 84.87%

Supervised DR:
Method Accuracy
LDA(9d) 85.66%
SEF(9d) 88.89%
SEF(18d) 89.48%

Out-of-sample extensions
(ISOMAP):

Method Accuracy
Regression (10d) 85.25%
SEF(10d) 85.76%
SEF(20d) 89.48%

proj.fit(data=data, target labels=labels, target=’supervised’,76

epochs=10, batch size=128)77

transformed data = proj.transform(data)78
79

When the LinearSEF object is created the input dimensionality (dimensions80

of the original space), as well as the output dimensionality (dimensions81

of the target space) must be provided. Then, the embedding function is82

learned by calling the .fit() method and the data are projected into the83

learned space using the .transform() method. For non-linear projections84

the KernelSEF class can be similarly used. Table 1 summarizes some exper-85

imental results using the PySEF library and the MNIST dataset (http:86

//yann.lecun.com/exdb/mnist). A dataset loader is also provided to eas-87

ily load any of the six datasets that were originally used for evaluating88

the proposed technique along with detailed examples that allow for repro-89

ducing the results reported in [3]. Please refer to project’s documenta-90

tion http://pysef.readthedocs.io for more details.91

PySEF can be also easily extended by defining custom similarity targets92

and/or embedding functions. To define a custom similarity target, a function93

that adheres to the following signature must be defined:94

95

def custom similarity function(target data , target labels , sigma,96

idx, target params):97

Gt = np.zeros((len(idx), len(idx)))98

Gt mask = np.zeros((len(idx), len(idx)))99

Calculate the s imi lar i ty target here100

return np.float32(Gt), np.float32(Gt mask)101
102

The defined custom similarity target function must be passed to the target103

argument of the .fit() function. During the optimization the custom simi-104

larity function is called and the arguments target data, target labels, sigma105

(scaling factor of the similarity function) and target params (optional argu-106

ments) are passed to the similarity function. Note that the target data can be107

an h5py array stored in the disk, allowing the method to easily scale to larger108

4

datasets. Finally, the defined function must return both the target similarity109

mask (as calculated between the batch samples), as well as the optimization110

mask for the corresponding target (M in Equation 2). An extensive tutorial111

on how to define custom target functions is provided in the documentation of112

PySEF. New embedding functions can be defined by extending the SEF Base113

class. The subclass is expected to implement a set of functions (defined in114

SEF Base). Most reusable functions have been already implemented in SEF Base115

to reduce code duplication and simplify the implementation.116

5. Conclusions117

An efficient and modular implementation of the Similarity Embedding118

Framework (SEF) in Python, called PySEF, that allows for easily performing119

similarity-based dimensionality reduction (DR) as well as defining custom120

similarity targets and embedding functions was presented in this paper.121

Acknowledgements122

Nikolaos Passalis was supported by the General Secretariat for Research123

and Technology (GSRT) and the Hellenic Foundation for Research and In-124

novation (HFRI) (PhD Scholarship No. 1215).125

References126

[1] Y. Liu, Dimensionality reduction and main component extraction of mass spec-127

trometry cancer data, Knowledge-Based Systems 26 (2012) 207–215.128

[2] C.-X. Yin, Q.-K. Peng, A careful assessment of recommendation algorithms re-129

lated to dimension reduction techniques, Knowledge-Based Systems 27 (2012)130

407–423.131

[3] N. Passalis, A. Tefas, Dimensionality reduction using similarity-induced em-132

beddings, IEEE Transactions on Neural Networks and Learning Systems.133

[4] Pytorch: Tensors and Dynamic neural networks in Python with strong GPU134

acceleration, https://github.com/pytorch/pytorch (2017).135

[5] A. Collette, Python and HDF5, O’Reilly, 2013.136

[6] scikit-learn: machine learning in Python, https://github.com/137

scikit-learn/scikit-learn (2017).138

5

Required Metadata139

Current executable software version140

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version v0.2.9
S2 Permanent link to executables of

this version
https://github.com/passalis/

sef/releases/download/v0.2.9/

PySEF-0.2.9-py2.py3-none-any.

whl

S3 Legal Software License MIT License
S4 Computing platform/Operating

System
Linux, OS X, Microsoft Windows

S5 Installation requirements & depen-
dencies

Python 2.7 (or Python 3.5), Py-
Torch, numpy, scikit-learn, scipy

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

http://pysef.readthedocs.io

S7 Support email for questions passalis@csd.auth.gr

Table 2: Software metadata (optional)

Current code version141

6

Nr. Code metadata description Please fill in this column
C1 Current code version v0.2.9
C2 Permanent link to code/repository

used of this code version
https://github.com/passalis/

sef

C3 Legal Code License MIT License
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Python 2.7 (or Python 3.5)

C6 Compilation requirements, operat-
ing environments & dependencies

PyTorch, numpy, scikit-learn, scipy

C7 If available Link to developer docu-
mentation/manual

http://pysef.readthedocs.io

C8 Support email for questions passalis@csd.auth.gr

Table 3: Code metadata (mandatory)

7

