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Abstract

Time-series forecasting has various applications in a wide range of domains, e.g., forecasting stock markets using limit order
book data. Limit order book data provide much richer information about the behavior of stocks than its price alone, but also bear
several challenges, such as dealing with multiple price depths and processing very large amounts of data of high-dimensionality,
velocity and variety. A well-known approach for efficiently handling large amounts of high-dimensional data is the Bag-of-Features
(BoF) model. However, the BoF method was designed to handle multimedia data, such as images. In this work, a novel temporal-
aware neural BoF model is proposed tailored to the needs of time-series forecasting using high frequency limit order book data.
Two separate sets of Radial Basis Function (RBF) and accumulation layers are used in the Temporal Bag-of-Features to capture
both the short-term behavior and the long-term dynamics of time-series. This allows for modeling complex temporal phenomena
that occur in time-series data and further increase the forecasting ability of the model. Any other neural layer, such as feature
transformation layers, or classifiers, such as Multilayer Perceptrons, can be combined with the proposed deep learning approach,
which can be trained end-to-end using the back-propagation algorithm. The effectiveness of the proposed method is validated using
a large-scale limit order book dataset, containing over 4.5 million limit orders, and it is demonstrated that it greatly outperforms
all the other evaluated methods.
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I. INTRODUCTION

Time-series forecasting has various applications in a wide range of domains, e.g., forecasting stock markets [1], energy
load prediction [2], etc. The main focus of this paper is forecasting the mid price movement of stocks using high frequency
limit order book data. Note that several useful stock market forecasting tasks can be defined, e.g., forecasting the price of a
stock based on its behavior or predicting possible stock market crashes, thus protecting the investors. Limit order book data
[3], provide much richer information about the behavior of stocks than its price alone, but also bear several challenges, such
as dealing with multiple price depths and processing very large amounts of data of high-dimensionality, velocity and variety.
An order to sell or buy an amount of shares at a specific price or better is called limit order. This can be better understood
through the following example. A buyer who intends to buy 10 shares for at most $1 each will place a buy limit order with
volume of 10 and price $1. On the other hand, a seller who intends to sell 10 shares for at least $1 will place a sell limit order
with volume of 10 and price $1. Note that both the price and the volume are needed to define a limit order. All the ask and
bid prices and their corresponding volumes are kept in the order book. The bid orders are sorted in descending order of their
prices, while the ask orders are sorted in increasing order of their prices. When a bid order price exceeds an ask order price,
then they are executed by exchanging the corresponding assets. If the orders have different volumes, then the order with the
largest volume remains in the order book (after subtracting the volume used in the aforementioned transaction). The mid price
of a stock is the average between the highest bid and the lowest ask prices.

Many different methods have been proposed in the literature to classify time-series data [4]-[10]. In [4] and [5], distance
metrics, e.g., the Dynamic Time Wrapping, were developed to measure the distance between time-series. Then, the kNN
algorithm can be used to classify the data. More advanced techniques, such as [6], [7], [11], employ recurrent neural networks
or hidden Markov models to perform time-series forecasting. In contrast to these approaches, in this work the Bag-of-Features
model [8], [9], [12], is adapted towards efficiently processing large amounts of complex and high-dimensional limit order book
time-series.



The Bag-of-Features model (BoF) was initially proposed for efficiently extracting compact histogram representations from
images [13]. However, it was then successfully used for many different tasks, such as audio [10] and video [14] representation.
The BoF model involves the following steps: First, multiple features are extracted from each object (feature extraction step).
Each object can be represented as a set of features in the feature space formed by this process. Then, the dictionary learning
step follows, where the extracted feature vectors are used to form a compact dictionary that contains the most representative
features. These feature vectors are also called codewords. Finally, each feature vector is quantized using the codebook and the
corresponding object is represented by a histogram vector. During this step, which is called feature quantization and encoding
step, the histogram space is formed.

Using the BoF model it is possible to extract a constant length representation of time-series regardless their actual length.
The extracted representation captures part of the behavior of the time-series and it can be then used efficiently for various
classification tasks without having to directly process the raw data. However, a feature extractor must be first employed to
extract multiple feature vectors from a time-series before using the BoF model. Several options exist for this step. Perhaps the
simplest one is to consider each multi-dimensional time-series point as a separate feature vector [9]. More advanced techniques
involve using short intervals of various lengths to handle time warping [8], or even employing handcrafted feature extractors
for extracting more complex features [15], [16].

The representation power of the extracted histogram depends on the dictionary learning step. Early BoF methods, e.g,. [13],
[17], employed simple clustering algorithms, e.g., k-means, to learn a generic dictionary that minimizes the reconstruction loss
of the quantized vectors. However, supervised dictionary learning, e.g., [9], [18], [19], which learns a codebook tailored towards
a specific task, improves the classification accuracy. Even though supervised dictionary learning allows for the optimized BoF
model to perform significantly better than its unsupervised counterpart (this was also experimentally verified in Section IV-C),
it suffers from a major drawback. The process of aggregating the extracted feature vectors discards a great deal of temporal
information contained in the original time-series. The method proposed in this paper mitigates this problem by separately
modeling the short-term behavior and the long-term dynamics of the time-series significantly increasing the forecasting accuracy.

The contributions of this work are summarized bellow. First, the BoF model is expressed as a neural layer, which includes a
Radial Basis Function (RBF) layer and an accumulation layer. The proposed layer receives the feature vectors extracted from
a time-series and extracts its representation. Two separate sets of RBF and accumulation layers are used to describe the short-
term behavior as well as the long-term dynamics of the time-series. This allows for capturing complex temporal phenomena
that occur in time-series data and further increase the forecasting abilities of the proposed method (as it is demonstrated in
Section IV). Any other neural layer, such as feature transformation layers, or classifiers, such as Multilayer Perceptrons, can
be combined with the proposed deep learning approach, which is called Temporal Bag-of-Features (Temporal BoF) and can
be trained end-to-end using the back-propagation algorithm. To the best of our knowledge this is the first BoF-based neural
formulation that can model both the short-term behavior and the long-term dynamics of time-series data. The effectiveness of
the proposed method is validated using a large-scale limit order book dataset that contains over 4.5 million limit orders.

The rest of the paper is structured as follows. The related work is introduced and discussed in Section II, while in Section III
the proposed method is presented in detail. Next, in Section IV, the Temporal BoF is evaluated using a large-scale limit order
book dataset. Finally, Section V concludes the paper and introduces several interesting future work directions.

II. RELATED WORK

This work concerns both stock forecasting using limit order book data, as well as, supervised dictionary learning for time-
series classification using the BoF model. There are several recently proposed machine learning methods for predicting various
aspects of the financial markets using limit order book data [11], [15], [20]-[24]. In [15], a set of hand-crafted features are
extracted and then a Support Vector Machine (SVM) classifier is utilized to predict whether the mid price of a stock stays
stationary, increases or decreases, while a similar task is tackled using a deep learning approach in [11], [20], [24], [25]. A
different methodology is used in [21], and [22], where reinforcement learning is used to learn the optimal way to perform
trading. In contrast with these works, the proposed method is the first that utilizes a neural formulation of the BoF model,
that is capable of both handling large amounts of limit order book data and modeling the short-term, as well as the long-term
behavior of a stock.

Many dictionary learning methods for the BoF model were also proposed. In [26], the mutual information between each
codeword and the corresponding features labels is maximized, while in [27], multiple maximum margin hyperplanes are
employed and the corresponding codebook is adjusted to maximize these margins. However, this approach requires a quadratic
number of codebooks with respect to the number of the training classes. Later works, such as [18], and [28], where multi-class
SVMs are used, addressed this problem. A supervised dictionary learning approach that employs both an MLP layer and
a codebook layer was proposed in [29], while an end-to-end neural formulation was proposed in [19]. In [30], the logistic
regression loss was used to form the optimization objective, while the representation is learned using an LDA-based criterion in
[31]. The aforementioned approaches were developed to handle image classification tasks instead of time-series classification.

A BoF-based time-series representation approach was proposed in [9], where a discriminative objective was employed for
the optimization of the codebook. Also, in [12] a BoF-based method was combined with a retrieval-oriented loss function to



10-level
Ask/Bid Prices/Volumes

) (40 values) ( Feature
Financial Exchange » Feature Extraction Vectors
J L (144 values)

Trading
Decision /

\

Temporal BoF
Trader < ( Classifer
Long-Term
Mid-price L T-BoF Block
Forecast Histogram
(up/down/stay (32 values) K

probabilities)

Fig. 1: Pipeline of the proposed financial forecasting model

learn a retrieval-oriented representation. On the other hand, time-series segments of various lengths were employed in [8], to
allow for handling warping. A simple temporal modeling approach was also used in [16], while a neural BoF formulation was
used in [32] to classify time-series data. To the best of our knowledge, the proposed Temporal BoF approach is the first that is
capable of efficiently modeling both short-term behavior and the long-term dynamics of time-series data using a fully neural
architecture that can be optimized end-to-end towards forecasting.

III. PROPOSED METHOD

The pipeline of the proposed financial forecasting model is shown in Figure 1. First, the raw time-series stream is fed to
the employed feature extractor that extracts multiple feature vectors, following the procedure described in Subsection III-A.
Then, the extracted features are fed to the proposed Temporal BoF model to extract one constant-length representation for
each time-series that models both its long-term and short-term behavior using two separate codebooks (Subsection III-B). The
extracted histogram is then received by a classifier to predict the mid price movement (Subsection III-C). Note that end-to-end
training is employed to simultaneously learn all the parameters of the proposed model (Subsection III-D). The predicted mid
price movements (forecast) are then evaluated by a domain expert (trader), who makes the final trading decision.

A. Feature Extraction

As discussed in Section 1, several different methods can be used to extract multiple feature vectors from a time-series. In
this work, the feature extraction method proposed in [15] was employed to extract various features from the limit order book
data. The raw order book data consist of the k highest bid and the k lowest ask prices and volumes:
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where v and p, " is the volume and the price at the ¢-th level on the bid side, while v, and p, are the corresponding
values for the ask side. The number of levels k& was set to 10. Therefore, for each time-step 40 values are used as input to
the feature extractor. Following the feature extraction process described in [15], the following features were extracted from
each raw time-series: a) the raw 10-level order book data (volumes and prices for both the bid and ask sides of each level), b)
time-insensitive features (spread and mid prices, price differences, price and volume means and accumulated price differences)
and c) time-sensitive features (price and volume derivatives, average intensity and intensity comparisons, as well as limit
activity accelerations). These statistics are calculated every 10 time steps, effectively sub-sampling the data by a factor of 10.
The dimensionality of the extracted feature vectors, denoted by x;;, is 144 and each feature vector carries information for the
short-term behavior of the corresponding stock during the last 10 orders. The interested reader is referred to [15] for a detailed
description of the extracted features. Each of the 144 values were normalized using z-score standardization, i.e., the data were
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Fig. 2: The architecture of the proposed Temporal BoF model

normalized to have unit variance and zero mean. Note that only the training set statistics were used for the normalization
process to ensure a fair evaluation of the proposed method (the test set statistics cannot be known beforehand).

B. Temporal BoF Quantization

The i-th time-series can be represented by a set of IV; feature vectors: {x;; € RP, j=1,...,N;}, where D denotes the
dimensionality of the extracted feature vectors (D = 144 if the feature extraction process described in the previous subsection
is used). The proposed method is capable of modeling both the long-term dynamics and the short-term behavior of a time-series
using two different quantization layers with separate codebooks. For each extracted feature vector x;;, two binary variables
are introduced, sz(-é-ong ) and sz(-;fhm't), to indicate whether the corresponding feature vector is used for compiling the long-term
or the short-term representation. The intuition behind the proposed Temporal BoF quantization is to use a longer horizon Ny,
to model the long-term dynamics of a stock, while employing a small window Ng to model its short-term dynamics. That is,

for the i-th time-series, the binary variables are set as:

(long) 1,if 4 > N; — N (N1, most recent time-steps)
ij = . ; (1)
0, otherwise
and
(short) 1,if ¢ > N; — Ng (Ng most recent time-steps) @)
S . =
" 0, otherwise ’

assuming that a total of N; feature vectors have been extracted and the feature vectors are sorted from the earliest to the most
recent one. The Ng most recently extracted feature vectors are used to calculate the short-term histogram, while Ny, feature
vectors from a longer horizon are used for the calculation of the long-term histogram that models the long-term behavior of
each time-series. Therefore /Ny, is set to a value larger than Ng, i.e., N > Ng. Even though Ny, can be set to INV;, i.e., all the
available feature vectors can be used to model the long-term behavior, Ny, is set to a smaller value due to memory constraints.
Also, note that, by definition, the feature vectors used for the short-term histogram are always used for compiling the long-term
representation, but not vice-versa.

The Temporal BoF model is composed of two blocks, the short-term block and the long-term block, as shown in Figure 2.
Each of these blocks is further composed of two sub-layers. First, an RBF layer is employed to measure the similarity of
the input feature vector to the RBF centers. Then, an accumulation layer is used to build the final histogram. Therefore,
the proposed method can be thought as a neural layer that feeds the extracted histogram to a subsequent classifier, as it is
demonstrated in Figure 1.

The activation of the k-th RBF neuron of the m-th block (either m = 0 for the long-term block, or m = 1 for the short-term
block) is calculated as:

(D)t = exD(— 1% — Vink) © Wk |]2) € R, 3)

where x is a feature vector, v,,; is the center of the k-th RBF neuron of the m-th layer block and ® is the element-wise
multiplication operator. An additional weight vector w,,,;, € RP also exists for each RBF neuron. In that way, the width of the



Gaussian function of each RBF neuron can be independently finetuned towards the task at hand. In this work, a normalized
RBF architecture is employed to ensure that the output of each neuron is bounded:

exp(—|[|(x — vink) © Winkl|2)
ch 1 exp(—||(x = Vink) © Winkl|2)

Note that the center of each RBF neuron acts similarly to the codewords used in the regular BoF model. Therefore, after
feeding a feature vector into the (normalized) RBF neurons, the output of the RBF layer is a membership vector that expresses
the similarity between the current feature vector and the codewords/RBF centers. It can be easily shown that this formulation
is equivalent to the BoF model that uses soft quantization, as proved in [19]. Hard quantization is also supported, as described
in [19]. However, hard quantization introduces non-continuities that make the optimization intractable.

The extracted membership vectors are then accumulated (averaged) in the next layer of the first (long-term) block, compiling
the final long-term histogram representation of each time-series, similarity to the plain BoF model [19], as:

[P(x)]imk = )

<long Z% (xij) © si"? € RN, 5)

where @,,(x) = ([¢(X)]m1,-- -, [@(X)]mny )T € RVE is the output of the first layer of the m-th block and Ni(long) =
Z;\f:l sgéong) is the number of features fed to the long-term block. Each h,,; has unit /! norm, defines a histogram and
describes the long-term behavior of each time-series. Note that only the Ny most recent feature vectors contribute to the
histogram h;. Similarly, the short-term histogram is calculated as:

hli short Z (bl Xl] th“t) RNK’ (6)

where Ni(ShOTt) = Zjvfl s(éhmt) is the number of feature vectors fed to the short-term block. Again, only the Ng most recent
feature vectors contribute to the short-term histogram vector. The final histogram representation h; of the i-th time-series is
extracted by concatenating the long-term histogram hg,; and the short-term histogram h;;:

h, = <h0i> € R2Vk %
hy;

The same number of Nx RBF neurons are used for both the long-term and the short-term histograms, leading to a representation
with length 2N . The vector h; is then used for the subsequent forecasting tasks.

C. Temporal BoF Forecasting

The proposed Temporal BoF layer receives the time-series features and extracts its histogram h;, which is composed of
the long-term histogram hg,; and the short-term histogram hy;. Then a classifier is used to predict the future behavior of the
time-series using the extracted histogram vector. A multilayer perceptron (MLP) is used in this work, even though any other
differentiable classifier can be used.

For each time-series ¢ a label ¢; is used to denote its class, while the number of possible categories is denoted by N¢. Also,
let Wy € RV#*(2Nk) denote the weight matrix of the hidden layer weights and W € RNe*N# denote the corresponding
weight matrix of the output layer, where Ny is the number of hidden neurons. The activations of the hidden layer for a given
histogram h; are computed as:

pi = ") (Wyh; + by) € RV#, (®)

where r;S (elu) ( ) denotes the elu activation function [33], and by € RM# is the bias vector of the hidden layer. The parameter
Qely 18 set to 1, following the suggestions of [33]. The output of the final classification layer is calculated as:

yi = ¢t (Wip, + bo) € RVe, 9)

where each neuron corresponds to a label, bp € RN¢ is the bias vector of the output layer and ¢(*°ftma%) g the softmax
activation function.

D. Temporal Bag-of-Features Learning
To train the network, the categorical cross entropy loss function is used:

N Nc¢

== [ti]; log([y.]; (10)

i=1 j=1



Input: A set X = {z1,..., 2y} of N training time-series and the ground-truth prediction labels £ = {¢1,...,tn}
Hyper'parameterS: g, Nk, Niterss Nu, Npiters’ Nyatchs nmLp, v, NMw
Output: The trained neural network
1: procedure OPTIMIZENETWORK
2: Use random orthogonal initialization to initialize the MLP weights
Initialize the RBF centers v and vy (for each k) using the k-means algorithm
Initialize both wog and wyy to 1/g
Use the ADAM algorithm the pre-train the classification layer (MLP)
for i < 1;% < Njters;t + + do
for every batch B € X do
Feedforward the extracted feature vectors
Backpropagate the network and compute

the corresponding gradients
10: Apply the Adam algorithm and

optimize the network
return the optimized parameters v,,x, Wyx and Wy, rp

Fig. 3: Temporal BoF Learning Algorithm
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The target output vector is denoted by t; € RV and depends on the label (t;) of the input time-series. Therefore, the
target vectors is defined as: [t;]; = 1, if j = ¢;, or [t;]; = 0, otherwise. Since the employed Temporal BoF formulation is
differentiable, the back-propagation method is employed for learning the parameters of the network using gradient descent:
oL oL oL
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where W1, p denotes all the parameters of the classification layer. The derivatives defined in Equation (11) are calculated
in Appendix A. Note that only the feature vectors that actually contribute to the calculation of each histogram are used to
back-propagate the gradients to the corresponding RBF neurons. In other words, during the learning process, the short-term
neurons are adapted to the features that model the short-term behavior of a time-series, while the RBF neurons of the long-term
block are trained to model its long-term behavior.

The Adam (Adaptive Moment Estimation) algorithm [34], is employed for training the proposed model. The magnitude
of the gradients of different parameters of the network varies largely. Therefore, to ensure a smooth convergence a different
learning rate must be used for each parameter to account for the differences in the magnitude of the gradients. The largest
learning rates that provided smooth convergence were used. Therefore, for the conducted experiments the following learning
rates were employed: Ny, p = v = 0.001 and ny = 0.01. Using lower learning rates is not expected to harm the classification
performance, but more optimization iterations will be required, since the convergence speed is proportional to the used learning
rate.

The codebook is initialized using the k-means algorithm to cluster the feature vectors S = {x;;|li =1,...,N,j=1,..., N;}.
Then, the corresponding centroids can be used to initialize the neurons. Note that the centers of the RBF neurons are not fixed.
Instead, they are learned using the back-propagation algorithm. The weight vectors of the RBF neurons are initially set to 1/g,
where g is a positive number. Again, the RBF input weights (w},) are learned during the training process. The initialization
process is appropriately repeated for the two separate sets of RBF neurons that are used, i.e., for the short-term block and the
long-term block.

The complete learning algorithm for the Temporal BoF model is shown in Figure 3. First, the parameters of the MLP are
initialized using random orthogonal initialization [35] (line 2). Then, the RBF centers of the short-term and the long-term
blocks are initialized by running k-means on a subsample of the extracted feature vectors and the input weights of the RBF
neurons are set to 1/g (lines 3-4). The output layers (MLP) are pre-trained for Npisers to avoid back-propagating gradients
from a randomly initialized output layer to the BoF layers (line 5). Finally, the training time-series are fed to the network
in batches of Np.:cp, and all the parameters of the network are optimized using the Adam algorithm (lines 6-10). For all the
conducted experiments the network was trained for N, = 5000 iterations using batch size of Npqt.p = 32. For pre-training
the MLP N, = 500 iterations were used. Note that the used financial dataset is highly unbalanced, since most of the time
the mid price remains stationary. Therefore, time-series from the less common classes were sampled with a higher probability,
i.e., in each batch the same number of samples of each class were used. The architecture of the network, i.e., the number of
RBF neurons, the number of hidden neurons, etc., was selected using experiments on a validation set (Section I'V-C).

AW rLp, Vink, Wimk) = —(MumLp

IV. EXPERIMENTS

In this Section the proposed method was evaluated using a large-scale limit-order book dataset. First, the used dataset is
briefly described and the utilized pre-processing and feature extraction procedures are introduced. Then, the evaluated metrics
and the experimental evaluation under different evaluation setups are presented and discussed.



TABLE I: ISIN (International Securities Identification Number), market capitalization and average number of shares traded for
each of the used stocks (Statistics for June 2010)

Stock ISIN Market Cap. # traded shares
Kesko Oyj FI0009000202  $1.8 billions 179,625
Outokumpu Oyj | FI0009002422  $2.3 billions 1,387,391
Sampo Oyj FI0009003305  $9.7 billions 1,265,170
Rautaruukki FI0009003552  $1.7 billions 746,385
Wartsila Oyj FI0009003727  $3.7 billions 338,595
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Fig. 4: Effect of varying various hyper-parameters

A. Dataset Acquisition and Preprocessing

To evaluate the proposed method a limit order book dataset, called FI-2010 in this paper, was collected [36]. The FI-
2010 is a large-scale dataset that consists of limit order book data that were collected from 5 Finish companies traded in
Helsinki Exchange (operated by Nasdaq Nordic): Kesko Oyj (retail industry), Outokumpu Oyj (steel industry), Sampo Oyj
(insurance industry), Rautaruukki (steel industry), and Wartsila Oyj (manufacturing industry). The ISIN (International Securities
Identification Number), the market capitalization, and the average number of the shares traded for each stock during the data
collection period (July 2010) is shown in Table I. For each time-step the 10 highest bid and 10 lowest ask orders prices and
volumes were collected. The data were gathered over a period of 10 business days (1st June 2010 to 14th June 2010) and a
total number of 4.5 million limit orders were collected. The feature extraction process described in Section III-A was used
leading to 453,975 extracted feature vectors. The performance of the algorithms was evaluated using the following setup:
The 15 most recently extracted feature vectors were used to predict the direction (up, stationary or down) of the mean mid
price after k£ time-steps. A moving average filter (window size 9) was used to filter the mid prices. The proposed method was
evaluated for the prediction of the mid price’s direction for the next 10, 50 and 100 time-steps. For each of them, the threshold
for considering the stock stationary was set to 0.01%, 0.02%, and 0.03% respectively. Note that as the prediction horizon
increases, then the changes in the mid price are becoming larger. An anchored setup was used to evaluate the methods [37].
First, the data that were extracted from the first day were used to train the model, while the data from the second day were
used for the evaluation. Then, the two first days were used for the training and the next day was used for the evaluation, etc.
For all the evaluated metrics, the mean and the standard deviation are reported.

B. Evaluation Metrics

To evaluate the performance of the proposed method the following metrics were employed: a) accuracy, b) macro-precision,
¢) macro-recall d) macro-F1 per class [38], and e) Cohen’s x metric [39]. Accuracy is defined as acc = Neorrect/ Niotai, Where
Neorrect 18 the number of predicted labels that match the ground truth labels and N, is the total number of samples. Let TP,
FP., TN, and F N, denote the true positives, false positives, true negatives and false negatives (respectively) for a class c. Then,
the precision of a class is defined as prec. = TP, /(T P.+ F P.), while the recall as recall. = TP./(TP.+FN,). The F1 score
for a class ¢ is calculated as the harmonic mean of the recall and the precision, i.e., F'1. = 2-(prec.-recall..)/(prec.+recall,).
Macro-averaging is used, i.e., the metrics are separately calculated for each class and then averaged together. The Cohen’s
k allows for evaluating the agreement between two different sets of annotations, while accounting for the possible random
agreements. Cohen’s « is defined as k = (pg — pe)/(1 — p.), where pg is the probability of agreement between the predicted
labels and the ground truth, while p. is the probability of having random agreement after taking into account the statistics of
the classes [39]. For all the evaluated metrics, higher values indicate better classification performance.



TABLE II: Ablation Study

Method | F1 (%) Cohen’s
Long-term 41.63 + 1.90 0.1724 4+ 0.0212
Short-term 43.19 + 2.34 0.1876 4+ 0.0250

Long-term + Short-Term | 43.96 +1.59 0.1992 + 0.0201

C. Hyper-parameter Selection and Stability Analysis

Before evaluating the proposed method using the FI-2010 dataset, the effect of hyper-parameters is evaluated. To this end, a
validation set that consists of the last two days of the FI-2010 data was used. The proposed Temporal BoF model, abbreviated
as T-BoF, is compared to two other BoF-based methods: the regular unsupervised BoF model [13], and a recently proposed
neural formulation of the BoF model [19], which is called Neural BoF (abbreviated as N-BoF). The same classifier, i.e., an
MLP with 512 hidden units, is used for all the evaluated methods.

The effect of varying the scaling parameter g on the Cohen’s x metric is shown in Figure 4a (32 codewords/RBF neurons
were used for the conducted experiments). Note that the value g remain fixed through the training process for the BoF model,
while for the N-BoF and the T-BoF methods the value of g is only used to initialize the input weights of the RBF neurons
that are then learned during the training. Using large values, i.e., g > 1, seems to significantly improve the performance of
the N-BoF and the T-BoF methods that peak around g = 5 and g = 10 respectively. Note that in other domains, e.g., image
classification, harder assignments g < 0.1 seem to work better [19]. However, due to the relatively small number of extracted
feature vectors (15 feature vectors are extracted from each time-series) softer assignments leads to significantly improved
forecasting accuracy. On the other hand, for the BoF model large values for the scaling parameter harm the forecasting abilities
of the model. When the simple BoF model is used the best results are obtained for g = 0.5. Note that the proposed combined
short-term and long-term modeling of the time-series used in the Temporal BoF always improves the x metric, regardless
selected scaling factor g, highlighting the importance of capturing both the short-term and long-term time-series dynamics.
For all the conducted experiments the feature vectors extracted from the last 15 time-steps were used for compiling the long-
term representation, while the feature vectors extracted from the last 5 time-steps were used for compiling the short-term
representation.

The effect of varying the number of codewords is shown in Figure 4b. The performance of both N-BoF and the T-BoF
models are relatively stable, given that at least 16 neurons are used. For the regular BoF model, the forecasting performance
stabilizes when 32 RBF neurons are used. The best performance for the BoF model is achieved when 128 RBF neurons are
used, while for the N-BoF model is achieved for 16 neurons. For the proposed T-BoF model 16 RBF neurons are used in each
of the two temporal BoF blocks leading to a total number of 32 RBF neurons (which is the same as in the N-BoF model).
Again, the proposed Temporal BoF model outperforms all the other evaluated models for any number of used codewords/RBF
neurons.

Also, the effect of varying the number of hidden neurons is evaluated in Figure 4c (the curves were smoothed using a
moving average filter with window size 2 to reduce the fluctuations). The classification performance tends to increase as the
number of hidden neurons increases for all the evaluated models. However, using more hidden neurons also increases the
complexity and the training time of a model. Therefore, for all the conducted experiments the number of hidden neurons was
set to Ny = 512, which provided the best trade-off between classification performance and complexity.

Also, an ablation study is provided in Table II, where the effect of the long-term, short-term and the combined long-
term/short-term representation is evaluated (the prediction target was set to the next 10 time-steps, while the best selected
hyper-parameters were used for the conducted experiments). The short-term representation seems to have a larger influence
on the forecasting accuracy. Nonetheless, the proposed T-BoF method, which combines both the short-term and the long-term
representations, significantly outperforms the rest of the representations. In Table III the performance of the proposed T-BoF
method is also evaluated for different number of feature vectors used to compile the short-term representation (Ng). Using the
5 most recent features vectors leads to the best classification performance. Note that using more feature vectors decreases the
evaluated metrics since the short-term representation starts overlapping with the long-term representation, for which the last
15 feature vectors were used. Using more feature vectors for the long-term representation can have a positive effect on the
classification performance, but also requires more memory for storing the vectors. Therefore, in the conducted experiments the
number of feature vectors used for compiling the long-term representation was set to Nz, = 15. The selected hyper-parameters
are summarized in Table IV. The total representation length is also reported in the last line of Table IV.

Finally, the effect of the dataset size on the forecasting accuracy is evaluated in Table V. The prediction target was set to the
next 50 time-steps, the proposed T-BoF method was used for all the conducted experiments, while the last test split (day) was
used for the evaluation. Therefore, the proposed method was evaluated using the most recent k days for the training process.
Using more data seems to steadily increase the classification accuracy, which peaks when the 8 most recent days were used
for training. Using training data over a longer horizon can possibly negatively impact the forecasting accuracy, due to concept
drift issues [40], as demonstrated in Table V when the last 9 days were used: the x metric drops from 0.30 (training with data



TABLE III: Effect of varying the number of feature vectors (/Ng) used for compiling the short-term representation

Short Term Horizon \ Precision  Recall F1 Cohen’s
1 46.24 57.24 46.84 0.2379
2 46.82 58.74 47.49 0.2469
5 47.34 58.68  48.21 0.2558
7 45.71 59.14 43.21 0.2101
10 46.01 56.21 45.46 0.2222

TABLE IV: Hyper-parameters selected for the conducted experiments

Hyper-parameters BoF N-BoF T-BoF
Learning rate s 1 p 0.001

Learning rate ny 0.001

Learning rate 7g 0.01
Short-term horizon Ng 5

Long-term horizon Ny, 15

# hidden neurons N 512

# codewords N 128 16 16
Scaling factor g 0.5 5 10
Representation length 128 16 32

from 8 days) to 0.26 (training with data from 9 days).

D. Experimental Evaluation

The experimental results using the anchored evaluation protocol for different prediction targets are shown in Table VI. The
mid price movement was predicted for the next 10, 50 and 100 time-steps (prediction targets). An MLP with 512 hidden units,
that utilizes the last feature vector extracted from the time-series, was used as baseline method for the conducted experiments.
Apart from the MLP, two unsupervised BoF-based models were employed: a) a simple BoF model that uses all the extracted
feature vectors and b) a BoF model that uses two independent (unsupervised) codebooks, one for short-term modeling and one
for long-term modeling. The first approach is denoted by “BoF”, while the latter by “BoF-2T”. The proposed method is also
compared to a powerful state-of-the-art supervised BoF method, the Neural BoF (N-BoF) [19], [32].

Several conclusions can be drawn from the results reported in Table VI. First, learning all the parameters of the BoF model
using the Neural BoF method allows for significantly increasing the forecasting performance for all the evaluated metrics,
confirming the importance of the supervised dictionary learning. Also, the temporal modeling involved in the “BoF-2T”
approach increases the classification metrics over the plain BoF approach. Nonetheless, the proposed Temporal BoF method
further increases the evaluated metrics for every prediction target both over the baseline MLP and the other BoF formulations.
For example, the Cohen’s x metric increases over 65% for predicting the mean mid price of the next 10 time-steps, over
70% for predicting the mean mid price of the next 50 time-steps, and over 60% for predicting the mean mid price of the
next 100 time-steps. Note that predicting the mid-term behavior, i.e., the movement of the average mid price for the next 50
time-steps, is easier than the more short-term predictions, i.e., predicting the movement of the average mid price for the next
10 time-steps. This behavior can be understood if the noisy and high frequency nature of the short term mid price movements
is considered. Therefore, it is easier to predict the more stable and noise-free mid-term behavior rather than the very short-term
noisy movements. The precision, recall and F1 score for each class are also reported individually for the best performing model
(predication target 100) in Table VII. It is worth noting that approximately 74% of the data belong to the stationary class,
while the rest 26% of the data belong to the up (13%) and down (13%) classes. Therefore, an appropriately biased random
classifier (according to the aforementioned class probabilities) would achieve around 13% precision/recall for the up and down
classes and a mean precision/recall/F1 score of 33%.

TABLE V: Effect of the dataset on the forecasting accuracy (prediction target: 50)

Training Days (# samples) F1 Cohen’s
1 (57,536) 40.93 0.1736
2 (117,094) 45.76 0.2323
3 (161,778) 43.92 0.2163
4 (208,616) 49.35 0.2592
5 (249,372) 48.98 0.2622
6 (292,209) 50.58 0.2818
7 (325,514) 48.93 0.2654
8 (370,213) 52.70 0.3039
9 (417,140) 48.83 0.2638




TABLE VI: Evaluation results using the FI-2010 dataset

Method Predict Target Accuracy Precision Recall F1 Cohen’s K
MLP 10 55.81 + 6.98 40.20 £ 0.50 56.25 + 2.20 36.91 +1.81 0.1281 £ 0.0137
PCA 10 55.91 + 6.98 39.69 + 0.83 53.98 + 1.89 36.32 + 2.26 0.1209 £ 0.0188
LDA 10 56.00 + 6.47 39.56 + 0.91 53.60 + 2.29 36.17 + 1.76 0.1187 £ 0.0146
AE 10 57.41 +6.49 40.07 £ 1.15 54.24 + 1.63 37.17+2.71 0.1263 £ 0.0231
BoF 10 57.59 £ 7.34 39.26 + 0.94 51.44 + 2.53 36.28 + 2.85 0.1182 £ 0.0246
BoF-2T 10 59.09 + 6.33 40.02 £ 0.90 54.05 + 2.08 37.64+2.14 0.1345 £+ 0.0195
N-BoF 10 62.70 +6.73 42.28 £0.87 61.41 + 3.68 41.63 £1.90 0.1724 £ 0.0212
T-BoF 10 63.96 £+4.94 43.85+1.11 66.66+3.40 43.96+1.59 0.1992+0.0201
MLP 50 52.25 + 5.48 44.03 £1.25 52.67 + 1.56 41.91 £+ 2.33 0.1787 £+ 0.0229
PCA 50 52.59 + 5.59 43.39 £1.34 51.20 + 1.94 41.34 £1.81 0.1730 £ 0.0202
LDA 50 53.60 + 3.72 43.12 £1.52 50.46 + 2.01 41.48 £1.83 0.1726 £ 0.0205
AE 50 52.76 + 4.00 43.48 £1.31 50.99 + 1.62 41.32+£1.94 0.1722 £ 0.0193
BoF 50 50.21 + 5.59 42.56 £ 1.26 49.57 £ 2.28 39.56 + 2.36 0.1576 £ 0.0254
BoF-2T 50 53.34 + 3.92 43.70 £1.19 51.51 +1.75 41.79 £ 2.05 0.1803 £ 0.0239
N-BoF 50 56.52 + 8.67 47.20 £1.80 58.17 + 2.61 46.15 £ 4.07 0.2285 £ 0.0419
T-BoF 50 59.43+5.28 4958+210 63.50+2.54 49.82+3.18 0.2723+0.0348
MLP 100 52.26 + 6.06 44.76 £1.71 51.65 + 2.15 43.29 £2.87 0.1904 £ 0.0301
PCA 100 51.70 & 5.53 43.64 £ 1.47 49.16 £ 1.39 41.85 + 2.83 0.1747 £0.0273
LDA 100 53.96 + 5.69 43.52 +1.81 48.28 £2.22 42.27 £2.95 0.1761 £ 0.0295
AE 100 51.96 + 7.13 43.75 £ 1.66 48.76 £ 1.76 41.78 £ 3.37 0.1725 £ 0.0329
BoF 100 50.97 + 5.62 42.89 + 1.46 47.84 £ 2.08 40.84 £2.78 0.1641 £ 0.0300
BoF-2T 100 54.34 + 5.44 43.51 £ 1.34 48.42 +1.83 42.58 £2.19 0.1811 £ 0.0275
N-BoF 100 56.43 + 6.86 4727 £1.72 54.99 + 2.19 46.86 £ 2.87 0.2300 £ 0.0338
T-BoF 100 57.94+542 49524217 59.35+249 49.65+3.62 0.2647+0.0414

TABLE VII: Per class precision, recall and F1 score for the best performing model (T-BoF)

Class | Precision Recall F1

T 31.76 +4.14 57.46 £5.43  40.56 + 3.32
— 86.84 +4.89 57.49£7.92 68.79 &+ 6.03
1 29.97 £6.58 62.95+7.82 39.66 £5.14

The proposed method was also compared with three other feature learning baselines in Table VI: a) the Principal Component
Analysis (PCA) method [41], the Linear Discriminant Analysis (LDA) method [42], and an Autoencoder (AE) [43]. All methods
received the same input as the MLP (a 144-valued feature vector) and reduced its dimensionality into 64 values (2 values for
the LDA method). The autoencoder was trained for 2000 iterations and the same setup (activation function, input scaling, etc.
) as the MLP was used. After extracting the new representation, an MLP was trained to classify the samples (as in the other
methods). Even though these feature learning methods perform better than the plain BoF model, the proposed T-BoF approach
significantly outperform them.

Next, the average feed-forward (forecasting) time for the various BoF-based models was evaluated. The results are shown in
Table VIII. Both the N-BoF and the proposed T-BoF methods significantly reduce the classification time, while also requiring
the least amount of memory. Therefore, the proposed method can accurately and promptly classify new data samples, providing
an efficient and useful tool for high-frequency trading applications. Note that the best hyper-parameters, as reported in Table IV,
were used for the conducted experiments.

The distribution of the activations of the RBF neurons/codewords are visualized in Figures 5, 6 and 7 to provide better
insight and further evaluate the proposed methods. The mean value, the extrema (minimum and maximum values), as well
as the density of the distribution are shown in the corresponding figures. In this way, it is possible to perform a qualitative
comparison between the evaluated methods and compare their discriminative power. The last prediction target (100 time-steps
ahead) is used for the conducted experiments. For the BoF and the N-BoF method 8 codewords are used, while for the proposed
method 4 codewords are used for each temporal block leading to a total of 8 codewords. In the BoF model (Figure 5) two
winning codewords (4 and 6) almost dominate over all the others restricting the representation ability of the model. In contrast,

TABLE VIII: Average feed-forward time for various BoF-based models and total number of parameters (average over 100
runs, a 4-core 3.2GHz CPU workstation with 16GB of RAM was used for the conduced experiments)

Model \ Time Number of parameters
BoF 0.972 msec 86k
BoF-2T | 1.632 msec 170k
N-BoF 0.524 msec 12k
T-BoF 0.543 msec 23k



both the Neural BoF and the proposed Temporal BoF models lead to a much more rich distribution over the activations of the
RBF neurons, increasing the representations power of the models, which is also indicated by the better forecasting performance
(Table VI). Note that specific neurons are associated with specific mid price movements. For example the 3rd neuron is mostly
activated for a downward movement, the 6th neuron fires when the mid price stays stationary, while the 5th neuron is more
often activated when the mid price increases. For the Temporal BoF model the 5th neuron is more strongly associated with
the stationary class, while the 3rd neuron is mostly activated with the upward movements. Similar conclusions can be draw
for the other neurons as well.
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Fig. 7: Temporal BoF: Histogram distributions for three different mid price movements

The histograms of the learned models can be also used to visualize the time-series data and provide a new analysis tool
that can be used in combination with visualization methods. In this work, the t-Distributed Stochastic Neighbor Embedding
(t-SNE) [44] is used to visualize the data, demonstrating the ability of the proposed method to actually learn the structure
of the financial market. The t-SNE algorithm is a powerful data visualization method that works by learning a nonlinear
low-dimensional embedding that accurately models the neighbor interactions between the data points. The resulting data points
are learned in such way that the local relationships between the data points are maintained. Even though t-SNE is not an
essential part of the proposed method, it allows for performing exploratory analysis using the learned representation, as well
as comparing the representations learned using different methods. The scatter plot of the 2-dimensional data for three different
methods (BoF, N-BoF and T-BoF) are provided in Figure 8. The perplexity of the t-SNE algorithm was set to 20, Nxg = 8
codewords were used for all the evaluated methods and 1000 randomly selected training time-steps were visualized. Each
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Fig. 8: Visualizing the learned BoF-based representations using the t-SNE algorithm. Different markers correspond to different
stocks. The name of each stock is shown in the legend. (Figure is best viewed in color)

TABLE IX: Forecasting performance per stock and day (the first two days were used for training, while the next 5 days were
used for evaluating the forecasting performance). The F1 measure and the Cohen’s « are reported.

Stock Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 9 Total

(F1 (%), k) ((F1 (%), k) (F1 (%), k) (F1 (%), x) (F1 (%), k) (F1 (%), k) (F1 (%), v) (F1 (%), k)
Kesko (47.31, 0.223) (44.92, 0.184) (47.11, 0.2219)  (41.39, 0.131) (4540, 0.191)  (44.82, 0.179)  (40.55, 0.136)  (44.49, 0.185)
Outokumpu (39.91, 0.171) (48.85, 0.257) (41.92, 0.191) (39.04, 0.167)  (47.29, 0.247)  (36.57, 0.146)  (41.07, 0.193)  (43.62, 0.206)
Sampo (45.74, 0.216) (46.19, 0.199) (46.44, 0.205) (47.10, 0.225)  (45.96, 0.197)  (42.78, 0.162)  (48.53, 0.248)  (46.02, 0.208)
Rautaruukki | (42.08, 0.166) (40.31, 0.146) (45.23, 0.194) (38.56, 0.131)  (41.15, 0.149)  (43.32, 0.159)  (40.36, 0.145)  (41.61, 0.156)
Wartsila (40.46, 0.146)  (40.85, 0.1616) (41.24, 0.160) (4340, 0.191)  (45.19, 0.199)  (40.31, 0.147)  (36.07, 0.099)  (41.38, 0.161)

of the five different stocks is marked with a different color/shape in Figure 8. It is evident that the proposed Temporal BoF
leads to a much better separation of the different stocks in the 2-D space than the BoF and the N-BoF models. This behavior
is quite interesting since the models were not trained to distinguish between different stocks, but to forecast the mid price
movement direction. Therefore, apart from predicting the stock mid price movement, the trained models were capable of
learning the structure of the financial market, which can be then further analyzed by the domain experts (e.g., by examining
stocks with similar behavior or studying outliers). For example, note that points that correspond to the insurance industry
are well separated from the other industries, e.g., steel and energy industries, that are more interconnected. Furthermore, note
that the high-frequency patterns can be independent from the long-term behavior of a stock, as they mostly depend on the
short-term liquidity properties, e.g., the depth of the limit order book and the trading frequency. This is confirmed in the plots
of Figure 8, since the two most frequently traded stocks (based on the average number of shares traded), i.e., the Outukumpu
and the Sampo, are well separated from the other three, less frequently traded stocks.

Finally, the forecasting performance of the proposed method was also individually evaluated for the five different stocks and
test splits (days). The results are shown in Table IX. Even though there are no significant differences between the different
days, the proposed method was able to predict the behavior of some stocks more accurately. More specifically, the model was
more accurate for the “Sampo”, “Kesko” and “Outokumpu” stocks, which can be also attributed to the nature of the stocks.
For example, the “Sampo” (> 26,000,000 shares traded during June 2010) and the “Outokumpu” (> 29,000,000 shares traded
during June 2010) are among the most frequently traded stocks allowing the model to more easily learn the market’s dynamics
regarding these stocks. Therefore, the model was more prone to failure when predicting the behavior of stocks for which there
were fewer trades and, as a result, less training data.

V. CONCLUSIONS

A temporal extensions of the BoF model was proposed in this paper. The proposed neural layer is composed of a set of
RBF and accumulation layers, that can model both the short-term dynamics and the long-term behavior of time-series. The
effectiveness of the proposed approach was validated using a large-scale limit order book dataset for predicting mid price
movements. It was demonstrated that the proposed approach outperforms all the other evaluated baseline and competitive
methods, while reducing the size and the complexity of the network over the regular BoF model. Finally, it was demonstrated
that the Temporal BoF representation is capable of learning the dynamics of the financial markets, allowing the Temporal BoF
to be used as a novel visualization tool that can provide further insight to domain experts.

There are many future research directions. First, the proposed method provides a powerful data analysis tool that can be also
used for other tasks apart from time-series forecasting, e.g., interactive exploratory analysis [45]. Furthermore, the quantization
process involved in the proposed BoF-based method has been proven to withstand distribution shifts more successfully than
other models. This was also demonstrated in [46], where a BoF formulation was employed for multi-scale image classification
using deep convolution neural networks. Using a multi-scale time-series-oriented training scheme will possibly allow the method
to handle distribution shifts more effectively. Finally, recurrent models, e.g., [6], [11], can be employed and combined with the



proposed method to further increase the modeling capacity of the short-term and long-term histograms by providing a dynamic
approach for accumulating the quantized feature vectors.
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APPENDIX A
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The derivative that projects the MLP’s gradients into the long-term RBF centers is calculated as:
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The derivative of the RBF weights is similarly calculated as:
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Finally, note that the derivatives 6[51‘% Jom and avy]o’" do not exist when a feature vector and a codeword coincides. In this

case, the corresponding derivatives are set to 0. Also, the derivatives of the short-term BoF neurons can be similarly calculated.

The rest of the derivatives, i.e., the MLP derivatives 6V\? L__ are straightforward to calculate.
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