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Abstract Clustering techniques aim at finding meaningful groups of data
samples which exhibit similarity with regards to a set of characteristics, typ-
ically measured in terms of pairwise distances. Due to the so-called curse of
dimensionality, i.e., the observation that high-dimensional spaces are unsuited
for measuring distances, distance-based clustering techniques such as the clas-
sic k-means algorithm fail to uncover meaningful clusters in high-dimensional
spaces. Thus, dimensionality reduction techniques can be used to greatly im-
prove the performance of such clustering methods. In this work, we study
Autoencoders as Deep Learning tools for dimensionality reduction, and com-
bine them with k-means clustering to learn low-dimensional representations
which improve the clustering performance by enhancing intra-cluster relation-
ships and suppressing inter-cluster ones, in a self-supervised manner. In the
supervised paradigm, distance-based classifiers may also greatly benefit from
robust dimensionality reduction techniques. The proposed method is evalu-
ated via multiple experiments on datasets of handwritten digits, various ob-
jects and faces, and is shown to improve external cluster quality measuring
criteria. A fully supervised counterpart is also evaluated on two face recogni-
tion datasets, and is shown to improve the performance of various lightweight
classifiers, allowing their use in real-time applications on devices with limited
computational resources, such as Unmanned Aerial Vehicles (UAVs).

Keywords Autoencoders, Clustering, Classification, Dimensionality Reduc-
tion, Deep Learning
1 Introduction

Clustering refers to the process of identifying groups of samples from a data
set, which exhibit similarity with regards to a set of features [10,38]. Clustering
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techniques are typically fully unsupervised, in the sense that they don’t make
use of any prior knowledge on the data, such as labels which might accom-
pany the data points. This distinguishes the clustering task from classification,
where the prior knowledge of class labels of known data points is exploited for
the purpose of generalizing and making predictions for unfamiliar samples.

Amongst the most widely used clustering techniques, k-means [32] is per-
haps the most popular one, although many different clustering algorithms have
been proposed since its first introduction, many of which are summarized in
[22]. Despite the plethora of algorithms that have been proposed for the pur-
pose of clustering, the popularity of k-means lies in its simplicity as well as
its versatility and extensibility. Many variants of the algorithm have also been
proposed, including a fuzzy variant named fuzzy c-means [Bl[17], extensions
that facilitate large datasets which may contain categorical values [211[50], and
variants that exploit the kernel trick [I3L[48] among others. As k-means begins
by randomly choosing k£ data points as the initial cluster centers, some stud-
ies focused on improving this random initialization [9l24], such as the global
k-means method [31]], or k-means+-+ [2].

Clustering techniques based on measuring distances between data points,
including the k-means algorithm, are plagued by the dimensionality curse [4].
It has been shown that in high-dimensional spaces the distances between data
points may become indistinguishable and thus incapable of providing a valid
measure of closeness between the data samples [I]. For this purpose, Principal
Component Analysis (PCA) [23], was used in [14] to first reduce the dimen-
sionality of the data points thus transforming the points into uncorrelated,
low-dimensional data samples on which k-means clustering is performed. Lin-
ear Discriminant Analysis (LDA) [1633], has also been used in conjunction
with k-means clustering to simultaneously reduce the dimensionality of the
data points and partition the low-dimensional points into meaningful clusters
[15]. More recently, a feature selection approach was studied and presented in
[7], as well as two feature extractions methods, for the purpose of dimension-
ality reduction to facilitate the k-means clustering task.

In this paper, we study Autoencoders (AEs) [28/49] as dimensionality re-
duction tools while simultaneously performing clustering on the data points,
for the purpose of extracting robust features and meaningful clusters in a self-
supervised framework. We exploit the low-dimensional subspace produced by
an AE to perform clustering and in turn use the clustering result to finetune the
learned representations in a self-supervised fashion. The reconstruction space
of the AE is shifted to increase intra-cluster compactness and inter-cluster
separability, and multiple shifting methods are proposed. Furthermore, we
show that when label information is available, it can be exploited in a similar
fashion as the cluster indices produced by clustering the data, to manipulate
the input space and force the AE to learn better separated low-dimensional
representations. Finally, we investigate the effect of multiple gradual shifts of
the reconstruction space to the learned space. The proposed supervised and
self-supervised autoencoders are evaluated on various datasets for classifica-
tion and clustering purposes and are shown to improve the quality of clusters
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formed in the low-dimensional space in both cases, in terms of their correspon-
dence to the actual classes present in the datasets.

The rest of this paper is organized as follows. Section [2] contains a discus-
sion on previous related work and summarizes the advantages of the proposed
methodology. An introduction and analysis of the methods used in the pro-
posed framework is given in Section [3] while Section [4] describes the proposed
method in detail. The results of the experiments conducted to showcase the
performance of the proposed methods are discussed and analyzed in Section
[l and, finally, conclusions are drawn in Section [6]

2 Related Work

The effect of the curse of dimensionality on proximity-based algorithms, such
as k-means clustering or k-NN classification, has been extensively studied in
the past [1L4]. The observation that distances become increasingly meaningless
as the dimensionality of data increases has lead researchers to the development
of more robust proximity measures, such as metric-learning approaches [52],
as well as towards dimensionality reduction methods [8l[35.39].

More specifically, in [14], the relationship between the k-means clustering
objective and the principal components extracted via PCA is studied, and it is
shown that the principal components comprise relaxed solutions of the cluster
membership indicators of k-means clustering. Moreover, the effectiveness of
using PCA for dimensionality reduction and k-means clustering is experimen-
tally validated. Similarly, in [I5], LDA is combined with PCA and k-means
on a low-dimensional subspace to further reduce dimensionality and select the
subspace most suitable for clustering. Finally, a provably accurate feature se-
lection method was presented in [7], along with two feature extraction methods
based on Singular Value Decomposition (SVD) and random projections.

With the advent of Deep Learning, Autoencoders were naturally studied
as tools for unsupervised, non-linear feature extraction and dimensionality
reduction for the tasks of clustering and classification. In [44], a clustering
constraint was integrated into the standard autoencoder objective to extract
feature representations which encoded cluster compactness as well as recon-
struction information. Similarly, in [51], a Kullback-Leibler divergence method
is integrated into the standard autoencoder’s objective function to optimize
clustering performance on the latent low-dimensional subspace that is learned.
In [20], an Autoencoder was trained with a locality-preserving criterion and
a group sparsity constraint to learn block diagonal feature representations
where nonzero groups of elements correspond to clusters. In [47], a non-linear
graph embedding is performed using stacked Autoencoder networks, before
the k-means clustering procedure, exploiting the similarity between spectral
clustering methods and autoencoders in terms of their objectives.

As Autoencoders are trained in an unsupervised fashion, research inter-
est has also steered towards incorporating supervised information into their
training process, to extract hidden representations better suited to classifica-
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tion tasks. In [40], the label information is incorporated into an AE’s training
process by augmenting the loss function so as to include the classification error.
In [43], discriminative criteria are employed by forcing pairs of representations
corresponding to the same face to be closer together in the latent Euclidean
subspace than to other representations corresponding to different faces. This is
achieved by using a triplet loss method, although, heuristically selecting such
triplets is very computationally expensive. Similarly, in [12], gated Autoen-
coders, which require pairs of samples as inputs, were deployed for the task
of measuring similarity between parents and children. The aforementioned
methods focus on either incorporating the classification error into the AE’s
objective, or by utilizing carefully selected tuples of samples. In contrast, the
method proposed in this work does not require any complex loss functions,
which may disrupt the convergence of the reconstruction error of the AE, or
the selection of any specialized tuples, which imposes heavy computational
costs during the training process of the AE.

In this paper, we expand upon the findings of a previous work [36L37],
extending the basic notion of the target shifting process to the more chal-
lenging unsupervised case. We exploit the low-dimensional subspace produced
by an AE to perform clustering and use the clustering result to finetune the
learned representations in a self-supervised fashion, to extract better-formed
clusters. We use the geometrical relationships in the low-dimensional space
to manipulate the high-dimensional input space. This manipulation is in turn
reflected onto the learned low-dimensional subspace, where external clustering
measures are improved. We also propose the use of multiple, gradual shifts in
the reconstruction space and investigate their effect on the low-dimensional
space.

3 Background
3.1 Autoencoders

Autoencoders are Artificial Neural Networks which map their input to a latent
representation typically of lower dimension, through non-linear transforma-
tions, and reconstruct their input through this intermediate representation. In
its simplest form, an AE may be comprised of only one hidden layer of neu-
rons, an input layer corresponding to its input data samples and an output
layer, containing the same number of neurons as the input layer.

Generally, an autoencoder consists of an encoding part and a decoding part,
both of which may contain multiple layers for deeper AEs, and the decoding
part has a layout that is symmetric to its encoding counterpart. Each layer
of neurons [ = 1,..., L is accompanied by a weight matrix, a bias vector and
a non-linear activation function, which transform the input to produce the
output of the neuron. The output of the encoding part of the network, which
we denote by y, may be regarded as a compressed version of the network’s
input, when the number d of neurons it contains is less than the dimension D
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Fig. 1 Typical Deep Autoencoder architecture. The input and output layer consist of the
same number of neurons, equal to the dimensionality of the data. Multiple non-linear lay-
ers of neurons lead to the final layer of the encoding part (enclosed in a rectangle), which
produces low-dimensional representations of the AE’s input. After the low-dimensional rep-
resentation has been fed forward through the decoding part, the network is trained so that
its output resembles its input.

of the input, or d < D. The encoded samples then lie on the low-dimensional
space Y = [y1,...,yn|T € RV*4 The typical architecture of an AE as it was
described is illustrated in Figure

Formally, if x(!~1) denotes the output of the (I — 1)-th layer, which is the
input of the I-th layer of the network, and x() is the output the I-th layer
produces for this input, given by:

<) — f(A(z)X(zq) + b(l)) (1)

where A(®) is the weight matrix and b is a bias vector which accompany the
I-th layer, and x(!) is the network’s input, x!) = x.

The weight matrices of the encoding and decoding parts may be tied by
certain rules, e.g., the decoding weight matrix may be the transpose of the
encoding weight matrix as the respective layer share a symmetric architecture.
This constraint significantly reduces the number of free parameters that the
network must learn but it is optional.

The goal of an AE is to optimize its parameters ¢, which include the weights
and biases of all layers, i.e., 9 = {A® b"}E so that the reconstruction error
is minimized. For example, using the Mean Square Error (MSE) to measure
this error, the network’s objective:

N
. L
argglnz ™) — %13 (2)
=1
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over all training samples, where XEL) denotes the output of the final layer of
the AE for the i-th input sample and can be regarded as a reconstruction of
that input.

A network such as the one described above can be trained effectively using a
variation of the backpropagation algorithm [41], in combination with a gradient
descent optimization method, such as Stochastic Gradient Descent (SGD) [54],
or an adaptive optimizer, such as Adam [25], so that it reconstructs its input
with a small error.

A wvariation of the simple Autoencoder, the Denoising Autoencoder [49]
corrupts its input with some kind of noise and then attempts to reconstruct
the original input without the noise. This approach helps the network discover
more robust features instead of simply learning the identity of its input. A
popular corruption method choice is dropout noise, which forces a value of
zero to a number of features, although other methods may be used, such as
adding Gaussian noise to the input. Dropout may also be used to drop features
in intermediate layers during the training process, as this has been shown to
improve the generalization ability of Neural Networks [45].

3.2 Clustering

Clustering techniques aim at discovering groups of data points which exhibit
likeness, indicated by a similarity measure. Samples assigned to the same clus-
ter are regarded as similar to one another, whereas samples assigned to differ-
ent clusters must differ significantly with regards to said measure.

The simplicity of k-means in combination with its effectiveness and effi-
ciency contribute to its unyielding popularity. The algorithm begins by choos-
ing K samples from the data set X = [x1,%a,...,xx]|T € RV*P either at
random or through an initialization algorithm such as k-means++ [2], as the
initial cluster centers v,(co),k =1,...,K. Every sample x; € R” is then as-
signed to the cluster whose center lies the closest to it. Various metrics can
be used for this step, the most popular being the £2 norm of their difference,
corresponding to the Euclidean distance between two points. The metric used
in this step highly affects the formation of the clusters and the final clustering
produced, and some studies have focused on learning a suitable metric for this
task [11].

After all data samples have been assigned to one of the k clusters, the
cluster centers are recomputed as the mean vector of the data points assigned
to each of them. The process is repeated iteratively, with the cluster centers
at the t-th iteration given by:

1
v,(:): 0 Z x;, k=1,....K (3)
Vi’

X ev,i”)
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where V,Et) is the set of samples assigned to the k-th cluster on the ¢-th iteration
of the algorithm. The algorithm stops when the cluster centers converge, that

is v,(:) = v£t71)7V/<:, or after a predefined number of iterations.

3.3 Classification

In this Section we provide an introduction to the classifiers used to evaluate
the performance of the features extracted by the supervised proposed AEs.
Although more complex and more accurate algorithms have emerged in recent
years and excelled at classification tasks, especially those based on deep Con-
volutional Neural Networks (CNNs) [26], for visual information classification,
we focus on more simplistic classifiers which are more lightweight and better
suited for deployment on devices of limited capabilities. Furthermore, simpler
classifiers rely more on the feature extraction step of the classification pipeline,
thus better reflecting the quality of the features used.

Multilayer Perceptron A Multilayer Perceptron (MLP) [6], without hidden
layers, maps its input to output neurons which correspond to the various
classes describing the data. Thus the input layer has as many neurons as
is the dimensionality of the input data, and the output layer has as many
neurons as is the number of classes. The softmax function is typically used as
the activation function in the output layer of neurons, in order to produce a
probability distribution over the possible classes:

Ti,j

e
Ekczl erik

where C' is the total number of classes and z; ; indicates the j-th element of
vector x;. This allows for the optimization of the network’s parameters via the
minimization of the categorical cross-entropy loss function:

(4)

oj(x;) =

N C
argmin = — Z Z Yi;log (%) (5)
©

i=1 j=1

with respect to the network’s parameters  over all training samples, via a
variation of gradient descent optimization.

Nearest Centroid The Nearest Centroid (NC) classifier assigns samples to the
class whose centroid (i.e., mean of samples belonging to that class) lies the
closest to them in space. The dimensionality of the data heavily affects the
performance of this classifier, as the distances between very high-dimensional
data have been shown to be inefficient for determining neighboring samples

.
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k-Nearest Neighbors Similarly to the NC classifier, the k-Nearest Neighbors
(kKNN) [3] classifier assigns samples to the class to which the majority of its
k nearest neighbors belongs to. The dimensionality of the data affects the
performance of this classifier as well, as it requires the computation of distances
between all data samples.

Support Vector Machine A Support Vector Machine (SVM) [18] aims to find
the optimal hyperplane to separate samples belonging to different classes. The
kernel method can be utilized by SVMs to map the input data into a higher-
dimensional space which is more easily separable by linear hyperplanes (e.g.,
Radial Basis Function (RBF) kernel).

4 Proposed Methodology

The latent representation produced by an AE is learned via minimizing the
network’s reconstruction error. Intuitively, if the target to be learned for each
sample is a modified version of itself, such that it is closer to other sam-
ples of the same class, the network will learn to reconstruct samples that
belong to classes which are more easily separable. This modification should
be reflected by the intermediate representation, thus producing well-separated
low-dimensional representations of the network’s input data.

Let il(»t) be the target reconstruction of sample x;, i = {1,..., N}, then
for t = 0, igo) = x; corresponds to the standard AE targets. The target
shifting process may be repeated multiple times, each time building on top
of the previous iteration. The exponent ¢ denotes the current iteration. The
objective to be minimized for the proposed autoencoders becomes:

N
argmin ) x(" — %3 (6)
LA

summed over all data samples. Using this objective and given a sample x
from the original dataset, the autoencoder is trained to learn to reconstruct
its shifted version. This is reflected in the low-dimensional representation,
which is then used for clustering and classification purposes. Furthermore,
the AE learns to generalize this transformation, and applies it to unseen test
samples, thus moving them towards same-class or same-cluster samples. This
is corroborated by the experimental results analyzed in Section

4.1 Improving Cluster Separability

Cluster separability may be improved by increasing either intra-cluster com-
pactness or inter-cluster separability. In the following paragraphs, we propose
various sample shifting methods for both cases of cluster separability enhance-
ment.
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Intra-cluster compactness We adopt a general sample shifting procedure of
the form:

(
® (7)

where ml(-t) is chosen to be a linear combination of the shifted versions of all

samples in the dataset for the current iteration, i.e.:

N
m{" =3 Wi (8)

Jj=1

Thus, Equation is equivalent to a linear combination of the sample itself
and all other samples in the dataset with weights W. The hyperparameter «
controls the sharpness of the shift in space, i.e., larger values correspond to
larger displacements.

For the task of forming well separated clusters, the weight matrix can be
defined to dictate that intra-cluster relationships should be strengthened while
inter-cluster ones should be weakened.

Let Vi be the k-th cluster obtained by performing k-means clustering on
a set of data samples Y, which are low-dimensional representations of X ex-
tracted by a standard autoencoder, and v, € R, k = 1,..., K be the center
of this cluster. The center of a cluster, i.e., the mean vector of all samples
belonging to that cluster, is an obvious choice to shift samples towards, so as
to increase the cluster’s compactness. In this case, the weight matrix elements
W,;; for a given sample x; have a value of 1/|v,| for all samples x; belonging
to the same cluster as x;, or, formally:

W, — {1/|V;C if {Xi,Xj} eV

I 0 otherwise

9)

For each sample, the weights that affect its optimal target reconstruction
sum up to one, as there are |Vg| such samples, each affecting x; with 1/|v|,
where » ., W;;X; is equivalent to x;’s cluster center. This observation allows for
the direct use of the cluster centers to find the optimal target reconstructions,
instead of fully defining the matrix W, which can become prohibitively large
for datasets consisting of many samples.

Another intuitive definition for the relationship matrix W is for only neigh-
boring samples to affect each sample x;, instead of the entirety of samples
belonging to the same cluster. This entails searching for each sample’s closest
neighbors within their cluster. Let N; define the set of x;’s n closest neighbors
within their cluster Vi, then W can be defined as:

Wij = {I/IMI i (10)

0 otherwise
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Then, the optimal target reconstruction can be given by Equation , with
weights given by Equation , as they once again sum up to one for each
sample. The full definition of the weight matrix can be avoided by finding
the neighbors of each samples and computing each target reconstruction sep-
arately.

Inter-cluster separability Simultaneously with the cluster-contracting methods
described above, penalty weights can be defined to better separate the various
clusters from each other. For this task, we adopt the following general shifting
transformation:

(t+1) _ i(t) . 5(m(t) . i(t))
= (1+8)%{" - pm{"

P

(11)

where [ is a hyperparameter which controls the weight of the shifting process.
Once again, the vector mz(-t) is chosen to be a linear combination of all data
samples with weights given by a matrix W.

Let V_j denote the union of all clusters but the k-th, e.g, V_3 =V, UVo U
V4U---UVg. We can then formally define the shift of a sample x; away from

all rivaling samples by defining W as:

Wij _ { - 1/|V,k\ if Xj € V_ i (12)

0 otherwise

Another option would be to only shift samples away from their closest rival-
cluster samples instead of the entirety of their rivals. Let R; define the set of
samples which belong to clusters different than the cluster that x; belongs to

and constitute its r such closest rivals. In this case, the penalty weights can
be defined as:

W d LR, if x; € R; (13)
" 0 otherwise

4.2 Tmproving Class Separability

In the supervised case, the new targets may be shifted so that the samples are
moved towards their class centroids with weights given by:

_— L/icyl if{xi,gj}eck (14)
0 otherwise

applied to Equation , where Cy, is set of samples belonging to the k-th class.

Respectively, the distances between samples and centroids of rival classes
could be enlarged by moving each sample away from the mean of all samples
belonging to other classes by defining weights:
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0 otherwise

W, — { e ifx;€Q; .

where Q; is the set of samples belonging to a class different than the class x;
belongs to. In practice, Equation could be modified to only include the
neighbors of rival classes within a given range of each sample, or only the top
k nearest rivaling neighbors to the i-th sample, instead of the mean of all rival
class samples.

4.3 Cluster Contracting & Class Separating Autoencoders

To perform k-means clustering on the low-dimensional representations of the
data, first a standard autoencoder is trained to convergence to extract Y.
Then k-means can be run on the entirety of the dataset. New targets can then
be derived using Equation with weights given by Equations @D or
to increase intra-class compactness, in combination with Equation with
weights given by Equations or to increase inter-class separability.

The Autoencoder is trained to optimize Equation @ over all training sam-
ples, starting from its previous point of convergence. Then, k-means can be
run on the dataset using the previously found cluster centers as the initial cen-
ters. The shifting process can be repeated multiple times, followed by training
the Autoencoder with the new targets and performing k-means on the ob-
tained low-dimensional representations. The entire procedure is summarized
in Algorithm [I] After each convergence of the AE to the new targets, k-means
is performed again starting from the previously found centers to adjust the
clusters to the new positions of the samples.

In the fully-supervised case where class labels are available, the new tar-
get reconstructions may be obtained before training the AE, and thus begin
training with the shifted versions. This variation is summarized in Algorithm
2

It should be noted that in the clustering scenario, due to its unsupervised
nature and the risk of extracting entangled clusters, large values for the hyper-
parameters « and (3 will further deteriorate the performance of clustering by
debilitating the representation learning capability of the AE. Thus, the final
clusters will be well-formed, in terms of cluster separability and compactness,
but their homogeneity in terms of the natural classes present in them will have
been compromised.

In contrast, in the classification scenario, where groundtruth labels are
available, larger values can be used safely. This is especially the case for «,
which controls the intra-class compactness. The inter-class separability proce-
dure controlled by S however, is not as informative: shifting a sample away
from its rivals, no matter the certainty of their dissimilarity, may lead the
sample to a new position where it is still falsely. This is because the rivals of
a sample may lie in adversarial positions.
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Finally, one should note that computing a full shifting matrix W, can
quickly become inefficient as its size is N x N, where N is the number of
samples in a dataset. However, the full computation of these matrices can
be avoided in all cases, by updating each sample online. This entails first
computing all cluster/class centers or every samples nearest neighbors and
rivals and secondly shifting each sample towards the mean of its center or
neighbors and away from the mean of rival centers or neighbors, as discussed.

Algorithm 1 Cluster Separating Autoencoder Training Procedure

Input Dataset X € RNXD
Output Low-dimensional representations Y € RN X4 Clusters {Vk}le

: function SAMPLESHIFT(X, Wintra, Winter, @, )
)5 — (1 - Oé)z( + Oéwintraz(
X (1 + 5)X - 5Wintev‘x

end function

: Obtain Y by optimizing Equation

{Vi}E_ | + k-means(Y, random)
:fort=0,...,7T—1do

Wintru <~ Equation ‘@’ or "

Winter < Equation (12)) or (13)

X+ SAMPLESHIFT(X D W intra, Winter, @, B8)
Retrain by optimizing Equation

{ViHE | « k-means(Y, {vi}E )

: end for

© 0D

_ =
e o

Algorithm 2 Class Separating Autoencoder Training Procedure

Input Dataset X € RVxD
Output Low-dimensional representations Y €
: function SAMPL@SHIFT(X, Wintra, Winter, @, )
)S — (1 - Q)X + awint'ra?_(
X (1 + B)X - Bwinterx
end function

RN xd

fort=0,...,7—1do
Wintra < Equation (14)
Winter < Equation (15)
X+  SamMPLESHIFT(X (D)

Obtain Y by optimizing Equation @
: end for

2O O XD IS Wy

— =

5 Experimental Results

Our experiments were made using an NVIDIA GTX 1080 GPU and an Intel
Core i7-4930K CPU at 3.40GHz. The training time is no different from that
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of a standard AE, although the sample shifting process causes delays between
successive training processes. Moving data from GPU to CPU and vice versa
is quite time consuming and inefficient, but can be avoided by running the
shifting methods and k-means directly on GPU.

5.1 Datasets

We evaluate the proposed method on the MNIST [29] test set, for hand-written
digit recognition, which consists of 10000 grayscale images of size 28 x 28
making the original dimension equal to 784. We also evaluate the method on
the COIL-20 dataset [34], containing 1440 grayscale 32 x 32 sized images of
various objects belonging to 20 categories. Finally, the ORL [42] and Yale B
[30] datasets are used. ORL consists of 400 grayscale images of 40 subjects
while Yale B consists of 165 grayscale images of 15 subjects. The images are
resized to 32 x 32 making the original dimension equal to 1024.

For the MNIST dataset, we set the dimensionality of the hidden represen-
tation equal to d = 10, equal to the number of naturally occurring classes in
these datasets. For the other datasets, we set the dimensionality of the hidden
representation to be d = 32. The number of clusters for k-means clustering
is set equal to the number of classes K for each dataset. This information is
summarized in Table [0 for all the datasets used.

Dataset N K D d
MNIST 70000 10 784 10
COIL-20 1440 20 1024 32
ORL 400 40 1024 32
Yale 2452 38 1024 32

Table 1 Summary of the datasets used in the conducted clustering experiments, with N
being the number of samples present, K being the number of classes and number of clusters
extracted by k-means, D being the original dimension corresponding to the number of pixels
and d being the dimension of the representation learned by the proposed autoencoders.

In the supervised scenario, the proposed method is evaluated on the ORL
faces dataset as well as the Extended Yale B dataset [30]. For both datasets,
the grayscale images depicting the faces to be recognized are resized to 32 x 32,
meaning the original data dimension is 1024. The dimension is downscaled by
a factor of 4, down to 256, by the AEs.

For the ORL dataset, five-fold cross-validation is commonly used for the
conduction of experiments with this dataset, where five experiments are con-
ducted using 80% of the images per person as training data and selecting a
different portion of the dataset for each fold such that all images serve as
training and testing data at different runs.

The cropped version of the Yale dataset is used in our experiments, which
contains images depicting 38 individuals under severe lighting variations and
slight pose variations. Typically, half of the images per person are selected
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as training data and evaluation is performed on the remaining half images.
We follow the same dataset splitting methodology performed five times and
average the results over all folds.

5.2 Metrics

To evaluate the performance of the proposed method we use two standard
external clustering metrics, accuracy and normalized mutual information. The
clustering accuracy measure requires the computation of the best one-to-one
mapping of cluster assignments to class labels for each labels, which can be
found efficiently by using the Hungarian algorithm [27]. Formally, it is defined
as:

1 N
ACC =+ ; 8[l; — m(e;)] (16)

where m denotes the best one-to-one mapping of cluster assignments ¢; for all
samples to real labels [;, and §[-] denotes the Dirac delta function.

The normalized mutual information score [46], is defined as the mutual
information between the cluster assignments and real class labels over the
square root of the product of the entropies of the two assignments:

Z(c,1
Nmr——ZeD (17)
H(c)H(I)
where ¢ denotes the final clustering assignment (i.e., an integer 1,..., K for

each sample) and ! denotes the real class assignment.

For the classification experiments we report the mean classification accu-
racy and standard deviation over five runs for both datasets, as aforemen-
tioned.

5.3 Results

In both the supervised and self-supervised scenario, the same architecture,
number of epochs and initialization was used for the standard AE and the
proposed AEs for fair comparison between the obtained results. In total, the
target shifting process is applied five times over the training process of the
AE. The results for both cases are discussed below.

5.3.1 Clustering

For all datasets we use a D-512-d encoder architecture with sigmoid non-
linearities and a symmetrical decoder with a linear final layer. We perform
five iterations of the proposed algorithm, thus splitting the training process
into five parts: in the first iteration, a standard AE is trained to convergence.
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Then, new targets are computed using combinations of the shifting methods
described in Section [I.1] and the training process picks up with these targets
from its last point of convergence, and this is repeated four times to gradually
form more compact clusters. We use the same initialization method for all
experiments, which is k-means++ with the same random seed, ensuring the
reported results are fair.

The accuracy and normalized mutual information scores for all datasets
are summarized in Table[2] The results indicate that the proposed method im-
proves the performance of k-means clustering for all of the evaluated datasets
and shifting methods. We evaluate the following settings:

1. the original D-dimensional feature vectors, corresponding to pixel intensi-
ties (No AE)
2. the d-dimensional latent representations achieved by a standard AE (AE)
3. the d-dimensional latent representations achieved by the proposed AEs
where the targets were shifted:
(a) towards their cluster centers, using Equation ([9) (CCAE-1)
(b) towards their cluster center as well as away from the nearest rival-cluster
center, using Equations (9) and (CCAE-2)
(c) towards their same-cluster neighbors, using Equation (CCAE-3)
(d) towards their same-cluster neighbors as well as away from their nearest
rival-cluster neighbors, using Equations and (CCAE-4)

For all datasets, the clustering performance is improved even when using a
standard AE to produce low-dimensional representations over the performance
achieved when using the high-dimensional pixel intensity representations. Fur-
thermore, the proposed CCAEs improve upon the standard AEs in all cases.
It is also worth noting that different types of shifts work better for differ-
ent datasets, as well as for different metrics. The type of method that works
best in each case depends on the form of the low-dimensional representations
learned by the AE, e.g., how tangled the formed clusters are, how spread out
each cluster is etc. As the AE procedure is unsupervised, there is no way of
knowing this information beforehand. However, from the reported results we
conclude that CCAE-1 and CCAE-3 are the safest choices, always leading to
improved clustering measures. CCAE-2 and CCAE-4 may yield even better
results for the MNIST and ORL datasets than their safe counterparts, but are
more heavily influenced by the quality of the formation of the clusters in the
low-dimensional space.

Figure [2| shows 2-dimensional PCA projections of the hidden representa-
tions obtained for two clusters of the MNIST dataset with a standard Au-
toencoder (a), and the proposed CCAE-2 (b), over the five iterations of the
algorithm. The samples belonging to each of the two clusters are denoted by
circles and triangles and the variation in color corresponds to different classes.
Although both clusters consist mostly of one class of digits, the representa-
tions obtained by a standard Autoencoder lead to larger overlap between the
two clusters, both spatial and semantic. In contrast, using the proposed Au-
toencoders and gradually shifting samples towards their cluster centers and
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MNIST COIL-20 ORL Yale
Method ACC NMI ACC NMI ACC NMI ACC NMI
No AE 0.5385 0.5050 0.7069 0.8002 0.5925 0.7765 0.3757 0.4731
AE 0.7571 0.6555 0.7333 0.8060 0.6700 0.8259 0.4303 0.4754
CCAE-1  0.7653 0.6642 0.7361  0.8132  0.6775 0.8303 0.4545  0.5106
CCAE-2 0.7700 0.6737 0.7312 0.8089 0.6775 0.8359 0.4606 0.5016
CCAE-3  0.7597 0.6568  0.7381 0.8113 0.6800 0.8324 0.4484 0.4961
CCAE-4  0.7654 0.6651 0.7326 0.8067 0.6825 0.8413 0.4667  0.5050

Table 2 Accuracy and normalized mutual information scores for all evaluated datasets and
methods.

away from rival cluster centers, the two clusters seem to be better spatially
separated as well as more homogeneous in terms of the class they represent.

(b)

Fig. 2 Hidden representations obtained by a standard AE (top) and the proposed CCAE-2
(bottom) for two clusters of the MNIST dataset over five iterations of the proposed method,
projected in a two-dimensional subspace via PCA for visualization.

We furthermore perform a set of experiments using a custom dataset con-
sisting of images of cyclists, football players and rowers, for the purpose of in-
vestigating the use of the proposed CCAEs for semi-automated annotation of
the cropped images, when only the bounding boxes are provided and the class
of the cropped object isn’t. The images are gathered from an aerial source, and
serve to facilitate the process of training models whose purpose is to detect and
classify targets belonging to the aforementioned classes. The dataset used con-
sists of 30645 images in total, with about ten thousand instances for each class.
All images were resized to 224 x 224 and fed to a MobileNet [I9] pretrained on
the ImageNet dataset to extract 1280-dimensional feature vectors. This archi-
tecture was chosen due to its lightweight structure, which uses depthwise sep-
arable convolutions, reducing the number of operations required for a forward
pass. Then, the proposed CCAEs were used to extract 12-dimensional features
and perform clustering. The results are presented in Table [3] The proposed
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CCAEs, and especially CCAE-1, offer improved clustering and could aid in the
annotation process of the cropped boxes.The silhouette score is also provided
in this case for the compared methods, as an internal clustering measure, to
provide insight into the geometrical relationships between the formed clusters.
The silhouette score is defined as:

b—a

1L = ———
o max(a, b)

where b is the distance between a sample and the nearest cluster that the
sample is not a part of, and a is the mean intra-cluster distance for each
sample. The best silhouette score is achieved by CCAE-1, which contracts
intra-cluster relationships using the cluster centroids as attraction points. This
is unsurprising, as the clusters are explicitly contracted by the CCAE-1. The
two neighbor-based CCAEs however (CCAE-3 and CCAE-4), only marginally
improve all metrics. This may attributed to the fact that in these cases each
sample is shifted towards different points in space, defined by its set of nearest
neighbors. In contrast, in the case of shifting samples towards their cluster
centers, all samples belonging to the same cluster are shifted towards the
same single point. This produces monomodal clusters, whereas shifting samples
towards their neighbors produces multimodal clusters, where each mode may
be compact but the cluster as a whole may be widespread.

Method ACC NMI SIL

No AE 0.6248 0.3564 0.6746
AE 0.6786 0.3621 0.7803
CCAE-1 0.6959 0.3736 0.8628
CCAE-2  0.6945 0.3737 0.8602
CCAE-3  0.6877 0.3684 0.7865
CCAE-4 0.6788 0.3629 0.7852

Table 3 Accuracy, normalized mutual information and silhouette scores for the cyclists,
rowers and football players dataset.

Although the proposed method relies on the quality of the low-dimensional
representations learned by Autoencoders in terms of cluster formation, we
argue that in a very complex problem where a deep network will be unable to
produce discriminative representations, any unsupervised method will fail to
uncover meaningful clusters. Shifting the samples towards the cluster centers
in such a scenario will severely affect the learned representations to the point
where the network might not be able to recover and produce well-formed
clusters. However, shifting samples towards their nearest neighbors is a much
less severe transformation which affects samples locally and may be better
suited in such situations. Furthermore, even when a clustering criterion is
optimized in addition to the representation, as in [53], the clustering derived
heavily depends on the representations learned by the network especially in
the early stages. This is a natural and implication of the unsupervised nature
of the task at hand.
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5.8.2 Classification

The accuracy achieved by the above classifiers is evaluated and compared for
six types of inputs:

1. the original 1024-dimensional feature vectors, corresponding to pixel inten-
sities (No AE)
2. the 256-dimensional latent representations achieved by a standard AE (AE)
3. the 256-dimensional latent representations achieved by the proposed AEs
where the targets were shifted:
(a) towards their class centers, using Equation (dAE-1)
(b) towards their class center as well as away from the nearest rival-class

center, using Equations and (dAE-2)

The performance achieved by the evaluated classifiers for all input repre-
sentations for the ORL dataset is summarized in Table dl The dAE-2 method
yields the best improvement for all classifiers, even though using the dAE-1
method the results still surpass those achieved by using the pixel intensities
and the low-dimensional representations obtained by the standard AE.

Although the performance achieved by the MLP using the pixel intensities
representation is quite high, the high dimensionality of the data imposes higher
computational costs both in training and deployment. More importantly, the
performance achieved by the less computationally intensive NC classifier is
very close to the performance achieved by the MLP, and yields 10% and 15%
improved accuracy results over the accuracy achieved when using the pixel
intensities representation and the representation obtained by the standard AE
respectively.

MLP NC kNN SVM
No AE  96.25+1.58 85.25 £ 1.22 88.25 £5.51 90.75 £ 1.69
AE 92.75 + 2.42 79.50 + 1.87 82.25 +4.35 88.75 £ 2.50

dAE-1 96.00 £ 2.29 94.75 £ 2.29 95.25 £ 2.42 95.50 £ 1.69
dAE-2 97.00£1.50 95.50+1.87 96.25+2.09 96.50+ 1.87

Table 4 ORL dataset accuracy results.

Table [5| summarizes the accuracy achieved by all classifiers and input rep-
resentations for the ExtYale dataset. The proposed methods outperform the
baselines by a large margin. The disadvantage of the NC and kNN classifiers
when data dimensionality is high becomes very clear in this dataset when
the pixel intensities are used as the data representation, indicated by their
extremely inaccurate predictions and low accuracy results.

The progress of the results over progressive training and shifting steps
can be seen in Figure 3] and Figure [4] for the ORL and ExtYale dataset for
all classifiers. This analysis indicates the importance of multiple shifts as the
accuracy increases with each iteration of the proposed training method. Al-
though the accuracy converges to a low point when using a standard AE, in
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MLP NC kNN SVM
No AE 93.52 £ 1.07 10.94 +1.61 54.91 £ 1.54 71.19 £1.40
AE 88.25 +1.48 63.24 + 2.06 73.70 £ 1.10 85.07 £1.48

dAE-1 9440+£0.78 89.93+0.68 91.12+1.33 94.51 £ 0.63
dAE-2 94.30 £0.79 89.64 £ 0.91 91.43 +£0.88 94.61+0.74

Table 5 YALE dataset accuracy results.

the case of our proposed dAEs the accuracy improves with each iteration of
the algorithm before reaching its point of convergence, which lies much higher
than the baseline for all classifiers and both datasets.

0.971 —e— AE 0950 —* AE
—8— dAE-1 : —o— dAE-1
0.06] ~* 9AE2 0.025 | —o— dAE2
./ 0.900 '/
095

0.875
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002 ./.\./0—0
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Fig. 3 Measured accuracy progress over five iterations of the proposed training method for
the ORL dataset. The mean accuracy over five-fold cross validation is shown for (a) the
MLP classifier, (b) Nearest Centroid, (c) k-Nearest Neighbors and (d) RBF-kernel SVM.

Overall, the results indicate that the proposed AEs are capable of general-
izing well and implicitly applying the shifting process to unknown test samples.
Figures [f] and [6] illustrate and ascertain this hypothesis. The left plot in both
Figures is a 3-dimensional projection of the hidden representation learned by
the standard AE, obtained via PCA. The middle plot is a 3-dimensional PCA
projection of the representation learned by the dAE where the targets of the
AE have been shifted five times in total towards their class centers. Finally,
the plot on the right in both Figures is the 3-dimensional PCA projections of
the hidden representation of the test samples, obtained by the same dAE as
the middle projection. For both datasets, the 3D projections of the AE repre-
sentation are difficult to unfold into separable formations. Through iterative
repetitions of the target shifting process however, well-formed and separated
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classes become obvious. Furthermore, the test samples appear at positions
close to their counterparts used in the training process in the 3D projection,
meaning that the AE learns to map those samples closer to their manifold.

The projections indicate that the distribution shift that occurs to the train-
ing samples also affects the test samples belonging to the same classes. This
can be attributed to the fact that the testing samples follow more or less the
distribution of the training samples in the input space as well as on the gener-
alization ability of the AEs. However, in the original input space as well as the
subspace produced by the standard AE, the various class distributions are not
well separated at all, which makes classification by lightweight classifiers very
difficult. This is also reflected by the extremely low accuracy results achieved
by the NC and kNN classifiers especially in the Yale dataset.

For the MLP classifier, although the improvement in accuracy is quite
small, it is worth noting that the reduction in dimensionality leads to faster
computation times but also reduces the capability of the classifier: the learned
weights matrix will only be of size d x K in the AE cases, whereas it is of size
D x K in the No AE case, where d is the dimension of the learned represen-
tation, i.e. 256, D is the original dimension, i.e. 1024, and K is the number of
classes. This means that in the No AE case, the MLP has four times as many
trainable parameters as in the AE cases. Thus, the improvement, although
small, is still significant.

0.900

0.875

0.850

0.825

0.800

0.775

0.750

0.725

Fig. 4 Measured accuracy progress over five iterations of the proposed training method
for the ExtYAle dataset. The mean accuracy over five runs each with a different 50-50
split of the dataset is shown for (a) the MLP classifier, (b) Nearest Centroid, (c) k-Nearest
Neighbors and (d) RBF-kernel SVM.
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Fig. 5 ORL hidden representation 3-dimensional projection by PCA: (a) hidden representa-
tion of the training data obtained by standard AE, (b) hidden representation of the training
data obtained by dAE-1, and (c) hidden representation of the test data also obtained by
dAE-1.

(a) (b) (c)

Fig. 6 YALE hidden representation 3-dimensional projection by PCA: (a) hidden repre-
sentation of the training data obtained by standard AE, (b) hidden representation of the
training data obtained by dAE-1, and (c) hidden representation of the test data also obtained
by dAE-1.

In conclusion, the proposed dAEs significantly improve the performance
of the more lightweight classifiers, allowing their use in real-time applications
from devices with limited computational resources, such as Unmanned Aerial
Vehicles (UAVs). Thus, they may, for example, be used in conjunction with a
lightweight classifier to identify persons of interest and facilitate the tracking
procedure.

6 Conclusions

We have presented several methods of manipulating the reconstruction space of
an AE to guide the low-dimensional representation to form more compact and
meaningful clusters. By exploiting the meaningfulness of proximity between
samples in the low-dimensional space, the Autoencoder’s objective is altered
so that it learns to reconstruct samples shifted in space so as to lie closer to
samples belonging to the same cluster and away from samples of other clusters.
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This results in clusters which are more compact and well separated in space,
as well as more homogeneous and complete in terms of the natural classes of
the samples they contain.

The unsupervised nature of the proposed methodology renders it subject
to the quality of the extracted low-dimensional representations, in terms of
the compactness, separability and correspondence to meaningful classes of the
clusters that form in the latent space. When the clusters are tangled and
ill-formed, perhaps as the result of suboptimal convergence of the AE, im-
proving their quality with unsupervised methods remains an open and very
challenging problem. However, when the produced representations are fairly
well-separated, the proposed methods can yield significantly improved clusters.
Autoencoders, as Deep Learning tools, have the capability to produce such a
space, where the naturally occurring clusters in a dataset are well-formed and
well-separated. Thus, although the proposed method relies on the quality of the
low-dimensional representations learned by Autoencoders in terms of cluster
formation, the low-dimensionality of the representation in combination with
its non-linear nature and the Autoencoder’s ability to extract robust features
in an unsupervised manner aid in the extraction of well separated clusters,
which can be further polished by the proposed methodology.

In the supervised scenario, directly using the class labels leads to low-
dimensional representations which better separate the classes allowing simple
classifiers to achieve great classification performances. Experiments on multi-
ple domains demonstrate the effectiveness of the proposed method and serve
to show that the proposed Cluster Compacting Autoencoders extract features
biased towards forming well-defined clusters.
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