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Abstract

Visual Question Answering (VQA) is among the most difficult multi-modal
problems as it requires a machine to be able to properly understand a ques-
tion about a reference image and then infer the correct answer. Providing
reliable attention information is crucial for correctly answering the questions.
However, existing methods usually only use implicitly trained attention mod-
els that are frequently unable to attend to the correct image regions. To
this end, an explicitly trained attention model for VQA is proposed in this
paper. The proposed method utilizes attention-oriented word embeddings
that allows efficiently learning the common representation spaces. Further-
more, multiple attention models of varying complexity are employed as a
way of realizing a mixture of experts attention model, further improving the
VQA accuracy over a single attention model. The effectiveness of the pro-
posed method is demonstrated using extensive experiments on the Visual7W
dataset that provides visual attention ground truth information.

1. Introduction

Due to the recent developments in the Natural Language Processing and
Computer Vision areas, in combination with the rapidly increasing compu-
tational power, significant research efforts have been focusing on tackling the
problem of building machines that interlink multiple modalities [34, 35, 33].
One of the most prominent multi-modal problems is the task of Visual Ques-
tion Answering (VQA) [42, 4, 29], which has become one of the most active
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research directions, not only in academia but also in the industry. VQA
requires a machine to be able to properly understand a question about a
reference image and then infer the correct answer.

Figure 1: The architecture of the proposed explicit attention model.

To provide fine-grained information regarding the visual content, atten-
tion mechanisms have been developed [42, 17]. These methods work under
the assumption that the image regions, which contain relevant information to
the question at hand, will eventually be strongly associated with the corre-
sponding questions, while the irrelevant regions will exhibit diminishing asso-
ciation. However, these attention mechanisms are trained implicitly. It was
recently demonstrated that utilizing explicitly trained attention models can
improve the accuracy of automatic caption generation [19]. Even though a
recently released VQA dataset, the Visual7W dataset [42], contains attention
ground truth information for some of the available questions, no technique
has yet exploited this information to train more accurate attention models
and evaluate their performance using the Visual7W dataset.

The paper proposes a novel explicit attention model for VQA tasks. In-
spired by the theory of the pictorial superiority effect, we propose employing
separate word embeddings for the attention model that is independent from
the embeddings, which are used for answering the questions. The theory of
pictorial superiority effect refers to the phenomenon of humans remembering
images easier compared to words [24, 23]. Thus, it is easier to learn common
representation spaces, where each word is closer to the visual representation
of its semantic content. Finally, recognizing the difficulty of training reliable
attention models we use multiple attention models of varying complexity as
a way of realizing a mixture of experts attention model [22] that is able to
provide more accurate answers than a single attention model. We demon-
strate the effectiveness of the proposed method, over both implicit attention
models as well as other state-of-the-art VQA techniques, using the Visual7W
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dataset [42].
The rest of the paper is structured as follows. The prior work is discussed

in Section 2 and the proposed method is presented in Section 3. The exper-
imental evaluation is presented in Section 4 and conclusions are drawn in
Section 5.

2. Related Work

Visual Questioning Answering (VQA) methods fall into two categories:
a) the generative methods, in which the answer is generated in free-form
text, and b) the classification-based methods, in which the correct answer is
chosen among a set of predefined answers. The generative methods usually
employ recurrent models, such as Long Short-Term Memory Units (LSTMs),
to generate the answer to the question [35, 21, 3]. However, generating
the answer in free-form text significantly complicates the evaluation proce-
dure, since there are multiple correct answers for the same question [12]. On
the other hand, classification-based methods extract features from the in-
put modalities and then employ a classifier to determine the correct answer
[12, 40, 20, 2]. Many of these method, e.g., [42, 3, 28] also utilize recurrent
models to provide better encoding of the input modalities. However, it is
worth mentioning, as it was recently established, that employing a simple
triplet-based scheme (question-answer-image) [12] can significantly improve
the answering accuracy over the rest of the methods proposed in the liter-
ature. In this work, a triplet-based classification scheme is also combined
with the proposed explicit attention model. The interested reader is referred
to [36, 13] for an extensive review of VQA methods as well as of the currently
available VQA datasets.

A rich literature on using implicit attention models to improve visual anal-
ysis tasks also exist. These models work by learning weighting coefficients (or
a probability distribution) over the extracted feature maps. Implicit atten-
tion model are capable of improving the accuracy of the models for various
tasks, e.g., [17, 31, 30, 10, 38], including VQA tasks [42]. An attention model
that was trained with ground truth human attention information (explicit
attention) has been applied for caption generation tasks in [19], and it was
shown to improve the accuracy compared to implicit attention models. Also,
an extensive discussion regarding the differences between implicit attention
models and human attention is provided in [6]. This work also highlights the
potential of utilizing explicitly trained attention models for the task of VQA.

3



To the best of our knowledge, in this paper we propose the first explicitly
trained ensemble attention model for VQA tasks that is capable of utilizing
multiple attention distributions generated by models of varying complexity.
Another explicit attention model was proposed by Qiao et al. [27]. This model
used the multimodal low-rank bilinear pooling (Kim et al., 2017) to provide
several smaller attention maps that were then applied to infer the final at-
tention distribution. In contrast to these approaches, our method is capable
of combining several different attention distributions that are provided by
multiple attention models. This increases the probability of attending to the
correct image regions. The ability of our ensemble approach to increase the
question answering accuracy is experimentally demonstrated in Section 4.
Also, inspired by the pictorial superiority phenomenon, we propose a bio-
logically justified approach that decouples the attention process from the
answering process utilizing two separate word embeddings. This further in-
creases the expressive power of the proposed attention model. Finally, in-
stead of utilizing bilinear pooling, we employ a simpler and more lightweight
correlation approach through a series of non-linear operators (tanh and relu).

3. Proposed Method

The used notation is introduced and the proposed explicit attention model,
along with the complete pipeline of the proposed visual question answering
system, are described in detail in this Section.

3.1. Explicit Attention Model

The architecture of the proposed explicit attention model is summarized
in Figure 1. The goal of the proposed model is to reduce the semantic gap
between textual and image representations. To achieve this, the proposed
method directly learns to attend the parts of an image that correspond to
the given question using the supplied ground truth information. Thus, only
the image regions that are actually related to the question at hand are used
to infer the correct answer. Instead of utilizing the same word embedding
for providing both the correct answer and the attention information, two
separate word embedding models are employed as shown in Figure 2. In
that way, it is possible to learn a separate word embedding model that it
is only utilized for providing the visual attention information and another
one for providing the correct answer. This decoupling allows for increasing
the expressive power of the attention model that is equipped with a separate
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(visual oriented) word embedding model, which does not tie to the word em-
bedding employed for providing the correct answers. We inspired this idea
from the theory of pictorial superiority effect [24, 23] that states that “human
memory is extremely sensitive to the symbolic modality of presentation of
event information” [39]. It was also experimentally shown that decoupling
the word representations used for providing the attention from the word rep-
resentations utilized for answering the question at hand improves the overall
accuracy of the system.

(a) Standard Approach: One shared word embedding model is used to encode the
question and extract a representation that is shared between the attention model
and the question answering model.

(b) Proposed Approach: Two separate word embedding models are employed to
extract two different representations of the question that are not shared between
the attention model and the question answering model.

Figure 2: Using two separate word embedding models, instead of one shared model, allows
to increase the expressive power of the attention model that is now equipped with a
dedicated visual-oriented word embedding model. This idea was inspired by the theory of
pictorial superiority effect.

Consider the proposed explicit attention model (Figure 1). Let Q =
{q1, . . . ,qN} denote a question, where N is the number of words in the
question, qi ∈ RDw is the embedding vector for the i -th word, and Dw
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Figure 3: The architecture of the proposed visual question answering model.

denotes the dimensionality of the word embedding. Also, the notation Im ∈
RDm×Dm×Dd is used to refer to the feature map utilized for providing the
attention, where Dm ×Dm is the size of the extracted feature map and Dd

is the number of convolutional filters.
First, the words of a question Q are embedded into a textual vector

space employing a word embedding model. After that, the representation
Qf ∈ RDw of the question Q is extracted by averaging the word embedding
vectors extracted from the question Q, where Dw is the dimensionality of the
word embedding. Then, the attention distribution pI over the convolutional
feature map Im, for a given the question Q, is calculated as:

(1)hc = [tanh(Im×WI);1Dm×Dm×1 × tanh(Qf ×WQ)]

∈ RDm×Dm×2Dc ,

pI = softmax(relu(hc×Wh1)×Wh2) ∈ RDm×Dm , (2)

where 1Dm×Dm×1 is a matrix used for stacking tanh(Qf ×WQ) Dm × Dm

times in hc, and WI ∈ RDd×Dc and WQ ∈ RDw×Dc are the weights employed
for projecting the question into a common representation space. The di-
mensionality of the common representation space is controlled by Dc. Equa-
tion (2) provides the attention distribution over the image regions, as they
are expressed through the extracted feature map. Note that a Multilayer
Perceptron (MLP) with Dh hidden units is utilized to provide the atten-
tion distribution, where Wh1 ∈ R(2Dc)×Dh and Wh2 ∈ RDh×1 denote the
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weight matrices of the MLP. Finally, the extracted attention distribution
pI ∈ RDm×Dm is employed to provide the attention-based representation:

Im′ =
Dm∑
i=1

Dm∑
j=1

pI ijImij ∈ RDd . (3)

The ground truth bounding boxes BT , which associate the correct an-
swer with different regions of the image, are employed to train the proposed
explicit attention model. The attention targets are defined as follows:

α̂ =
α

||α||0
∈ RDm×Dm , (4)

where α = [α1, α2, . . . , αDm×Dm ] and

αt =

{
1 if t overlaps with any bounding box b ∈ BT

0 otherwise,
(5)

is the ground truth attention membership value of the t-th part of the ex-
tracted feature map into the ground truth bounding box set BT and ||α||0 is
the number of 1s that exist in the membership vector. Nearest-neighbor in-
terpolation is utilized to assign each bounding box to the parts of the feature
map where it belongs. Then, the model is trained to attend the ground truth
regions by minimizing the cross-entropy loss between the predicted attention
distribution and the target attention distribution:

Jatt = −
Dm∑
i=1

Dm∑
j=1

α̂ij log(pI ij). (6)

3.2. Visual Question Answering Model

A simple baseline model for visual question answering was proposed by
Jabri et al. [12] and it was demonstrated that utilizing a binary classifier
to predict whether a given question-image-answer triplet is correct can sig-
nificantly improve the VQA accuracy over more advanced techniques, such
as generating the correct answer utilizing recurrent models. In this work,
we adopt a similar triplet-based scheme. As shown in Figure 3, where the
architecture of the proposed visual question answering model is illustrated,
the proposed model consists of two parts, the Feature Embedding layer and
the Multiple Choice (MC) layer.
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The feature embedding layer is responsible for extracting representations
from the input modalities. First, multiple explicit attention models are uti-
lized to provide different attention vectors. As demonstrated in Section 4,
employing multiple attention models can improve the accuracy of visual ques-
tion answering since models of different complexity tend to complement each
other (similar to ensemble models [22]). Then, the question and the answer
are encoded using the average embedding vector, similarly to the approach
applied in [12]. The notation Qf and Af is used to refer to these embedding
vectors. However, in contrast to other previous works, separate embedding
models are employed for predicting whether the given answer is correct and
for providing the attention distribution.

Table 1: Comparing the proposed explicit attention method to implicit attention

The accuracy of the models for each question type is shown in columns 2-7, while the
overall accuracy is shown in the last column.

Method What Where When Who Why How Overall
Implicit 0.617 0.706 0.801 0.693 0.602 0.532 0.634
Proposed (ResNet 152) 0.642 0.748 0.825 0.729 0.623 0.536 0.659
Proposed (ResNet 101 + ResNet 152) 0.656 0.737 0.819 0.721 0.644 0.547 0.666

An MLP is then utilized in the MC layer to predict whether the given
question-answer-image triplet is correct. This MLP outputs a scalar value
that expresses to the correctness of the given input question-answer-image
triplet. In that way, it is possible to choose the correct answer among several
different question-answer pairs. Note that instead of directly feeding the ex-
tracted feature vectors into the utilized MLP, the similarity and the distance
between the representation of the image, the question and the answer are
also utilized. Thus, the vector that is fed into the final classifier is defined
as:

[Qf ;Af ;Qf�Af ; ‖Qf −Af‖; I(1)m′ ; I
(1)
m′�z(1); ...; I(N)

m′ ; I
(N)
m′ �z(N)], (7)

where � is the Hadamard product operator, I
(i)
m′ ∈ RDd denotes the attention

representation vector extracted from the i-th attention model and z(i) is
the result of the i-th transformation layer that transforms the concatenated
vector of the question and the answer into a common representation space.
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The output of the MC layer is computed as:

tqa = [Qf ;Af ] ∈ R2Dw , (8)

z(n) = σ(tqaW
(n)
qa + b(n)

qa ) ∈ RDd , (9)

where W
(n)
qa and b

(n)
qa are the parameters of the transformation layer and σ(·)

denotes the sigmoid activation function. After computing the aforementioned
input vector, an MLP with 8096 hidden units, rectifier activation functions
in the hidden layer and sigmoid activation function for the final output is
employed to predict the correctness score for the input triplet. The binary
logistic loss was used to optimize the proposed model.

4. Experiments

The proposed method was evaluated on the Visual7W Telling dataset [42],
which is a subset of the Visual Genome dataset [16]. The dataset contains
69,817 training questions, 28,020 validation questions, and 42,031 test ques-
tions. For each question, 4 different possible answers exist, of which only one
is correct. The negative choices are human-generated and the performance
is measured by the percentage of correctly answered questions. In addition,
this dataset contains visual bounding boxes that are associated with the an-
swer of each question (attention ground truth information). This allows for
training explicit attention models with the supplied annotations. Note that
only a fraction of the questions are annotated with bounding boxes that can
be used for training the explicit attention model (30,491 training questions,
12,103 validation questions and 18,253 test questions).

The theano library [32] and the Lasagne framework [7] were used for devel-
oping the proposed method. For optimizing the model, the Adam optimizer
with the default settings [15] was employed, since it was experimentally es-
tablished that it provides faster and more smooth convergence than the plain
gradient descent with momentum. To further accelerate the convergence of
the optimization process, the largest learning rates that provided stable con-
vergence were used. Therefore, two different learning rates were selected:
0.001 for the explicit attention model and 0.0001 for the multiple choice an-
swering model. Applying the same learning rate (0.0001) for both models is
not expected to harm the accuracy of the model. However, it will slow down
the training process, requiring more iterations to be performed. A mid-range
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Graphics Processing Unit (GPU) was used for the training, limiting the max-
imum batch size that could fit in the memory to 16 samples. Furthermore,
dropout with rate 0.2 and batch normalization were also employed in the
MC Layer. Higher dropout rates could possibly slow down the training pro-
cess, leading to undesired phenomena, such as underfitting the model. The
explicit attention model was trained for 5 epochs and the multiple choice
answer model was trained for 12 epochs using both the training and valida-
tion sets. Two pre-trained deep residual networks, the ResNet-101 and the
ResNet-152 [10], were employed for extracting the feature maps from the last
convolutional layer of the networks. The embedding models were initialized
using pre-trained GloVe embedding vectors (Common Crawl (42B tokens),
300d) [26] and they were fine-tuned during the training process. The evalua-
tion procedure described in [42] was utilized for measuring the performance
of the proposed method, employing the toolbox supplied by the authors of
[42].

Table 2: Comparing the proposed method to other baseline and state-of-the-art VQA
techniques

Method Overall
Human (Question + Image) [42] 0.966

Logistic Regression (Q + I) [42] 0.352
LSTM (Q + I) [21] 0.521
LSTM-Att [42] 0.556
MCB [8] 0.622
Triplet MLP [12] 0.671
Proposed (ResNet 152) 0.659
Proposed (ResNet 101 + ResNet 152) 0.666

The evaluation results are shown in Table 1, where columns 2-7 show the
accuracy of the models for each separate question type. The overall accu-
racy is shown in the last column. Several conclusions can be drawn from
the results shown in Table 1. At first, the proposed explicit attention model
achieves higher overall question answering accuracy compared to the base-
line implicit attention model. Regarding each separate question type, the
explicit attention models increase the answering accuracy for every question
type (especially for the “what” and “why” questions where providing reli-
able attention is crucial). Employing a second independent attention model
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Figure 4: Comparing between implicit attention and explicit attention models.
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trained with image features from a different pre-trained CNN model pos-
itively impacts the VQA accuracy. Using two different attention models
increases the possibility that at least one of them will attend to the correct
region. This is also demonstrated in Figure 4, where the implicit attention
model and the proposed explicit attention model are compared using some of
the test questions and images. It is evident that the proposed method signif-
icantly improves the attention accuracy. It is also noteworthy that when one
of the two attention models fails to provide a correct attention distribution
the other one can still provide fine-grained attention information that helps
to correctly answer the question. A typical example of this behavior is illus-
trated for the question “Where are the glasses?” in Figure 4. In this specific
example the implicit model also provides the correct answer because it has
probably learned from the training data that the glasses are likely to appear
on a man’s face, despite the fact that this information was not provided by
the attention model. Learning the priors from the training data without
actually understanding the visual input is a well known behavior and also
appears in many other VQA approaches [9, 1].

The proposed explicit attention also significantly improves upon the “How
many”-type questions. For example, consider the question “How many ele-
phants are there”, where attending to the correct region of the image is vital
for correctly answering the question. Similar conclusions can be drawn for
the rest of the images. The proposed method is also compared to other base-
line and state-of-the-art VQA techniques in Table 2 achieving the second
higher VQA accuracy. We also attempted to combine the proposed method
with the best performing method, i.e., the Triplet MLP [12], but we were
unable to reproduce the results reported in [12], since not all the details of the
utilized setup were reported. Nonetheless, combining the explicit attention
model with the exact setup employed in [12] is expected to further improve
the accuracy.

5. Conclusions

Visual Question Answering (VQA) is among the most difficult multi-
modal problems as it requires a machine to be able to properly understand
a question and the corresponding visual input. In this work, it was demon-
strated that employing multiple explicitly trained attention models can sig-
nificantly improve the VQA accuracy compared to implicit attention models
as well as other state-of-the art techniques. Furthermore, a way of effectu-

12



ating a mechanism that mimics the pictorial superiority effect was provided,
further improving the answering accuracy.

There are several interesting future work directions. Thus, more deliber-
ate techniques could be employed for combining multiple attention models,
e.g., the AdaBoost technique [41]. Furthermore, in the proposed method the
attention model was not trained when a question does not contain ground
truth bounding boxes. Exploiting the information contained in these image-
question pairs, in a way similar to the implicit attention, can lead to a hybrid
implicit-explicit attention model that can further improve the visual question
answering accuracy. Advanced pooling techniques, such as BoF pooling [25],
can be also used to improve the scale invariance of the attention model and
provide more reliable attention information. The proposed methodology can
also be applied to other tasks that require high level visual understanding,
such as image caption generation [14, 11, 37], and video caption genera-
tion [18]. Finally, the proposed approach could also be used to improve the
precision of multi-modal information retrieval [5], where providing accurate
visual attention information given a textual query from the user is of critical
significance.
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