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Abstract

Multidimensional Scaling (MDS) has been exploited to visualise the hidden

structures among a set of entities in a reduced dimensional metric space. Here,

we are interested in cases whenever the initial dissimilarity matrix is contam-

inated by outliers. It is well-known that the state-of-the-art algorithms for

solving the MDS problem generate erroneous embeddings due to the distortion

introduced by such outliers. To remedy this vulnerability, a unified framework

for the solution of MDS problem is proposed, which resorts to half-quadratic op-

timization and employs potential functions ofM -estimators in combination with

`2,1 norm regularization. Two novel algorithms are derived. Their performance

is assessed for variousM -estimators against state-of-the-art MDS algorithms on

four benchmark data sets. The numerical tests demonstrate that the proposed

algorithms perform better than the competing alternatives.

Keywords: Multidimensional scaling, robustness, M -estimators,

half-quadratic optimization, `2,1 norm regularization

1. Introduction

Multidimensional Scaling (MDS) seeks for a visual representation of prox-

imities among a set of entities so that the distances between the entities in the
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low-dimensional reconstructed map preserve the initial pairwise dissimilarities

as closely as possible. MDS input is a square, symmetric dissimilarity matrix5

that captures the proximities among a set of entities. Its output is a config-

uration (i.e., a geometric model), where each entity is represented by a single

point. The spectrum of MDS applications includes, psychology [1], construction

of market structure maps [2], dimensionality reduction [3], graph drawing [4],

phone caller network visualization [5], localization of mobile phones [6], unrav-10

eling relational patterns among genes [7], localizing nodes in a wireless sensor

network [8], and open-domain sentiment analysis [9].

Widely used MDS algorithms, such as the classical MDS [1] and the scaling

by majorizing a complicated function (SMACOF) [10], do not exhibit robust-

ness when the initial dissimilarities are corrupted with outliers. This assumption15

and the work in [11] have motivated us to propose a variant of the framework

presented in [12]. The major premise is that by employing M -estimators to

mitigate the repercussion of outliers, contaminating the dissimilarity matrix,

and imposing an `2,1 norm regularization for smoothness, the aforementioned

vulnerability of state-of-the-art MDS algorithms is alleviated. Accordingly, the20

contributions of the paper are: 1) The proposal of a general framework for

the solution of the MDS problem when the initial dissimilarity matrix is cor-

rupted with outliers, which is based on half-quadratic (HQ) optimization. 2)

The detailed demonstration of the merits of the proposed algorithms against the

state-of-the-art MDS algorithms and the study of the impact of the `2,1 norm25

regularization against the Frobenius norm used in [12].

The motivation behind using the `2,1 norm regularization stems from the

related literature in statistics and machine learning, when this norm is used as

both loss function and regularization term. In particular, the `2,1 norm has

been initially applied in Group Least Absolute Shrinkage and Selection Op-30

erator (LASSO) [13], multi-task feature learning [14], [15] and logistic group

LASSO [16]. In [17], the subspace learning problem is reformulated using the

`2,1 norm of the projection matrix. A feature selection method imposing joint

`2,1 norm minimization on both the loss function and the regularization term is
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proposed in [18]. The `2,1 norm as a loss function offers robustness to outliers35

as opposed to the `2 norm. By employing this norm as a regularization term,

sparsity-promoting feature selection is achieved. The `2,1 norm as a regular-

ization term was proposed for joint embedding learning and sparse regression

[19], discriminative feature selection for unsupervised learning [20], and robust

feature selection [21]. In [22], a feature selection technique that employs the40

`2,1 norm regularization into the Fisher criterion was proposed. In all cases, the

`2,1 norm constraint assures row-sparsity of the feature selection matrix, which

leads to informative features.

This paper is structured as follows: Notation and norm definitions are sum-

marized in Section 2. MDS and existing robust variants of MDS are presented45

in Section 3. The proposed MDS algorithms, employing M -estimators and `2,1

norm regularization, are detailed in Section 4. Their performance is compared

to that of state-of-the-art MDS algorithms by numerical tests in Section 5. Sec-

tion 6 concludes the paper and proposes topics of future research.

2. Preliminaries50

Scalars appear as lowercase letters (e.g., λ1) while vectors and matrices are

denoted by lowercase boldface letters (e.g., x) and uppercase ones (e.g., X),

respectively. The (i, j) element of X is declared as [X]ij or xij . The i-th row of

X is represented by the row vector xi while the j-th column by the column vector

xj . (·)T denotes transposition, I stands for the identity matrix with compatible55

dimensions, tr(X) refers to the trace of matrix X, and X−1 is the inverse of

the square matrix X. The operator diag(·) applied to vector x yields a square

diagonal matrix whose main diagonal elements are the elements of x. When

the same operator is applied to matrix, i.e., diag(X) yields a column vector

with elements, the ones appearing on the main diagonal of X. The expression60 ∑N
i<j(·) is a short-hand notation for the double summation

∑N
i=1

∑N
j=i+1(·),

while |·| denotes the absolute value operator.

In this paper, we deal with vector and matrix norms. The `p norm of x ∈
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Rd×1 is defined as ‖x‖p =
(∑d

i=1|xi|p
) 1

p . Special cases are the `1 and `2 norms

of x, equal to ‖x‖1 =
∑d

i=1|xi| and ‖x‖2 =
√∑d

i x
2
i , respectively.65

Let X = [x1|x2|, ..., |xN ]T ∈ RN×d be the data matrix, where the i-th

object is mapped to the i-th column of XT or the i-th row of X, i.e., xi =

(xi1, xi2, ..., xij , ..., xid) ∈ R1×d. The Frobenius norm of X ∈ RN×d is defined as

‖X‖F =
√∑N

i=1

∑d
j=1 x

2
ij =

√∑N
i=1 ‖xi‖22. The `p,q norm of X1 is defined as:

‖X‖p,q =
( N∑

i=1

( d∑
j=1

|xij |p
) q

p
) 1

q

=
( N∑

i=1

∥∥xi
∥∥q
p

) 1
q

. (1)

For p = 2 and q = 1, the `2,1 norm of X results, i.e., ‖X‖2,1 =
∑N

i=1

∥∥xi
∥∥
2
. For

any rotation matrix R, it can be proven that ‖XR‖2,1 = ‖X‖2,1. Moreover,

the `2,1 norm of X satisfies the three norm conditions.

3. Robust variants of MDS

Let N be the number of objects, d be the resulting embedding dimension,

and ∆ = [δij ] denote the initial pairwise dissimilarity matrix, where δij , i, j =

1, 2, . . . , N stands for the dissimilarity between the objects i and j. The embed-

ding in the d-dimensional space is represented byX = [x1|x2|, ..., |xN ]T ∈ RN×d.

Let D(X) = [dij(X)] ∈ RN×N denote the distance matrix. Its ij-th element

is the `2 norm between xi and xj , i.e., dij(X) = ‖xi − xj‖2. The Hadamard

product of D(X) with itself is equal to

[D(X)]2 = diag(diag(XXT ))E+Ediag(diag(XXT ))− 2XXT (2)

where E is a N ×N matrix whose all elements equal to one. The MDS aims at

determining X so that the raw stress

σr(X) =

N∑
i<j

(δij − dij(X))2 (3)

1Another closely related norm is the so-called `2/`1 norm, which is defined as the sum of

the `2 norms of the column vectors of X and used in joint sparse and low-rank representations

[23]. The latter is wrongly defined as `2,1 in Wikipedia.
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is minimized. The raw stress (3) is a least-squares (LS) loss function. Accord-70

ingly, it is fragile to outliers. This fragility has led to the proposal of robust

Euclidean embedding (REE) [24], where the function
∥∥∆2 −D2

∥∥
1
was employed

in order to minimize the influence of outliers. Closely related ideas can be found

in [25, 26].

Another robust variant is the RMDS [11], where each dissimilarity is modeled

as δij = dij(X) + oij + εij , where oij denotes an outlier and εij is a zero-mean

independent random variable modeling the nominal error. Since only a small

amount of outliers admit a non-zero value, the inclusion of the `1 norm of the

N ×N outlier matrix O in the MDS loss function is justified, yielding [11]:

(Ô, X̂) = argmin
O,X

{ N∑
i<j

(δij − dij(X)− oij)
2 + λ1

N∑
i<j

|oij |
}
. (4)

The solution of (4) is given by the iterative procedure [11]:75

o
(t+1)
ij = Sλ1

(δij − dij(X
(t))) (5)

X(t+1) = L† L+(O
(t+1),X(t))X(t) (6)

where Sλ1
(x) = sign(x)(|x|− λ1

2 )+ is the soft-thresholding operator with (·)+ =

max{·, 0}. L is a symmetric matrix with diagonal elements [L]ii = N − 1 and

off-diagonal elements [L]ij = −1. Since L is not full rank, the Moore-Penrose

pseudoinverse is used, defined as L† = N−1J, where J = I − N−1 e eT is the

centering operator and e is the N × 1 vector of ones. In (6), L+(O,X) is the

Laplacian matrix, i.e.:

[L+(O,X)]ij =


−(δij − oij) d

−1
ij (X) (i, j) ∈ S(O,X)

0 (i, j) ∈ T(O,X)

−
∑N

k=1,k 6=i[L+(O,X)]ik (i, j) ∈ Q(O,X)

(7)

where S(O,X) = {(i, j) : i 6= j, dij(X) 6= 0, δij > oij}, T(O,X) = {(i, j) : i 6=

j, dij(X) = 0, δij > oij} and Q(O,X) = {(i, j) : i = j, δij > oij}. The iterative

procedure starts with a randomly chosen initial configuration X(0) and a zero

initial outlier matrix O(0).
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Given X(t), the estimation of O(t+1) via (5) constitutes an `1 regularization80

LASSO problem. Given O(t), the estimation of X(t+1) via (6) is the LS solution

of the optimization problem
∥∥∥LX(t+1) − L+(O

(t+1),X(t))X(t)
∥∥∥2
F
.

Even though (4) alleviates the impact of the outliers, it is still vulnerable

to them, because (6) is a LS solution strongly influenced by outliers. Here,

it is proposed to replace the squared Frobenius norm that yields (6) with an

M -estimator by passing the residual LX−L+(O
(t+1),X(t))X(t) through a non-

negative and differentiable function φ(·) with respect to (w.r.t.) X, known as

potential function. Moreover, a smoothness regularization term is simultane-

ously imposed through the `2,1 norm of X, i.e.,

X(t+1) = argmin
X

{
φ(LX− L+(O

(t+1),X(t))X(t)) + λ2 ‖X‖2,1

}
. (8)

M -estimators substitute the LS loss function, being fragile to outliers, with a

potential function φ(·), which expands less than the LS one [27]. By this way, the

vulnerability to gross errors is mitigated. The properties of potential functions85

can be found in [28]. Here, the M -estimator seeks to attenuate the impact of

outlying residual errors offering additional immunity to inaccurate estimation

of O(t+1). The `2,1 norm regularization term combines the benefits of `1 and

`2 regularization, avoiding the over-smoothness of the Frobenius norm used in

[12]. By doing so, we overcome the crucial limitations of RMDS, namely the LS90

viewpoint that yields (6) and the lack of any smoothness term w.r.t. X.

4. MDS employing M-estimators and `2,1 regularization

In this section, (8) is solved via half-quadratic (HQ) minimization. To do so,

a new objective function is introduced that is more tractable. It depends on both

the initial variables X and new auxiliary variables P. Let J (X) be the initial

objective function and J(X,P) be the new objective function. These objective

functions satisfy J (X) = min
P

{J(X,P)}, ∀X. That is, the global minimum of

J(X,P) with w.r.t. X is the same with that of the J (X). When P is fixed, J is

quadratic w.r.t. X, a property which is responsible for the term Half Quadratic
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(HQ). In principle, HQ minimization resorts to alternating estimates of P and

X. The optimization problem (8) can be rewritten as

X̂ = argmin
X

{φ(X) + h(X)} (9)

where h(X) = λ2 ‖X‖2,1. The potential (or loss) function φ(X): R → R could

be either convex or non-convex and can be chosen to be the potential function

of an M -estimator. It also satisfies

φ(X) = min
P

{Q(X,P) + ψ(P)} ∀X ∈ RN×d. (10)

In (10), P ∈ RN×d is a matrix of auxiliary variables, Q(X,P) is a quadratic

function for any P, while ψ(·) is the conjugate function of φ(·) [29, ch. 3, p.

90]. For P ∈ RN×d, ψ(P) =
∑N

n=1

∑d
m=1 ψ(pnm). By combining (9) and (10),

we arrive at

(X̂, P̂) = argmin
X,P

{J(X,P)} = argmin
X,P

{
Q(X,P)

+

N∑
n=1

d∑
m=1

ψ(pnm) + h(X)
}
. (11)

The solution (X̂, P̂) of the optimization problem (11) is obtained in an al-

ternating fashion as follows:

P(t+1) = δ(X(t)) (12)

X(t+1) = argmin
X

{Q(X,P(t+1)) + h(X)}. (13)

The auxiliary variables pnm in (12) are determined componentwise by the HQ

minimizer function δ(·) derived by ψ(·) and thus related to φ(·). Therefore, it

suffices to consider the case of scalar functions in (10). For a scalar variable, the

minimizer function satisfies the constraint Q(x, δ(x))+ψ(δ(x)) ≤ Q(x, p)+ψ(p),

∀p ∈ R [30]. Q(x, p) is a quadratic function admitting two forms, namely the

multiplicative form

QM (x, p) = px2 p ∈ R+, x ∈ R (14)
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resulting to the potential function φ(x) = min
p

{p x2+ψ(p)} [31] and the additive

form [32]:

QA(x, p) = (x
√
c− p√

c
)2 p ∈ R, x ∈ R (15)

which results to the potential function φ(x) = min
p

{(x
√
c− p√

c
)2+ψ(p)}, where95

c is a positive constant. c = sup
x∈R

φ′′(x) is the optimal value of c [30]. In both

forms of the HQ minimization, φ(x) should fulfil certain conditions [30].

The minimizer function δ(·), called also weighting function, admits distinct

additive and multiplicative formulations. For φ(x): R → R, these formulations

are [30]:100

δA(x) = cx− φ′(x) (16)

δM (x) =

 φ′′(0+) if x = 0

φ′(x)
x if x 6= 0.

(17)

Various potential functions φ(x) : R → R and their corresponding weighting

functions δ(x) : R → R can be derived from (16) and (17) for the additive and

multiplicative form of the HQ, respectively. They are listed in Table 1. In

the following, closed forms for (12) and (13) are derived for the additive and

multiplicative forms of HQ.105

Table 1: Potential functions φ(x) and weighting functions δ(x) of M -estimators for either the

additive or multiplicative form of HQ.

M-estimator Potential Function Multiplicative Form Additive Form

`2 φ(x) = x2/2 δ(x) = 1 δ(x) = (c− 1)x

`1 φ(x) = |x| δ(x) = 1
|x| δ(x) = cx− sign(x)

`p φ(x) =
|x|p
p

p ∈ (1, 2] δ(x) = |x|p−2 Not Applicable

`1-`2 φ(x) = 2(
√

1 + x2

2
− 1) δ(x) = 1√

1+ x2

2

δ(x) = cx− x√
1+ x2

2

Log-cosh φ(x) = log(cosh ax) δ(x) = a tanh ax
x

δ(x) = cx− a tanh ax

Huber φ(x) =

 x2/2 |x| ≤ a

a|x| − a2

2
|x| > a

δ(x) =

 1 |x| ≤ a

a
|x| |x| > a

δ(x) =

 (c− 1)x |x| ≤ a

cx− asign(x) |x| > a

Fair φ(x) = a2(
|x|
a

− log(1 +
|x|
a
)) δ(x) = 1

1+
|x|
a

δ(x) = cx− x

1+
|x|
a

Welsch φ(x) = a2

2
(1− exp(−x2

a2 )) δ(x) = exp(−x2

a2 ) δ(x) = cx− xexp(−x2

a2 )

Cauchy φ(x) = a2

2
log(1 + (x

a
)2) δ(x) = 1

1+( x
a
)2

δ(x) = cx− x
1+( x

a
)2

Geman-McClure φ(x) = x2

2(1+x2)
δ(x) = 1

(1+x2)2
δ(x) = cx− x

(1+x2)2

Tukey φ(x) =

 a2

6
(1− [1− (x

a
)2]3) |x| ≤ a

a2

6
|x| > a

δ(x) =

 [1− (x
a
)2]2 |x| ≤ a

0 |x| > a
δ(x) =

 cx− x[1− (x
a
)2]2 |x| ≤ a

0 |x| > a
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4.1. Additive Form (HQAMDSL21)

By adapting (15) to the multivariate case, the quadratic function QA(·) of

the additive form of the HQ is defined as

QA(LX− L+X
(t),P) =

∥∥∥∥√c (LX− L+X
(t))− 1√

c
P

∥∥∥∥2
F

(18)

where the matrix of auxiliary variables P ∈ RN×d is determined by the mini-

mizer function δA(·) defined in (16). Hence, the potential loss function φA(·),

applying (10), takes the form:

φA(LX− L+X
(t)) = min

P

{
QA(LX− L+X

(t),P)

+

N∑
n=1

d∑
m=1

ψ(pnm)

}
(19)

where ψ(·) is the conjugate function of φA(·). Accordingly, JA(X,P) in (11) is

given by:

JA(X,P) =

∥∥∥∥√c (LX− L+X
(t))− 1√

c
P

∥∥∥∥2
F

+

N∑
n=1

d∑
m=1

ψ(pnm) + λ2 ‖X‖2,1 (20)

where λ2 is a positive parameter regulating the `2,1 norm of X. Let (X̂, P̂) =

argmin
X,P

{JA(X,P)}. When X is sought, the terms including ψ(·) can be omitted.

Recall that the auxiliary variables depend only on the minimizer function δA(·),

as indicated in (12), and are fixed. Let Y = L+(O
(t+1),X(t))X(t). Then,

the unknown variables (X,P) are estimated by the alternating minimization

procedure:

P(t+1) = δA(LX
(t) −Y) (21)

X(t+1) = argmin
X

{∥∥∥∥√c (LX− L+X
(t))− 1√

c
P(t+1)

∥∥∥∥2
F

+ λ2 ‖X‖2,1

}
. (22)
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The optimization problem (22) can be reformulated as:

X(t+1) = argmin
X

{
c tr((LX−H(t+1))T (LX−H(t+1)))

+ 2λ2 tr(XTR(t+1)X)

}
. (23)

where

H(t+1) = Y+
1

c
P(t+1). (24)

and

R
(t+1)
ii = r

(t+1)
i =

1

2
∥∥(xi)(t)

∥∥
2

(25)

with R(t+1) = diag(r(t+1)) being a diagonal matrix with ii-th element equal

to r
(t+1)
i . By applying the first order optimality condition to (23) w.r.t. X, a

closed form solution is obtained for X(t+1)2:

X(t+1) = c (cLTL+ λ2R
(t+1))−1LTH(t+1). (26)

In this form of the HQ, the auxiliary variables P can be viewed as errors incurred

by noise. The complete procedure for the solution of (8) by the additive form of

the HQ minimization is outlined in Algorithm 1. The initial configuration X(0)

can be chosen randomly, while the initial outlier matrix O(0) is set to zero.110

4.2. Multiplicative Form (HQMMDSL21)

For the multiplicative form of the HQ, the quadratic function QM (·) is

defined as the weighted sum of squared `2 norms of the rows of the residual

LX− L+(O
(t+1),X(t))X(t):

QM (LX− L+X
(t),p) =

N∑
i=1

pi

∥∥∥(LX− L+X
(t))i

∥∥∥2
2

(27)

where p ∈ RN×1 is the vector of the auxiliary variables, which is determined by

the minimizer function δM (·) defined in (17). Thus, the potential loss function

2Recall that L is symmetric, so LT = L.
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Algorithm 1 Additive form of the HQ Minimization for MDS with `2,1 regu-

larization (HQAMDSL21)

Input: Initial outlier matrix O(0) and initial configuration X(0)

Output: Outlier matrix O(t+1) and coordinate matrix X(t+1)

1: for t = 0, 1, 2, ... do

2: Find each entry of O(t+1) via (5)

3: Update P(t+1) via (21) with L+ as in (7)

4: Update H(t+1) via (24) with L+ as in (7)

5: Update r
(t+1)
i via (25)

6: Update X(t+1) via (26)

7: end for

φM (·) is equal to

φM (LX− L+X
(t)) = min

p

{ N∑
i=1

pi

∥∥∥(LX− L+X
(t))i

∥∥∥2
2

+

N∑
i=1

ψ(pi)

}
. (28)

Using (28), the augmented objective function in (11) takes the form

JM (X,p) =

N∑
i=1

pi

∥∥∥(LX− L+X
(t))i

∥∥∥2
2
+

N∑
i=1

ψ(pi)

+ λ2 ‖X‖2,1 . (29)

Let (X̂, p̂) = argmin
X,p

{JM (X,p)}. Following similar lines to the derivation of

HQAMDSL21, a local minimizer (X̂, p̂) can be estimated using the alternating

minimization:

p
(t+1)
i = δM

(∥∥∥(LX(t) −Y)i
∥∥∥
2

)
(30)

X(t+1) = argmin
X

{
tr((LX−Y)TP(t+1)(LX−Y))

+ 2λ2tr(X
TR(t+1)X)

}
(31)
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where P(t+1) = diag(p(t+1)) and R(t+1) = diag(r(t+1)) are diagonal matrices

with ii-th elements equal to p
(t+1)
i and r

(t+1)
i given by (25), respectively. Setting

the derivative of (31) w.r.t. X equal to zero, a closed-form solution is obtained:

X(t+1) = (LT P(t+1) L+ λ2R
(t+1))−1 LT P(t+1) Y. (32)

The HQ minimization guarantees that the objective function is reduced at each

iteration until convergence. At each iteration, the auxiliary variable pi denotes

the weight that modulates the influence of
∥∥∥(LX− L+X

(t))i
∥∥∥
2
. The adoption

of M -estimators into the objective function JM (X,p) attenuates the outlier115

impact. This is because p
(t+1)
i takes always a low weight, as attested by the

δM (·) in (30), which is related to anM -estimator potential function φM (·). The

entire procedure for the solution of (8) by the multiplicative form of HQ is

outlined in Algorithm 2. X(0) and O(0) can be initialized as in Section 4.1.

It should be noted that if
∥∥(xi)(t)

∥∥
2
= 0, then R

(t+1)
ii = r

(t+1)
i will tend to120

infinity. In this case, there is no guarantee that the proposed algorithms will

converge. Although in theory
∥∥xi

∥∥
2
can be zero, in practice it should be set

to a very small, but non-zero, value. Under these circumstances, R
(t+1)
ii can be

regularized as R
(t+1)
ii = 1

2‖(xi)(t)‖
2
+ζ

, where ζ is a very small constant. It is

true that when ζ → 0, then 1

2‖(xi)(t)‖
2
+ζ

approximates 1

2‖(xi)(t)‖
2

.125

5. Numerical Tests

The proposed algorithms were implemented in Matlab and tested on several

dissimilarity matrices. Their performance was benchmarked against three state-

of-the-art MDS algorithms implemented in the same environment and tested

on the same dissimilarity matrices. These algorithms were: a) the SMACOF130

algorithm [10], b) the subgradient version of REE algorithm [24], and c) the

RMDS [11]. For all state-of-the-art algorithms, any authors’ recommendations

were strictly followed.

The embedding quality of each algorithm has been judged w.r.t. four figures

of merit: a) The normalized outlier-free stress σ(X̂, Ô) =

√∑
(i,j)∈U(δij−dij(X))2∑

(i,j)∈U δ2ij
135
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Algorithm 2 Multiplicative form of the HQ minimization for MDS with `2,1

regularization (HQMMDSL21)

Input: Initial outlier matrix O(0) and initial configuration X(0)

Output: Outlier matrix O(t+1) and coordinate matrix X(t+1)

1: for t = 0, 1, 2, . . . do

2: Find each entry of O(t+1) via (5)

3: Update p
(t+1)
i via (30) with L+ as in (7)

4: Update r
(t+1)
i via (25)

5: Update X(t+1) via (32)

6: end for

was calculated, where U denotes the set of outlier-free dissimilarities (i.e., when

[O]ij = 0) as in [11]. To calculate this figure of merit, the set of outliers

estimated by the applicable algorithm was used. Any ground truth related to

the outliers was not employed, so that the figure of merit did not depend on

the knowledge of the initial outlier-free dissimilarity matrix. b) The estimated140

number of outliers Ŝ was recorded as in [11]. c) The distortion (raw stress)

σr(X̂) between the resulting embedding and the initial outlier-free configuration,

defined in (3), was monitored. d) The standardized Procrustean goodness-of-fit

criterion %, defined as the sum of the squared errors standardized by a measure

of the scale X3, was calculated, too. The last criterion can only be applied to145

fixed configurations.

100 Monte Carlo simulations of the RMDS algorithm took place, using a

different random initial configuration X(0) in each run. From all runs, the

instance where RMDS embedding was closer to the outlier-free configuration

(i.e., when raw stress σr(X̂) admitted its minimum value) was selected. RMDS,150

HQAMDSL21, and HQMMDSL21 algorithms terminated if
∥∥∥X(t+1) −X(t)

∥∥∥
F
/

3In Matlab, the measure of the scale X is given by sum(sum((X −

repmat(mean(X, 1), size(X, 1), 1)).2, 1)).
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∥∥∥X(t+1)
∥∥∥
F
was less than 10−6 or after 5000 iterations.

The following experimental results demonstrate that if the M -estimators

are employed in HQAMDSL21 and HQMMDSL21, the resulting embedding

outperforms the one derived by RMDS w.r.t. σr(X̂) for a wide range of λ2155

values. The same applies for % citerion in fixed configurations. Due to lack

of space, only the raw stress σr(X̂) of the proposed algorithms is plotted for

λ2 ∈ [1, 100].

5.1. Square Data Set

The first data set is a rectangular of N = 100 points in the two-dimensional160

space. The bottom-left point is at (1, 1) and the upper-right point is at (10, 10).

All points are equidistant by one unit from their vertical and horizontal neigh-

bors. Each element of the initial dissimilarity matrix was corrupted with a

background error εij extracted from a zero mean truncated Gaussian distribu-

tion with variance 0.1 and threshold −dij(X). This threshold was selected in165

order to avert negative values in ∆. The outliers were derived from a uniform

distribution in [0,40] with their indices being chosen arbitrarily. The contami-

nation percentage $% of the outliers was set at 594/(100 · 99/2) = 12%.

Let ah be the parameter of the Huber M -estimator and σ̂ε be the median

absolute deviation (MAD)4 of nominal errors. Implementing the equivalence170

with Huber M -estimator (λ1 = 2ah) and taking into account that ah = 1.345×

1.483× σ̂ε yields 95% asymptotic efficiency for the normal distribution [33], λ1

was set to 3.99 σ̂ε for the RMDS and the proposed algorithms.

Table 2 gathers the figures of merit related to the embedding quality deliv-

ered by SMACOF, REE, and RMDS. The reported figures of REE were recorded175

after 4000 iterations. The range of the figures of merit for HQMMDSL21, em-

ploying the Fair M -estimator with a = 0.7 is also included in Table 2 when

λ2 ∈ [1, 100]. The raw stress σr(X̂) of HQAMDSL21 and HQMMDSL21 algo-

rithms is plotted in Figure 1 for λ2 ∈ [1, 100]. In both algorithms, the kernel size

4Median of the absolute deviations of nominal errors from their median.
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Table 2: Figures of merit for the embedding quality obtained by SMACOF, REE, RMDS, and

HQMMDSL21 applied to square data set.

Outlier percentage $ = 12% SMACOF REE RMDS HQMMDSL21

Normalized outlier-free stress σ(X̂, Ô) 0.6830 0.7206 0.0375 [0.0373, 0.03755]

Estimated outliers Ŝ - - 1354 [1323, 1359]

Procrustean goodness-of-fit % 0.3925 0.0006 0.0004 [0.00038, 0.0004]

Raw stress σr(X̂) 52728.4 58.0572 51.3491 [34.6436, 51.2819]

a of the Welsch, Cauchy, Fair and log-cosh M -estimators was set to 12, 4, 0.7,180

and 0.7, respectively. For HQAMDSL21, c was equal to 1. It can be seen that

the plots of raw stress σr(X̂) for HQAMDSL21 and HQMMDSL21, employing

the Welsch and CauchyM -estimator, are rather identical. Furthermore, the fig-

ures of merit of the proposed algorithms, employing the Welsch, Cauchy, Fair,

and log-cosh M -estimators are summarized in Table 3.185

The plots of % for the proposed algorithms and the aforementioned M -

estimators are roughly the same with that of σr(X̂). % for the proposed al-

gorithms is always smaller than that of RMDS for λ2 ∈ [1, 100]. The estimated

number of outliers Ŝ by both HQAMDSL21 and HQMMDSL21 admitted values

in [1323, 1359]. σ(X̂, Ô) for the proposed algorithms takes a smaller value than190

RMDS for most choices of λ2 ∈ [1, 100]. Nevertheless, the normalized outlier-

free stress σ(X̂, Ô) exhibits an unstable performance, indicating that this figure

alone without Ŝ or σr(X̂) is not reliable for judging the embedding quality.

Finally, in order to demonstrate the influence of the kernel size a of the

M -estimators, the plots of the raw stress σr(X̂) of HQMMDSL21, employing195

the Fair M -estimator, for different values of a are overlaid in Figure 2, when

λ2 ∈ [1, 100]. It can be seen that a large value of the parameter a impedes the

derivation of the optimal embedding (i.e., finding the configuration with the

lowest raw stress σr(X̂)), which emerges for a large values of λ2.
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Table 3: Range of the figures of merit for the embedding quality obtained by HQMMDSL21

and HQAMDSL21 for various M -estimators applied to square data set.

σ(X̂, Ô) Ŝ % σr(X̂)

HQMMDSL21

Welsch a = 12

[0.03734, 0.03746] [1347, 1359] [0.00039, 0.0004] [45.178, 51.282]

HQAMDSL21

Welsch a = 12

[0.03734, 0.03746] [1347, 1359] [0.00039, 0.0004] [45.180, 51.282]

HQMMDSL21

Cauchy a = 4

[0.03734, 0.03746] [1347, 1359] [0.00039, 0.0004] [45.097, 51.282]

HQAMDSL21

Cauchy a = 4

[0.03734, 0.03746] [1347, 1359] [0.00039, 0.0004] [45.123, 51.285]

HQMMDSL21

Fair a = 0.7

[0.03730, 0.03755] [1323, 1359] [0.00038, 0.0004] [34.644, 51.282]

HQAMDSL21

Fair a = 0.7

[0.03722, 0.03747] [1336, 1359] [0.00038, 0.0004] [37.352, 51.284]

HQMMDSL21

Log-cosh a = 0.7

[0.03728, 0.03748] [1334, 1359] [0.00039, 0.0004] [37.791, 51.213]

HQAMDSL21

Log-cosh a = 0.7

[0.03729, 0.03749] [1336, 1359] [0.00038, 0.0004] [38.374, 51.217]

5.2. Scholastic Aptitude Test Data Set200

The second data set comprises real data from average Scholastic Aptitude

Test (SAT) scores for the N = 51 states in the US. These data include six

attributes, such as population, average verbal and math scores, percentage of

eligible students taking the exam, percentage of adult population without a

high school education, and annual teacher pay in thousands of dollars [34].205

First, the initial values were normalized in [0,1]. Then, the dissimilarity matrix

was computed according to (2). Next, the dissimilarity matrix was artificially

contaminated by 128/(51 ·50/2) = 10.04% outliers, being drawn from a uniform

distribution in [max δij , 4max δij ]. The outlier indices were chosen randomly.

In order to estimate Ŝ = 128 outliers using the RMDS, λ1 was set to 0.75. The210

same value was used for HQMMDSL21.

The figures of merit used to judge the embedding quality obtained by SMA-
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Figure 1: Raw stress σr(X̂) of HQAMDSL21 and HQMMDSL21 in the square data set.
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Figure 2: Raw stress σr(X̂) of HQMMDSL21, employing the Fair M -estimator, for different

values of the kernel size a in the square data set.

17



Table 4: Figures of merit for the embedding quality obtained by SMACOF, REE, RMDS, and

HQMMDSL21 applied to SAT data set.

Outlier percentage $ = 10.04% SMACOF REE RMDS HQMMDSL21

Normalized outlier-free stress σ(X̂, Ô) 0.6862 0.7608 0.1511 [0.138, 0.1508]

Estimated outliers Ŝ - - 128 128

Raw stress σr(X̂) 251.3171 11.7846 11.6615 [9.379, 11.623]

COF, REE, and RMDS are summarized in Table 4. The reported figures of

REE came after 8000 iterations. For comparison purposes, the range of the fig-

ures of merit of the HDMMDSL21, employing the Cauchy M -estimator with a215

being set to 3, is also incorporated in the same Table, when λ2 varies in [1, 100].

The raw stress σr(X̂) of HQMMDSL21 for various M -estimators is plotted in

Figure 3 for λ2 ∈ [1, 100].

Detailed figures of merit for HQMMDSL21 employing various M -estimators

are listed in Table 5. The estimated number of outliers Ŝ was found to be220
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Figure 3: HQMMDSL21 raw stress σr(X̂) for the SAT data set.
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Table 5: Range of figures of merit for the embedding quality obtained by HQMMDSL21 for

various M -estimators applied to SAT data set.

σ(X̂, Ô) Ŝ σr(X̂)

HQMMDSL21 Welsch a = 1000 [0.1380, 0.1508] 128 [9.4170, 11.6230]

HQMMDSL21 Cauchy a = 3 [0.1380, 0.1508] 128 [9.3797, 11.6230]

HQMMDSL21 Fair a = 2 [0.1380, 0.1508] [128,129] [9.3128, 11.6228]

HQMMDSL21 Log-cosh a = 3 [0.1484, 0.1510] 128 [11.2359, 11.6572]

HQMMDSL21 `1-`2 [0.1366, 0.1508] [128, 129] [9.0775, 11.6230]

constant, admitting values in the range [128,129]. The normalized outlier-free

stress σ(X̂, Ô) of HQMMDSL21 for all M -estimators was always smaller than

the same figure of merit of RMDS, when λ2 ∈ [1, 100]. The plot of σ(X̂, Ô)

of HQMMDSL21, employing the aforementioned M -estimator was roughly the

same with that of σr(X̂).225

In the reported experiments, the performance of the Welsch M -estimator

in HQMMDSL21, with kernel size being selected to a large value (a = 1000),

approximates that of the `2 M -estimator in the same algorithm. The value

of a above which the aforementioned approximation takes place is different for

each M -estimator. In this case, the lowest raw stress value σr(X̂), derived by230

HQMMDSL21 algorithm (and HQAMDSL21), is valid for the largest possible λ2

value. On the contrary, the parameter a of FairM -estimator with HQMMDSL21

was selected so that the local minimum of the raw stress σr(X̂) is achieved for

a smaller λ2 value. By this way, the range of λ2 values for which the proposed

algorithms outperform RMDS w.r.t. σr(X̂) is reduced.235

5.3. Cities Data Set

The third data set is composed by the airline distances in hundreds of miles,

betweenN = 30 world principal international cities [35]. The initial dissimilarity

matrix was articially contaminated by 65/(30 · 29/2) = 14.94% outliers drawn

from a uniform distribution in [0, 3.5max δij ]. Outliers indices were selected240
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randomly. λ1 was set to 45.63 in order to identify Ŝ = 65 outliers using the

RMDS. The same value was used for the proposed algorithms.

Table 6 gathers the figures of merit related to the embedding quality obtained

by SMACOF, REE, and RMDS. The reported figures for REE were measured

after 20000 iterations. The range of the figures of merit for HQMMDSL21,245

employing the Fair M -estimator with a = 3, is also included in the Table, when

λ2 ∈ [1, 100].

Table 6: Figures of merit for the embedding quality obtained by SMACOF, REE, RMDS, and

HQMMDSL21 applied to cities data set.

Outlier percentage $ = 14.94% SMACOF REE RMDS HQMMDSL21

Normalized outlier-free stress σ(X̂, Ô) 0.6039 0.7353 0.1065 [0.1065, 0.1078]

Estimated outliers Ŝ - - 65 [64, 65]

Raw stress σr(X̂) 820550 203540 70369 [69326, 70363]

The raw stress σr(X̂) of HQAMDSL21 and HQMMDSL21 is plotted in Fig-

ure 4 for λ2 ∈ [1, 100]. The kernel size a for the Welsch and Cauchy estimators

was chosen to be 1010 and 30, respectively. For Fair, Huber, and log-cosh M -250

estimators, a was set to 3. Parameter c was equal to 1 for HQAMDSL21. It is

seen that the raw stress σr(X̂) of HQAMDSL21 and HQMMDSL21, employing

the Welsch, Cauchy, and Huber M -estimators, coincide for the selected values

of a.

The estimated number of outliers Ŝ, in both forms, was found to be constant,255

admitting values in [64, 65]. The normalized outlier-free stress σ(X̂, Ô) of the

proposed algorithms exhibits larger values than those of RMDS for most choices

of λ2 [1, 100] indicating that σ(X̂, Ô) alone is not a reliable figure of merit for

judging embedding quality.

It is worth noting that the range λ2 ∈ [1, 100] covers a small portion of the260

full range of values where the performance of the proposed algorithms has been

assessed. For example, the HQMMDSL21, employing the Welsch M -estimator

with λ1 = 45.63 and a = 1010 exhibits a better performance than RMDS w.r.t.
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Figure 4: Raw stress σr(X̂) of HQAMDSL21 and HQMMDSL21 in the cities data set.

σr(X̂), when λ2 ∈ [1, 8631]. Setting λ2 = 5305, we obtained the configuration

with the lowest raw stress σr(X̂) (i.e., 54066) for all integer choices of λ2.265

The embedding of SMACOF applied to outlier-free data was used as baseline

to be compared with the embeddings delivered by RMDS and HQMMDSL21,

when they are applied to contaminated data. These embeddings are shown in

Figures 5a and 5b. The embeddings obtained by RMDS and HQMMDSL21

were matched to that of SMACOF via Procrustes analysis. The embedding270

of HQMMDSL21 was obtained, when the Welsch M -estimator with kernel size

a = 1010 was employed, setting λ1 = 45.63 and λ2 = 5305. A careful visual

inspection of Figures 5a and 5b reveals that 12 points derived by HQMMDSL21

are closer to SMACOF benchmark ones than those obtained by RMDS. On the

contrary, 9 points obtained by RMDS are closer to SMACOF benchmark, while275

9 points of RMDS and HQMMDSL21 algorithms appear to coincide. Never-

theless, the total distance between the corresponding points in HQMMLDSL21

and SMACOF embeddings is smaller than the total distance between the corre-

sponding points in RMDS and SMACOF embeddings. This observation is also
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Figure 5: (a) Embeddings by HQMMDSL21 on contaminated data and SMACOF on outlier-

free data; (b) Embeddings by RMDS on contaminated data and SMACOF on outlier free

data.

confirmed by σr(X̂) values: 41498 for SMACOF on outlier-free data, 54066 for280

HQMMDSL21, and 70369 for RMDS. The last two embeddings were derived

from contaminated data. Similarly, the standardized Procrustean goodness-of-

fit criterion % w.r.t SMACOF benchmark is 0.0264 for HQMMDSL21 and 0.0463

for RMDS, respectively.

It should be mentioned, however, that the visualization of embeddings leads285

to less qualitative differences than the estimated figures of merit (e.g., raw stress

σr(X̂) values). This is due to the fact that σr(X̂) values correspond to the

distortion between the resulting embedding and the initial outlier-free configu-

ration. The mapping of SMACOF benchmark, as illustrated in Figures 5a and

5b, corresponds to the best possible approximation of the initial outlier-free290

configuration, which may diverge significantly from the real one. Furthermore,

when a data set consists of many points, less apparent differences between the

embeddings can be located.

5.4. Packets Data Set

The fourth data set encompasses packet-delay differences derived from a295

delay-based scheme. This scheme involves three packets sent from a fixed source.
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That is, a small packet is first sent to terminal node i followed by a large packet

sent to node j and finally a small packet is sent once more to node i [36]. The

network includes N = 10 terminal nodes, generating (10 · 9)/2 = 45 terminal

pairs. Each measurement stems from the difference between the arrival times300

of the first and second small packet at terminal node i, being relevant to the

path bandwidth shared with terminal node j [36]. The scheme was implemented

9, 567 times totally, incorporating swaps between the small and the large packet

terminal nodes.

The mean packet-delays τij , denoting path similarities, represent the non-305

contaminated (outlier free) data. These data are transformed into dissimilarities

via δij = 100 exp(− τij
1000 ), as in [11]. For each terminal pair, the same formu-

lation was imposed on minimum and maximum packet delays to acquire their

largest δmax
ij and smallest δmin

ij dissimilarities, respectively [11]. The data was

artificially contaminated by 12 outliers, drawn from a uniform distribution in310

[δmin
ij , δmax

ij ]. The outliers indices were chosen randomly. λ1 was set to 29.9 in

order to identify Ŝ = 12 outliers with RMDS. The same parameter value was

used in HQMMDSL21.

The figures of merit related to the embedding quality of SMACOF, REE,

and RMDS algorithms are gathered in Table 7. The reported figures of REE315

were recorded after 4000 iterations. The range of figures of merit of HQM-

MDSL21, employing the Welsch M -estimator with kernel size a set to 1000, is

also included in Table 7, when λ2 varies in [1, 100]. Taking into account that

Table 7: Figures of merit for the embedding quality obtained by SMACOF, REE, RMDS, and

HQMMDSL21 applied to packets data set.

Outlier percentage $ = 26.67% SMACOF REE RMDS HQMMDSL21

Normalized outlier-free stress σ(X̂, Ô) 0.3222 0.4706 0.1755 [0.1714, 0.1808]

Estimated outliers Ŝ - - 12 [11, 13]

Raw stress σr(X̂) 22345.02 5941.1 14111.4 [12159.1, 14087.9]

the multiplicative form was found to be faster than the additive one, only σr(X̂)
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for HQMMDSL21 is plotted in Figure 6 for λ2 ∈ [1, 100]. Parameter a was set320

to 1000 for the Welsch, Cauchy, and Fair M -estimators. The plots of σr(X̂)

for the HQMMDS1 algorithm [12], employing the aforementionedM -estimators

with identical kernel size a are overlaid in Figure 6.
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Figure 6: Raw stress σr(X̂) of HQMMDSL21 and HQMMDS1[12] in the packets data set.

It is seen that HQMMDSL21 outperforms RMDS w.r.t. σr(X̂) for λ2 ∈

[1, 100] with the plots of Welsch, Cauchy and Fair M -estimators to coincide.325

On the contrary, the raw stress σr(X̂) of HQMMDS1, employing either the

Welsch or Cauchy M -estimator, whose plots are superimposed, admits smaller

values than those obtained by RMDS for λ2 ∈ [1, 38]. When the Fair M -

estimator is employed in HQMMDSL21, the values of λ2 guaranteeing a better

performance than RMDS are limited to [1, 33]. The range of the figures of merit330

of HQMMMDSL21 and HQMMDS1 [12], employing various M -estimators is

summarized in Table 8.

The replacement of the Frobenius norm used in [12] with the `2,1 norm,

yields a completely different performance. This can be attributed to the fact

that `2,1 norm regularization, being in between the `1 norm and the Frobe-335
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Table 8: Range of the figures of merit for the embedding quality obtained by HQMMDSL21

and HQMMDS1 [12] with various M -estimators applied to packet data set.

σ(X̂, Ô) Ŝ σr(X̂)

HQMMDSL21 Welsch a = 1000 [0.1714, 0.1808] [11, 13] [12159.1, 14087.9]

HQMMDSL21 Cauchy a = 1000 [0.1714, 0.1808] [11, 13] [12152.6, 14087.9]

HQMMDSL21 Fair a = 1000 [0.1713, 0.1808] [11, 13] [12144.2, 14087.9]

HQMMDS1 Welsch a = 1000 [0.1581, 0.5290] [10, 33] [5816.2, 46417.9]

HQMMDS1 Cauchy a = 1000 [0.1581, 0.5290] [10, 33] [5816.2, 46415.9]

HQMMDS1 Fair a = 1000 [0.1581, 0.5149] [10, 37] [5786.4, 49115.2]

nius one, mitigates the over-smoothness imposed by the Frobenius norm. For

the same kernel size a, the range of λ2 values for which HQMMDSL21 and

HQAMDSL21 attain a smaller raw stress σr(X̂) than RMDS, is always wider

than that for HQMMDS1 and HQAMDS algorithms proposed in [12]. The min-

imum value of raw stress σr(X̂) achieved by HQMMDSL21 and HQMMDS1,340

when the WelschM -estimator is employed, is 5176.7 (for λ2 = 618) and 5816.18

(for λ2 = 18), respectively. HQMMDSL21 exhibited a rather unstable perfor-

mance w.r.t. σ(X̂, Ô). For the same algorithm, Ŝ was proven to be relatively

constant, admitting values in [11,13].

The embedding derived by SMACOF on outlier-free data and those derived345

by HQMMDSL21 and RMDS on contaminated data are illustrated in Figure

7. HQMMDSL21 and RMDS embeddings have been matched to that of SMA-

COF via Procrustes analysis. The HQMMDSL21 embedding was obtained by

employing the Welsch M -estimator with λ1 = 29.9, λ2 = 618, and a = 1000.

An attentive examination of Figure 7 discloses that six points (1, 3, 6, 7, 9, 10)350

in HQMMDSL21 embedding are closer to SMACOF benchmark than the cor-

responding points derived by RMDS. On the contrary, four points (2, 4, 5, 8)

obtained by RMDS are closer to SMACOF benchmark. However, comparing

the aforementioned embeddings carefully, it is deducted that, as a whole, the

embedding derived by HQMMDSL21 is closer to the SMACOF benchmark than355
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the RMDS one. This is because the total distance between the corresponding

points in HQMMLDSL21 and SMACOF embeddings is smaller than that be-

tween the corresponding points in RMDS and SMACOF embeddings. This is

also validated by σr(X̂) values: 2222,7 for SMACOF on outlier-free data; 5176.3

for HQMMDSL21 and 14111.4 for RMDS on contaminated data. The stan-360

dardized Procrustean goodness-of-fit criterion % w.r.t. SMACOF benchmark is

0.4813 for HQMMDSL21 and 0.5412 for RMDS.
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Figure 7: Embeddings obtained by HQMMDSL21 and RMDS on contaminated data juxta-

posed to the embedding derived by SMACOF on outlier-free data for packets data set.

Even though the scope of the paper is focused on MDS algorithms, it would

be a challenging task to compare the proposed framework with the existing

algorithms in visual analytics e.g., ISOMAP [3], Locally Linear Embedding365

(LLE) [37], curvilinear component analysis [38], curvilinear distance analysis

[39] and t-SNE (t -Stochastic Neighbor Embedding) algorithm [40]. Due to

the inherent weaknesses of ISOMAP, LLE, curvilinear component analysis and
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curvilinear distance analysis, that are discussed briefly in the last Section, t-SNE

has been applied to packets dataset. It is worth mentioning that t-SNE supports370

a dissimilarity matrix as an input. In t-SNE, outliers are circumvented by dening

the joint probabilities in the high-dimensional space to be the symmetrized

conditional probabilities.

100 Monte Carlo simulations of the t-SNE took place with the same parame-

ters. From all runs, the instance with the lowest value of the % w.r.t. SMACOF375

benchmark was selected. The embedding derived by SMACOF on outlier-free

data and those obtained by HQMMDSL21 and t-SNE on contaminated data,

being matched to that of SMACOF via Procrustes analysis, are plotted in Fig-

ure 8. It is revealed that six points (1, 2, 3, 5, 9, 10) in HQMMDSL21 embedding

are closer to SMACOF benchmark. On the other hand, four points (4, 6, 7, 8)380

derived by t-SNE are closer to SMACOF benchmark. However, as a whole, the

HQMMDSL21 embedding is closer to the SMACOF benchmark than the t-SNE

one. Thus, using the same methodology, it is demonstrated that t-SNE cannot

accommodate efficiently dissimilarity matrices corrupted with outliers.

5.5. Discussion385

The proposed algorithms are shown to perform better than their state-of-

the-art competitors. In particular, they yield a better approximation of the true

configuration than the RMDS for a wide range of values admitted by λ2. The

REE embedding appears to be considerably better than that of SMACOF, but

in most cases the REE embedding is still inferior than that of RMDS. Next,390

several practical issues are discussed.

M -estimator selection: Extensive experimental results validate that the

Welsch, Cauchy, Fair, and Huber M -estimators yield the most stable perfor-

mance for a wide range of λ2 values. The efficiency of an M -estimator is deter-

mined highly by the proper selection of its kernel size a. The tuning of a for the395

aforementionedM estimators was found to be easier than the restM -estimators.

The widest range of λ2 values for which the proposed algorithms attain a smaller

raw stress σr(X̂) than RMDS, is obtained with the `2 M -estimator.
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Figure 8: Embeddings obtained by HQMMDSL21 and t-SNE on contaminated data juxta-

posed to the embedding derived by SMACOF on outlier-free data for packets data set.

Parameter selection within HQAMDSL21 and HQMMDSL21 : The perfor-

mance of HQMMDSL21 depends on three parameters, namely the regularization400

weights λ1 and λ2 and the kernel size a for eachM -estimator. The performance

of HQAMDSL21 is also determined by the constant c, which appears in the

minimizer function δA(·). For c, the typical choice is c = φ′′(0). The tuning of

parameters should be made in the following order: λ1, a, λ2 for HQMMDSL21

and λ1, c, a, λ2 for HQAMDSL21.405

If the MAD of the nominal errors σε is available, then λ1 = 3, 99σε for the

Huber M -estimator. Otherwise, the plot of Ŝ versus λ1 for the RMDS may be

exploited to locate the value of λ1 for which this curve exhibits an elbow.

The kernel size a of Welsch, Cauchy and Fair M -estimators in both forms

can be determined by a2 =
‖LX(0)−L+X(0)‖2

F

2Nd [41] or by applying Silverman’s410

rule instead [42]. Let â be the kernel size estimated by either of the two rules.
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A practical recommendation is to set a = ξâ for ξ ∈ [2, 7]. Alternatively, one

can set the kernel size a of the aforementioned M -estimators much larger than

the values predicted in [41] and [42] in order to approximate the performance

of the `2 M -estimator. If a is so tuned, the proposed algorithms yield a more415

efficient performance than the RMDS for the widest possible range of λ2 values.

In this case, the optimal embedding w.r.t. σr(X̂) derived by the proposed

algorithms takes place for the largest possible λ2 value. The value of a, above

which the equivalence with the `2 M -estimator is achieved, is different for each

M -estimator. It is also highly data-dependent. On the contrary, if the objective420

is to find the best approximation of the true configuration for a small value of λ2,

then a smaller value of a than that determined in [41] and [42] is recommended.

In the latter case, there is a risk of unstable behavior of σr(X̂) w.r.t. varying

λ2. Moreover, the range of λ2 values for which the proposed algorithms perform

better than RMDS w.r.t. σr(X̂) is much smaller.425

Algorithm comparison: Even though the additive and the multiplicative

forms solve the same HQ optimization problem, their performance appears to

be different. The tuning of parameter a in the multiplicative form is found

to be simpler than in the additive form. Furthermore, HQMMDSL21 requires

fewer iterations than HQAMDSL21 to converge, rendering it more appealing430

than HQAMDSL21 for configurations contaminated with outliers. Thus, it is

advised to select a large value of a to achieve stability and then to implement

HQMMDSL21. By doing so, fewer iterations are required for convergence.

Unavailability of the outlier-free dissimilarity matrix : Under these circum-

stances, only σ(X̂, Ô) and Ŝ can be used as figures of merit. In this case,435

HQMMDSL21 or HQAMDSL21 is implemented for a reasonable range of λ2

values, having selected λ1 according to the elbow rule. The embedding, which

corresponds to the minimum value of Ŝ, is found to be close to that corre-

sponding to the minimum σr(X̂). If Ŝ is approximately constant for a range

of λ2 values, then the embedding, which admits the minimum σ(X̂, Ô), can be440

chosen.

Computational time and complexity : In many cases, the proposed algo-
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rithms need fewer iterations than the RMDS to converge. The computational

complexity of HQMMDSL21, incorporating alternating updates of O, P, R,

and X, is O(N3) per iteration in the worst case. The same applies for the445

HQAMDSL21 algorithm. That is, their computational complexity per itera-

tion, is the same with the RMDS and the REE. Hence, the proposed algorithms

outperform RMDS and REE without increasing the computational complexity.

The classical MDS algorithm [1] exhibits O(N3) total computations, since the

eigen-decomposition of a matrix is needed. SMACOF has O(N2) computational450

complexity per iteration. It should be accentuated that the number of iterations

for the proposed algorithms depends on selection of the M -estimator, its kernel

size a, and the regularization parameter λ2. For their estimation, the proposed

algorithms require some additional time as a pre-processing step in order to es-

timate λ1, a and λ2 even though the estimation of a can be avoided by selecting455

an extremely large value.

Hint : Let ∆ be a given dissimilarity matrix. To determine if ∆ has been

corrupted by outliers, the SMACOF and one of the proposed algorithms for

λ2 = 0 can be applied. For an outlier-free dissimilarity matrix, the raw stress

σr(X) of SMACOF has been found to be smaller than that of the proposed460

algorithms.

6. Conclusions

A new, efficient HQ framework has been proposed for solving the MDS

problem when the dissimilarity matrix has been corrupted by outliers. The

proposed algorithms have been compared with three state-of-the-art MDS al-465

gorithms (i.e., SMACOF, REE, and RMDS) under the same conditions. The

experimental findings have manifested that the HQ minimization, in combina-

tion withM -estimators and `2,1 regularization, outperforms the aforementioned

competing techniques in either additive or multiplicative form for any configura-

tion being contaminated with outliers. This is of paramount importance in the470

context of scientific visualization and data mining. It is worth noting that other
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variants of the proposed framework could also be explored. For example, the

`2,1 norm can be employed not only for regularization, but in the loss function

as well. Moreover, the optimal value of λ2 can be estimated by solving a proper

optimization problem. However, this optimal value of λ2 will be always greater475

than that estimated when the Frobenius norm is employed [12]

Another topics of future research could be focused on the revision of algo-

rithms used in visual analytics. For example, the ISOMAP algorithm [3] entails

three steps, where the last one applies classical MDS, which is extremely prone

to outliers. LLE algorithm [37] employs a least squares objective function, which480

is susceptible to outliers, generating highly corrupted embeddings that diverge

considerably from the non-contaminated ones. The cost function used in curvi-

linear component analysis [38] is quadratic, without exploiting M -estimators or

any smoothness term, being used by our proposed algorithms. The same holds

for curvilinear distance analysis [39]. To sum up, the proposed algorithms could485

substitute MDS in ISOMAP, whileM -estimators or any smoothness term could

be used in the context of LLE, curvilinear component analysis and curvilin-

ear distance analysis. Finally, a variant of the t-SNE algorithm [40] could be

developed in order to mitigate more the outliers repercussion.
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