
Fast Deep Convolutional Face Detection in the Wild
Exploiting Hard Sample Mining

Danai Triantafyllidou, Paraskevi Nousi∗, Anastasios Tefas

Artificial Intelligence and Information Analysis Lab
Department of Informatics

Aristotle University of Thessaloniki

Abstract

Face detection constitutes a key visual information analysis task in Machine
Learning. The rise of Big Data has resulted in the accumulation of a massive
volume of visual data which requires proper and fast analysis. Deep Learn-
ing methods are powerful approaches towards this task as training with large
amounts of data exhibiting high variability has been shown to significantly en-
hance their effectiveness, but often requires expensive computations and leads
to models of high complexity. When the objective is to analyze visual content
in massive datasets, the complexity of the model becomes crucial to the success
of the model. In this paper, a lightweight deep Convolutional Neural Network
(CNN) is introduced for the purpose of face detection, designed with a view to
minimize training and testing time, and outperforms previously published deep
convolutional networks in this task, in terms of both effectiveness and efficiency.
To train this lightweight deep network without compromising its efficiency, a
new training method of progressive positive and hard negative sample mining
is introduced and shown to drastically improve training speed and accuracy.
Additionally, a separate deep network was trained to detect individual facial
features and a model that combines the outputs of the two networks was cre-
ated and evaluated. Both methods are capable of detecting faces under severe
occlusion and unconstrained pose variation and meet the difficulties of large
scale real-world, real-time face detection, and are suitable for deployment even
in mobile environments such as Unmanned Aerial Vehicles (UAVs).

Keywords: Deep Learning, Convolutional Neural Networks, Face Detection

∗Corresponding author
Email addresses: danaitri22@gmail.gr (Danai Triantafyllidou), paranous@csd.auth.gr

(Paraskevi Nousi), tefas@aiia.csd.auth.gr (Anastasios Tefas)

Preprint submitted to Big Data Research Journal June 3, 2017



1. Introduction

The spread of social media and the rise of the Internet of Things have signif-
icantly boosted the amount of data readily available in all aspects of human life
and led us into the era of Big Data. This vast volume of data has the potential
to enhance our understanding of the state of the world and to allow for more
accurate predictions of a future state [1]. Big Data has already been exploited
in many fields for this reason, including biometrics systems [2, 3, 4], where face
detection poses a critical auxiliary role towards improved face recognition, as
facial features capture a large part of the individuality of a person. In fact, face
detection has been an active research area in the computer vision field for more
than three decades, mainly due to the countless number of applications that
require face detection as a first step [5, 6, 7, 8].

Nowadays, commercial and professional robotic units (e.g., drones) and mo-
bile devices such as smartphones and tablets provide users with various face-
based applications related to the task of face detection, such as intelligent video
shooting, privacy preserving navigation and control, security-enhancing applica-
tions, automatic annotation of visual content and affective computing, including
face and facial expression recognition and tracking [9]. In Unmanned Aerial Ve-
hicles (UAVs) especially, face detection may serve as a tool to help guide the
on-board camera towards faces of people of interest. As an example, in sports
events, face detection may be the first step towards recognizing important ath-
letes, such as bicyclists in professional cycling events.

However, the limited availability of powerful Graphical Processing Units
(GPU) on such devices asserts a limitation to the performance of the algorithms
that can be used efficiently. The recently released mobile on-board GPUs for
drones are approximately ten times slower than desktop ones, with only a frac-
tion of RAM and this constraint renders most of the published deep learning
algorithms inadequate for such applications. The challenges of face detection
and recognition using drones have been studied in [10].

Many non neural network methods have been proposed and deployed in vari-
ous commercial products like digital cameras or smartphones in the last decade.
The influential work of Viola and Jones [11] made it possible to detect faces in
real-time but with a limited efficiency and later on inspired many cascade-based
methods. Since then, research in face detection has made remarkable progress
as a result of the availability of data in unconstrained capture conditions, the
development of publicly available benchmarks and the fast growth in computa-
tional and processing power of modern computers. The introduction of features
extraction methodologies such as Histograms of Oriented Gradients (HoGs) [12],
Speeded Up Robust Features (SURF) [13], and Integral Channel Features (ICF)
[14] was also of great benefit to face detection algorithms. In another approach,
a mixture of trees was utilized for unified face detection, pose estimation and
landmark localization [15].

More recently, Deep Learning methods have been deployed for the task of
face detection with impressive results [16, 17, 18]. The term Deep Learning
refers to a set of Machine Learning algorithms that utilize complex architectures

2



consisting of multiple levels, to extract multiple abstractions of their input data.
The recent resurgence of interest in deep neural networks owes a certain debt to
the availability of powerful GPUs which routinely speed up common operations
such as large matrix multiplications. Deep convolutional neural networks have
wide applications in language processing [19, 20], object classification [21, 22,
23, 24] and recommendation systems [25].

Big Data and Deep Learning seem to be interdependent on one another and
exhibit a mutually beneficial relationship: large amounts of data allow Deep
Learning techniques to achieve better generalization thus yielding significantly
more informative results in the field of big media analysis [26, 27]. In gen-
eral, Deep Learning techniques inherently require a large amount of processing
power to be trained efficiently, due to their complex architectures. It is also a
significantly difficult task to parallelize the computations required for this task.
However, as computing power increases, it facilitates the training of deeper
models which are capable of learning complex abstractions by utilizing multi-
ple layers, and generalizing to unseen data, by learning from vast amounts of
training data.

In this paper, a novel lightweight CNN for face detection is presented that,
to the best of our knowledge, is the first one that has minimum computational
complexity and attains comparable or better performance than previously pub-
lished complex CNNs [16]. Additionally, a second CNN has been trained in
order to detect facial features and it has been combined with the first one in a
single architecture. The second CNN was trained exclusively for the detection of
facial features (e.g., eyes, nose, mouth) while the first CNN was trained for full
face detection. Figure 1 shows examples of the proposed face and facial parts
detection. It is shown that a properly trained CNN can be further extended to
perform more complex and computationally expensive tasks (i.e., face detection
and facial feature detection in one forward pass). The proposed models are thus
excellent candidates for machine learning assisted face detection in UAVs. This
paper makes the following contributions:

1. A novel, computationally minimal model is proposed, consisting of only
76,375 trainable parameters, and shown to provide formidable results de-
spite its low complexity for large-scale visual information analysis, and
to be suitable for real-time detection with standard processing power, as
opposed to most neural network based detection techniques.

2. A new training methodology is presented according to which the CNN is
gradually supplied with training examples of scaling difficulty. It is shown
that this method can drastically improve training speed and significantly
reduce the number of false positives.

3. The addition of a pooling layer to the output of the deep CNN to smoothen
the produced heat map as well as the addition of a regression output neu-
ron that tries to estimate the width of each detected face in the detection
rectangle is proposed.

During training, our models learn from more than half a million samples of
faces and non-faces — approximately 600K samples of three publicly available

3



Figure 1: Left: An example of face detection in various poses and occlusions. Right: An
example of facial parts detection. The bounding boxes and scores show output of the trained
CNN.

datasets were used to properly train them, as discussed in more detail in Section
3.5. Our approach is then evaluated in the challenging FDDB [28] face detection
dataset, depicting about 5K faces, where it achieves a recall rate of 92.6% and is
compared against other recently published face detection methods. Our models
are also evaluated on the WIDER FACE dataset [29], which depicts about 390K
faces in total and exhibits large variability in the faces depicted in terms of scale,
rotation and occlusion, thus making it a very challenging dataset. To the best
of our knowledge, the used data corpus is one of the biggest for the given task.

The rest of this paper is organized as follows: in Section 2 previous work
related to face detection is presented, in Section 3, after an introduction to
CNNs, the proposed model is presented and analyzed, and Section 4 shows the
experimental setup used as well as the yielded results. Finally, conclusions are
drawn and summarized in Section 5.

2. Related Work

The original Viola-Jones detector used Haar-like features and is fast to evalu-
ate, yet fails in detecting faces from different angles, variable resolution, blurred
image, etc. This issue was initially addressed either by using one classifier cas-
cade for each specific facial view, [30, 31], or by using a decision tree for pose
estimation and the corresponding cascade to verify the detection [32]. However,
these approaches require pose/orientation annotations while complex cascade
structures increase the computational cost. The main line of research in this
direction was based on the combination of robust descriptors with classifiers
[33, 34]. Among the variants, a method named Headhunter [35] improved the
performance by deploying the integral channel features method along with 22
cascades. The last method was extended in [36] where sub-sampled channel
features are used to learn a cascade of classifiers. Finally, a joint cascade-based

4



method proposed in [37] achieving state-of-the-art results by introducing an
alignment step in the cascade structure.

Another common family of face detection algorithms learn and deploy a
Deformable Parts-based Model (DPM) [38] to model the information between
facial parts. While DPM detectors are more robust to occlusion than cascade
based methods, they lack in computational efficiency and are prohibitive for
real-time detection. In [38] a unified DPM framework for face detection, pose
estimation, and landmark estimation was proposed. A general approach for
making DPM based methods faster is to build a cascade of classifiers from DPMs
[39]. In [39], a simple DPM provides excellent performance and outperforms
more complex DPM variants. Finally, the detection accuracy was significantly
improved by a face detector called Deep Pyramid DPM [40]. The last method,
generates a deep feature pyramid and uses a linear SVM for classification. Later,
the same authors proposed a CNN trained with a multi-task learning algorithm
[41] for simultaneous face detection, landmark localization, pose estimation and
gender recognition.

A deep network named Alexnet [21], which was trained on ILSVRC 2012
[42], rekindled interest in convolutional neural networks and outperformed all
other methods used for large scale image classification. The R-CNN method
proposed in [43] generates category-independent region proposals and uses a
CNN to extract a feature vector from each region. Then it applies a set of
class-specific linear SVMs to recognize the object category. In [17], a cascade
of CNNs was proposed which consists of 6 CNNs and operates on multiple res-
olutions. In [18] a deep CNN with three output branches for face/non-face
classification, face pose estimation and facial landmarks localization was pro-
posed. The model consists of three convolutional layers each followed by a max
pooling layer and the last pooling layer is followed by a fully connected layer,
whose output comprises the input of the three aforementioned branches.

Recently, a face detector called DDFD [16], showed that a CNN can detect
faces in a wide range of orientations using a single model. The model accepts
input images of size 227 × 227, and scales images up or down to detect faces
larger or smaller than this size respectively. Lately, the architecture of VGG16
[44] was utilized for the task of face detection [45], in conjunction with region-
based CNN detection models [46]. Another recent approach, also used a deep
CNN [47] for the task of face detection by combining information from facial
parts proposals and responses. Finally, an extensive survey of face detection
methods can be found in [48].

Amongst other deep learning strategies, Denoising Autoencoders [49] are
comprised of fully connected layers and they are typically used for unsupervised
pretraining as well as dimensionality reduction, leading to more compact and
robust representations of data. Face detection is a supervised visual learning
task where convolutional deep approaches dominate in terms of performance
and speed. It’s also worth noting that most recently proposed methods for
object detection don’t make use of fully connected layers for this very reason:
they impose a large number of trainable parameters and heavy time constraints.
This time delay imposed by fully connected layers, in combination with the fact

5



that convolutional layers accept inputs of arbitrary size are the main reasons
behind the recent trend of deploying fully convolutional neural networks for
multiple tasks.

Even so, all the above methods use very complex networks having more than
1M number of parameters that renders them inappropriate for large-scale visual
information analysis or real-time face detection with constrained computational
power. In contrast, our proposed method is trained on input images of size
32 × 32 and it requires the training of three orders of magnitude fewer free
parameters than the aforementioned models. Moreover, our method exhibits
a novel training methodology, involving the gradual introduction of samples of
scaling difficulty and introduces the addition of a pooling layer to the output of
the network, which smoothens the produced heatmap.

3. Proposed Method

3.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) [50, 51] constitute a subclass of feed-
forward neural networks (FNNs) [52, 53]. An FNN’s objective is to learn a
parametrized function which models the relationship between its input data x
and a desired output y. At minimum, an FNN consists of an input and an output
layer, but adding more layers in between the two has been shown empirically to
enhance the network’s performance [54], thus reinvigorating scientific interest
in Deep Learning techniques. Each layer consists of a number of neurons and
connections are established between all neurons belonging to consecutive layers
with weights assigned to each connection.

A non-linearity s, called an activation function, is applied to the output
of each neuron, which is a linear combinations of its input with their respec-
tive weights in addition to a bias value, in order to model non-linear rela-
tionships between the representations. Most commonly, the sigmoid function
s(z) = 1/(1 + e−z), or the hyperbolic tangent function s(z) = (ez − e−z)/(ez +
e−z) are used for this purpose. Finally, an objective function is used to minimize
the error between the network’s output ŷ and the desired output y, whether the
task at hand involves classification or regression. Using a training algorithm,
such as backpropagation [55], and an optimizer such as Stochastic Gradient De-
scent (SGD) [56] for example, the parameters of the model are adjusted in a
way such that the objective function of the model is optimized. Formally, the
parameters θ of a neural network are updated using SGD as:

θ := θ − η∇L(y, ŷ; θ) (1)

where L(y, ŷ; θ) is the objective function of the network, i.e., the sum of errors
between the network’s predictions and the desired outputs for all samples. A
forward-pass of an input sample through the network involves passing each
successive layer’s output to the next layer as input, up until the output layer,
where the gradients of the objective function are computed and used for the
optimization of the network’s parameters.

6



CNNs model relationships between data in a similar manner, however they
differ from FNNs in that the parameters learned correspond to filter coefficients
instead of weights. A CNN typically consists of a number of convolutional layers,
where each convolutional layer is comprised of a set of such filters. The input of
each such layer is convolved with all of the filters comprising the layer, and a set
of 2-dimensional features, or heatmaps, is produced, corresponding to different
channels. The set of heatmaps has the same cardinality as the set of filters
comprising the layer, and the size of the heatmaps themselves depends on the
stride and the kernel size of the filters. The filters’ coefficients are learned in a
similar manner as the weights in an FNN, by optimizing an objective function
which defines the network’s task. SGD may also be applied to the objective
function of a CNN to learn its parameters.

Typically, the activation functions of convolutional layers involve Rectified
Linear Units (ReLU) [57, 58], that is s(z) = max(0, z). More recently, Para-
metric Rectified Linear Units (PReLUs) [59], which learn the slope of the neg-
ative part of ReLUs, were proposed and shown to improve results on large
image datasets. Formally, a PReLU function can be described as s(zi) =
max(0, zi) + ai min(0, zi), where zi is the input of the activation of the i-th
channel and ai is the corresponding parameter. Thus, the use of these units
allows for the training of a set of parameters different for all the channels of
a layer of the network, although a channel-shared, or layer-wise, variant was
also proposed. It was also shown that the set of parameters for these activa-
tion layers can be trained through backpropagation-based techniques, including
SGD.

Pooling layers may also be added to CNNs [60, 61], which have been shown
to enhance performance by handling small distortions. These layers typically
compute an average or max value over a set of neighboring values in a produced
heatmap. A CNN may exhibit some fully connected layers in an FNN fashion,
and these have been typically used in classification tasks as the last layers of
a model, as in [21]. A fully convolutional CNN (FCN) is one where all the
learnable layers are convolutional, so it implements the last fully connected layer
as convolutional with filter size equal to the input size. A fully convolutional
network is therefore able to output a heatmap of its input.

It’s worth mentioning that fully connected layers impose expensive space
constraints, as they contain a large number of parameters [62, 63]. The number
of trainable parameters for a fully connected layer is sinput × soutput, where
sinput is the size of the input and soutput is the size of the output of the layer.
For a convolutional layer, the number of trainable parameters is N×d2×cinput,
where N is the number of filters of the layer, d is the size of the filters and
cinput is the number of channels of the layer’s input, e.g., 3 for RGB images,
or equal to the number of filters of the previous convolutional layer. This gives
a clear advantage to fully convolutional networks, even with the computational
complexity of fully connected layers being lower. Thus, recent research has been
steered towards the utilization of fully convolutional networks, to make use of
the multiple advantages of convolutional layers over fully connected components.

7



Figure 2: Top: The CNN trained for the task of full face detection. Bottom: The CNN trained
for the task of facial parts detection.

3.2. CNN Architecture

Firstly, a fully-convolutional CNN comprised of seven convolutional layers
was trained with RGB images of size 32 × 32, the architecture of which corre-
sponds to the top part of the network shown in Figure 2. Table 1 displays the
trained architecture of this network as well as the number of trainable param-
eters, where conv accompanied by an index denotes a convolutional layer and
prelu accompanied by the same index denotes the respective activation layer.
In between successive activation and convolutional layers, dropout layers are
added, which have been shown to improve the performance of FNNs by allow-
ing for better generalization [64]. A softmax function is applied to the output of
the last convolutional layer, which produces probabilities for the two different
detection scores, each one corresponding to the two classes of the detection task
(e.g., face, non-face). Channel-wise parameters were learned for each PReLU
layer. In total, the training of 76,376 free parameters is required for this net-
work. The architecture of the network has been designed having in mind the
constraint of a very fast face detector that will require minimum GPU memory
and will be appropriate for large-scale visual information analysis and real-time
face detection in the wild. Decisions regarding the number of the filters, the
type of activations, the training procedures have been made by studying all the
relevant bibliography and heavy experimentation with the large dataset that
has been used for training.

Additionally, a second network consisting of four convolutional layers inter-
spersed by three dropout layers for the task of facial parts detection was trained
with RGB images of size 16 × 16. The output of the network is comprised of
four detection scores, each one corresponding to the four classes of the facial
parts (e.g., mouth, nose, eyes, irrelevant). The architecture of this CNN is also
summarized in Figure 2 and Table 2. A total of 20,088 free parameters require
training for this network.

The first three layers of the facial parts CNN were connected in a parallel
manner to the first three layers of the second CNN as shown in Figure 3 forming

8



a two stream-CNN that is able in one forward pass to detect faces and facial
features. The architecture and layer-wise learnable parameters are shown in
Table 3. The output of the layers of the facial parts CNN, 11 × 11 × 24 is
concatenated with the output of the layers of the face detection CNN, 11×11×32
to produce a volume of 11× 11× 56 which is then entered as input to the conv4
layer as shown in Figure 3. The combined model is trained end-to-end with
RGB images of size 32 × 32 and the gradients are propagated to both streams
of the combined network. The 16× 16 images of facial parts occupy 1/4 of the
32× 32 training face images. The intuition behind this architecture is that the
information provided by the detection of local face parts is crucial for detecting
face regions and should be part of the initial stages of the detection process.
Training this network requires the optimization of 104,280 free parameters.

Table 1: Face detection CNN architecture.

layer kernel filters input output parameters
conv1 3 × 3 24 32 × 32 × 3 30 × 30 × 24 648
prelu1 30 × 30 × 24 30 × 30 × 24 24
conv2 4 × 4 24 30 × 30 × 24 14 × 14 × 24 9216
prelu2 14 × 14 × 24 14 × 14 × 24 24
conv3 4 × 4 32 14 × 14 × 24 11 × 11 × 32 12288
prelu3 11 × 11 × 32 11 × 11 × 32 32
conv4 4 × 4 48 11 × 11 × 32 8 × 8 × 48 24576
prelu4 8 × 8 × 48 8 × 8 × 48 48
conv5 4 × 4 32 8 × 8 × 48 5 × 5 × 32 24576
prelu5 5 × 5 × 32 5 × 5 × 32 32
conv6 3 × 3 16 5 × 5 × 32 3 × 3 × 16 4608
prelu6 3 × 3 × 16 3 × 3 × 16 16
conv7 3 × 3 2 3 × 3 × 16 1 × 1 × 2 288

Table 2: Facial parts detection CNN architecture.

layer kernel filters input output parameters
conv1 3 × 3 16 16 × 16 × 3 14 × 14 × 16 432
prelu1 14 × 14 × 16 14 × 14 × 16 16
conv2 4 × 4 24 14 × 14 × 16 6 × 6 × 24 6144
prelu2 6 × 6 × 24 6 × 6 × 24 24
conv3 4 × 4 32 6 × 6 × 24 3 × 3 × 32 12288
prelu3 3 × 3 × 32 3 × 3 × 32 32
conv4 3 × 3 4 3 × 3 × 32 1 × 1 × 4 1152

Our work follows the pipeline presented in [16], in the sense that it does not
require any extra module (e.g., SVM) for classification as the CNN’s output can
be utilized directly for the task of face detection.

3.3. Progressive positive and hard negative example mining

As previously stated, the lightweight architecture of the proposed model es-
tablishes the need for an effective training methodology, to allow the model to
accurately been trained using more than half a million training samples in an
efficient manner. Intuitively, the model should learn easier positive examples

9



Table 3: Combined face and parts-based detection CNN architecture.

layer kernel filters input output parameters
conv1 3 × 3 24 32 × 32 × 3 30 × 30 × 24 648
prelu1 30 × 30 × 24 30 × 30 × 24 24
conv2 4 × 4 24 30 × 30 × 24 14 × 14 × 24 9216
prelu2 14 × 14 × 24 14 × 14 × 24 24
conv3 4 × 4 32 14 × 14 × 24 11 × 11 × 32 12288
prelu3 11 × 11 × 32 11 × 11 × 32 32

conv1-pb 3 × 3 16 32 × 32 × 3 30 × 30 × 16 768
prelu1-pb 30 × 30 × 16 14 × 14 × 16 16
conv2-pb 4 × 4 24 30 × 30 × 16 22 × 22 × 24 3456
prelu2-pb 22 × 22 × 24 22 × 22 × 24 24
conv3-pb 4 × 4 32 22 × 22 × 24 11 × 11 × 32 5184
prelu3-pb 11 × 11 × 32 11 × 11 × 32 32

conv4 4 × 4 48 11 × 11 × 56 8 × 8 × 48 43008
prelu4 8 × 8 × 48 8 × 8 × 48 48
conv5 4 × 4 32 8 × 8 × 48 5 × 5 × 32 24576
prelu5 5 × 5 × 32 5 × 5 × 32 32
conv6 3 × 3 16 5 × 5 × 32 3 × 3 × 16 4608
prelu6 3 × 3 × 16 3 × 3 × 16 16
conv7 3 × 3 2 3 × 3 × 16 1 × 1 × 2 288

Figure 3: The combined model used for face detection during training and deployment.

first (i.e., clear frontal faces), followed by progressively harder positive examples
as the training process proceeds and converges. Thus, easier examples are pre-
ferred for the training of the network at the beginning of training, followed by
progressively harder ones. Frontal images of faces without any occlusions con-
stitute easy examples in the case of face detection. Then, as the network learns
to accurately detect easy examples, slightly harder ones are added to its training
dataset. We call this method of adding positive examples to the training set
of the network progressive positive example mining. The progressive learning
approach that increases the difficulty of the training set is intuitively valid since
this is also what humans do when they try to learn a difficult task (e.g., pro-
gressively going from elementary school teachers to university professors). This
approach has been also used in other learning tasks in computer games with
success [65].

10



We determine a positive sample’s difficulty level by examining the score
produced by the network for it. As the training proceeds, feeding the network
with unseen face images will produce a (pseudo)probability for the existence of
a face in these images. Images producing a high probability are considered as
easy positive examples for the network and can be added to its training set, and
iteratively repeating this process positive examples of progressing difficulty are
added to the training dataset of the model.

The process of mining negative samples follows a similar intuition, but in
reverse: hard negative examples must be collected in conjunction to the positive
ones to avoid false positives and force the training process to differentiate be-
tween faces and examples mistaken for faces. Given some images which serve as
negative examples, the network produces scores that represent the probability
that these images depict faces. The higher the score, the harder the example
is for the network to distinguish. Thus, such examples must be added to the
training set of the network first to guide the training process. This process
simulates the hard negative sample mining procedure.

LetNt be a collection of images that will serve as a pool of negative examples,
and Pt be a pool of positive examples, where the subscript t denotes that samples
can be collected at multiple time steps during the training process. Let D0 be
the original training set consisting of the original set of positive examples P0

and the set of negative examples N0:

D0 = P0 ∪N0 (2)

Once the training process is complete, we run the network to the set of images
N from which we collect a subset of false positives F1 which is added to the
original set of negative examples N0:

N1 = N0 ∪ F1 (3)

The set F1 is selected according to the network’s output. During each training
round, we sort the false positives according to their score and we select a pre-
defined number of samples. In order to maintain the same ratio of positive to
negative samples after each training round we increase the number of positive
examples respectively. A new set of images containing faces T1 is added to the
original set of positive examples P0

P1 = P0 ∪ T1 (4)

The aforementioned process of training and increase of training examples is
repeated after completion of training in the set Dt:

Nt+1 = Nt ∪ Ft+1 (5)

Pt+1 = Pt ∪ Tt+1 (6)

Dt+1 = Pt+1 ∪Nt+1 (7)

11



Hence, the sets Nt+1, Pt+1 contain a larger number of negative and positive
examples than the sets Nt, Pt.

Hard negative mining techniques have been deployed in the past [66, 67], and
heuristically find hard negative examples which can be used during training to
improve the classification performance. However, our methodology as described
above also progressively finds and adds positive examples to the dataset, to
balance the classification task and improve performance on difficult positive
samples (e.g., occlusions, heavy pose variation, etc.) as well as on difficult
negative samples which highly resemble faces and produce false positives.

The increasing difficulty of the described process as well as the adaptation
of the training set in the neural network’s errors improved the network’s per-
formance in unknown data. The process of gradual training in t stages, as
described, resolves a significantly important issue which was indeed validated in
practice: in the event of a training set being unequally distributed between the
two classes, a training batch may contain little to no actual samples of one of
the classes. As a result, the network may be deprived of the presence of samples
of said class and, by extension, the ability to identify between the two classes
may be negatively impacted.

3.4. Training and Deployment

The proposed training algorithm is summarized in Algorithm 1 and Figure
4. The dataset augmentation step corresponds to the dataset collection, for
the first iteration of the proposed training scheme, and its augmentation by
hard negative and progressive positive sample mining for later steps. During
the training process, all samples are passed through the network, typically in
minibatches. The network produces a probability for the face/no-face case for
each sample, and finally the network’s parameters are updated using SGD by
comparing the produced probability to the ground truth. When the training
process finishes, the filters accompanying each layer of the network have been
updated so that the final layer is able to detect the presence or absence of a
face in the input sample. The updated CNN parameters affect the dataset
augmentation process that takes place in the next iteration.

Algorithm 1 Training process for the proposed FD-CNN

Input: Dataset of images with annotated faces I, number of hard negative and
progressive positive example mining steps T

Output: A CNN capable of face detection
Construct initial training dataset D0 by collecting positive and negative ex-
amples from the annotated images (Equation (2))
for t = 0 . . . T do

Update the parameters θ of the network by forward-passing the samples in
Dt (Equation (1))
Update Nt+1 and Pt+1 by collecting hard false positive and easy true posi-
tive examples respectively, and use them to construct Dt+1 (Equation (7))

end for

12



deployment hard negatives
progressive positives

dataset augmentation

convolutional
forward pass

face/no-face
probability

update CNN
parameters

training process

repeat T times

Figure 4: The training process of the proposed face detection CNNs.

During the deployment process, an image pyramid is produced and fed to
the network, which produces a face/no-face probability distribution for each
pyramid scale. For each scale, the result of the forward pass is the production a
heatmap of similar size to the original input image, which indicates the presence
or absence of faces for all parts of the image. Figure 5 summarizes the process
of face detection during the deployment phase of the proposed CNNs. First, a
spatial pyramid of the input image is created and all of the produced images are
passed through the trained network. Then, a heatmap indicating the presence
or absence of faces in all parts of the input image is created, for each scale of the
produced pyramid. Finally, the heatmaps at all scales are combined using Non
Maximum Suppression (NMS) to produce the final bounding boxes containing
faces of various sizes.

convolutional
forward pass

Non Maximum
Suppression

image
pyramid

pyramid
heatmaps

bounding
boxes

deployment

Figure 5: The deployment process of the proposed face detection CNNs.

In all our experiments we trained the CNNs using Stochastic Gradient De-
scent (SGD). We start with a learning rate of 0.001 for the first 200,000 iterations
and then we lower to 0.0001. The parallel layers of the combined model shown
in Figure 3 were initially locked as they had a fixed learning rate of zero value.
After training the layers conv4 to conv7, the locked layers were unlocked to
finetune and finalize the model. The weights of the network were initialized
using the Xavier method [68]. Figure 6 shows the results of the described pro-
cedure for the FDDB dataset where it can be seen that the proposed progressive
addition of training samples boosts the training accuracy avoiding local minima.

3.5. Training dataset

The CNN was trained with positive samples extracted from the AFLW [69],
MTFL [70] and WIDER FACE [29] datasets. The first consists of 21K images
with 24K face annotations while MTFL consists of 12K face annotations, and
WIDER FACE contains 32K images with about 390K face annotations, with
half of these intended for training. All three datasets include real world images
with expression, pose, gender, age and ethnicity variations.

13



Figure 6: The results of the proposed training methodology on the FDDB dataset for the
face detection CNN. A similar approach was used for the part-based CNN and the combined
CNN.

In total, 168K faces were extracted from all three datasets, as well as 156K
negative examples. As both positive and negative examples are mirrored with a
probability of 0.5 by our models, a total of 648K images were passed through the
network and contributed to its training and convergence. The mirroring trans-
formation proved to be quite effective, as it increased the number of training
samples and also led to a large number of combinations of images to be entered
in each training batch, thus driving the CNN to achieve better generalization.

The WIDER FACE database provides manually created rectangle annota-
tions with a wide range of height to width ratio. Our CNN is designed to detect
square face regions as our training examples were squares. In order to maxi-
mize the Intersection over Union (IoU) metric between the predicted bounding
boxes and the ground truth boxes of the WIDER dataset a regression model
was trained to predict the height to width ratio of the positive samples. This
technique produced better matching results.

For the AFLW dataset, the provided face rectangle annotations were used.
For the MTFL dataset, the given facial landmark annotations were used to
produce face rectangles in a similar manner with AFLW samples regarding the
positioning of faces. The final training images of faces were resized to 32× 32.
This is a relatively small image size compared to image sizes typically used by
AlexNet and other deep networks (e.g., in [16] a fully-convolutional version of
AlexNet is trained with images of size 227× 227). However, it has been shown
that images of this size contain enough information to train the CNN [71]. The
relatively small image size allowed for the reduction of the output image down
to 1 × 1 (a face/no-face result) without the use of pooling layers. We used
only convolutional, dropout and PReLU layers, as there was no need to further
decrease the training input.

14



(a)

(b)

(c)

Figure 7: Comparison of different face detectors on FDDB dataset.

15



4. Experiments

4.1. System analysis

We implemented the proposed face detector using the Caffe Deep Learning
framework [72]. The output of the network corresponds to the scores of the
CNN for every 32×32 window with a stride of 2 pixels in the original image. In
order to detect faces smaller or larger than 32× 32 we scale the original image
up or down respectively. We apply the non maximum suppression strategy
according to which all bounding-boxes with a possibility lower than the score of
the maximum window multiplied by a constant factor are removed. The system
was able to detect faces in the FDDB dataset that were not included in the
annotated samples. These detections were removed as they would count for
false positives and lead to a deteriorated performance.

During deployment of the CNN, we add an extra average pooling layer to
the final output of the network. The addition of this layer reduces the number of
false positives. The heatmap produced by the CNN is smoothened and only the
pixel coordinates having values greater than a specified threshold are stored.
Additionally, the heatmap pixel coordinates having neighbouring coordinates
with similar values are stored resulting in reduced false positives and improved
performance.

4.2. Evaluation

The proposed detector was evaluated on the challenging dataset Face De-
tection Data Set and Benchmark (FFDB) [16]. Some of the recently published
methods compared in this Section include: DP2MFD [40], DDFD, Faceness [47],
Headhunter, JointCascade [37], SURF [33], ACF [36], CCF [73] and MT-CNN
[74]. For evaluation, the toolbox provided by [35] which includes corrected an-
notations for the aforementioned benchmark was used. FDDB dataset is one of
the most commonly used benchmarks for face detection and consists of 2,845
images with 5,171 face annotations collected from journalistic articles. It is
a really challenging dataset mainly due to the fact that it is rich in occluded
and out-of-focus cases. FDDB faces are annotated with elliptic regions. As
stated in [35] changing the output format of detections to ellipses increases the
overlap region between the detections and ground truth boxes. However, our
detector achieves a high recall rate without this conversion. Figure 7 shows
the results on the FDDB dataset. The original face detection CNN achieves a
recall rate of 88.9% on this dataset, while the combined face and parts-based
detection CNN achieves a recall rate of 92.6%, outperforming many recently
published face detection methods. Figure 8 shows samples of face detection in
this dataset. Recently several CNNs that are based on VGG or on ResNet50
with a corresponding number of parameters exceeding 1M have been proposed
to deal with small resolution faces using image pyramids. The resulting models
are very slow and they cannot perform real-time face detection even when they
use state-of-the-art desktop GPUs. They are usually able to perform detection
at 1-3 frames per second.

16



Figure 8: Face detection examples in the FDDB dataset using the proposed CNN.

The proposed detector was also evaluated on the WIDER Face Dataset [29].
The images are split into 61 event categories containing 32K images in total
which depict about 393K faces. The dataset is split into training, validation
and testing sets, each containing 50%, 10% and 40% respectively of the images
corresponding to each event category, and half of the faces were indeed used
for training as discussed in Section 3.5. The faces depicted in this dataset
exhibit a very wide variety in terms of scale, pose, occlusions, facial expressions
and ethnicity and include many blurred and out-of-focus faces. Figure 9 shows
the precision recall curves for this dataset and Figure 10 shows an example
of face detection in an aerial shot from this dataset, while Figure 11 shows
examples of face detection in professional cycling events, on images obtained
by the VOC2012 dataset [75]. Both Figures illustrate that the proposed face
detector is capable of detecting faces of intense pose and occlusion variations.

4.3. Computational Complexity

The complexity of the compared competitive algorithms is very large in
comparison to the proposed networks. Indeed, the proposed face detection and
facial parts detection CNNs have 76,375 and 104,280 free parameters respec-
tively, whereas the previously proposed deep CNN [16] had 60 million parame-
ters. This issue is very important during training as well as during testing and
deployment. The proposed lightweight model can be easily deployed to smart
devices (e.g., smartphones, notepads, etc.) or robotic systems (e.g., drones) that
do not have expensive and energy consuming multiple GPUs installed. Addi-
tionally, the proposed approach proves that when we have to deal with a specific
task (i.e. face detection), even if it is very complex, we can design and train

17



(a) (b) (c)

(d) (e) (f)

Figure 9: Comparison of different face detectors on WIDER dataset. The first row shows
results achieved by using MTLF and ALFW training data, while the second row shows results
achieved using the WIDER FACE dataset training partition for the training process.

Figure 10: Face detection example of an aerial shot from the WIDER FACE dataset with
scores produced by the proposed CNN.

18



(a) (b)

Figure 11: Examples of detection on professional cyclists’ faces, on images from the VOC2012
dataset [75].

smaller and efficient architectures that outperform deeper and larger networks
in performance and in execution time.

Formally, the computational complexity of a convolution withN filters of size
d×d on a single channel input is O(d2Nhw), where h and w are the height and
width of the produced heatmap. It’s worth noting that the size of the produced
heatmap is affected by both the filter size and the length of the strides taken
during the convolution. Moreover, the complexity of a convolutional layer is
multiplied by the number of channels of its input. For a forward pass through
a convolutional neural network, this complexity adds up for each convolutional
layer with the heatmap dimensions decreasing.

This gives the proposed models a direct computational advantage over more
complex networks with deeper architectures, i.e., a larger number of layers.
Furthermore, as the proposed models are trained using small 32× 32× 3 input
images, the produced heatmaps’ sizes are kept to a minimum, in contrast to
related methods which use larger inputs. During deployment, the relatively
small number of channels per convolutional layer in combination with the fewer
layers in comparison to related methods, are what give the proposed models a
computational advantage, making them very fast, and suitable for deployment
on mobile applications.

19



4.4. Time Performance

Table 4 summarizes floating point operations and time measurements for
our models (denoted by FD-CNN and PBD-CNN for the face detection and
the parts-based detection networks respectively) as well as for the architectures
proposed in [16] (denoted by DDFD) and in [45] (denoted by VGG16 R-CNN).
More specifically, the floating point operations and execution time (in seconds)
required for the forward pass of an RGB image of size 227× 227 are compared.
The last column shows the time required for a forward pass of the original image.
Our models are trained to detect faces of size 32× 32. In order to detect faces
in different sizes the original image is scaled up and down. However, it should
also be noted that the DDFD detector is able to detect faces of size 227× 227,
and would also require multiple passes of resized images in order to detect all
faces in the original image. The time required for a forward pass for our models
is about 6 to 7 times less than the time required for one forward pass of the
original image in DDFD even when the input image size that is used is the one
that is more appropriate for DDFD. When the face size we want to detect is
smaller than 227 × 227 the proposed model is one to two orders of magnitude
faster than the competitive ones. Finally, the last row corresponding to the
VGG16 architecture serves to show that larger models are impractical when it
comes to real time applications.

Table 4: Execution times and FLOPs comparison between the proposed CNNs and other
neural network face detectors.

Network FLOPs Time
FD-CNN 865M 0.007575
PBD-CNN 1.1B 0.010429
DDFD 224B 0.049671
VGG16 R-CNN 634B 0.138781

Our model was also tested in an application where images from a video
camera were given as input to detect faces from. Using an NVIDIA GTX 1080
graphics card, our model was able to detect faces at a rate of 31 frames per
second, for an input image size of 320× 240, making it suitable for use in real-
time applications.

4.5. Discussion

We have shown both in theory and experimentally the time-wise advantage
of the proposed methods, which makes the task of face detection very fast.
The low number of floating point operations required, along with the speedup
provided by even low-end GPUs, allow for the deployment of the models on
UAVs with limited computational capabilities.

Moreover, the proposed models achieve results comparable to those achieved
by more complex and computationally expensive models, making very accurate
face detections. The pyramid scheme used enables the proposed models to accu-
rately detect faces of various sizes. The proposed training scheme, consisting of

20



multiple steps of hard negative and progressive positive sample mining, allows
the models to accurately detect faces under severe pose, occlusion and other
variations. In combination with the readily available vast volume of annotated
datasets, we have shown that a lightweight architecture may achieve competitive
results, given an appropriate training procedure.

In conclusion, the proposed methods are at once lightweight enough to be
deployed on mobile applications and accurate enough to be comparable to state-
of-the-art face detection methods, thus offering fast and accurate face detection
making them suitable for deployment for drone-assisted intelligent video shoot-
ing.

5. Conclusion

In this paper, a novel fast deep convolutional neural network architecture
was presented for the task of large scale and real time face detection in the
wild. The experiments on publicly available benchmarks show the success of the
proposed method. The presented detector is able to recognize faces in a wide
range of orientations and expressions. It does not require any extra modules
usually used in deep learning methods such as SVM or bounding-box regression.
Our work, extends previously published detectors by using a lightweight model
that improves run time and training speed. Additionally, the proposed model
combines outputs of two different networks trained for face detection and local
facial parts. It also outperforms the DDFD detector in the challenging FDDB
dataset by a magnitude of 8%. We show that a properly trained smaller model
is efficient and outperforms a more complex and large network used for the same
task. Last but not least, our method is suitable for real-time face detection and
can be deployed to smart devices and robotic systems, e.g. for intelligent video
shooting purposes using UAVs.

Acknowledgments

This project has received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement No 731667 (MUL-
TIDRONE). This publication reflects the authors views only. The European
Commission is not responsible for any use that may be made of the information
it contains.

References

[1] X. Jin, B. W. Wah, X. Cheng, Y. Wang, Significance and challenges of big
data research, Big Data Research 2 (2) (2015) 59–64.

[2] E. Kohlwey, A. Sussman, J. Trost, A. Maurer, Leveraging the cloud for
big data biometrics: Meeting the performance requirements of the next
generation biometric systems, in: 2011 IEEE World Congress on Services,
IEEE, 2011, pp. 597–601.

21



[3] N. Ratha, J. Connell, S. Pankanti, Big data approach to biometric-based
identity analytics, IBM Journal of Research and Development 59 (2/3)
(2015) 4–1.

[4] G. Goudelis, A. Tefas, I. Pitas, Emerging biometric modalities: a survey,
Journal on Multimodal User Interfaces 2 (3) (2008) 217–235.

[5] D. Triantafyllidou, A. Tefas, A fast deep convolutional neural network
for face detection in big visual data, in: INNS Conference on Big Data,
Springer, 2016, pp. 61–70.

[6] E. Marami, A. Tefas, Using particle swarm optimization for scaling and
rotation invariant face detection, in: IEEE Congress on Evolutionary Com-
putation, IEEE, 2010, pp. 1–7.

[7] E. Marami, A. Tefas, Face detection using particle swarm optimization and
support vector machines, in: Hellenic Conference on Artificial Intelligence,
Springer, 2010, pp. 369–374.

[8] C. Kotropoulos, A. Tefas, I. Pitas, Frontal face authentication using vari-
ants of dynamic link matching based on mathematical morphology, in: Im-
age Processing, 1998. ICIP 98. Proceedings. 1998 International Conference
on, Vol. 1, IEEE, 1998, pp. 122–126.

[9] J. Ren, X. Jiang, J. Yuan, A complete and fully automated face verification
system on mobile devices, Pattern Recognition 46 (1) (2013) 45–56.

[10] H.-J. Hsu, K.-T. Chen, Face recognition on drones: Issues and limitations,
in: Proceedings of the First Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications for Civilian Use, ACM, 2015, pp. 39–44.

[11] P. Viola, M. J. Jones, Robust real-time face detection, International journal
of computer vision 57 (2) (2004) 137–154.

[12] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
in: 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), Vol. 1, IEEE, 2005, pp. 886–893.

[13] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust features
(surf), Computer vision and image understanding 110 (3) (2008) 346–359.

[14] P. Dollár, Z. Tu, P. Perona, S. Belongie, Integral channel features.

[15] X. Zhu, D. Ramanan, Face detection, pose estimation, and landmark local-
ization in the wild, in: Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, IEEE, 2012, pp. 2879–2886.

[16] S. S. Farfade, M. J. Saberian, L.-J. Li, Multi-view face detection using
deep convolutional neural networks, in: Proceedings of the 5th ACM on
International Conference on Multimedia Retrieval, ACM, 2015, pp. 643–
650.

22



[17] H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network
cascade for face detection, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 5325–5334.

[18] C. Zhang, Z. Zhang, Improving multiview face detection with multi-task
deep convolutional neural networks, in: IEEE Winter Conference on Ap-
plications of Computer Vision, IEEE, 2014, pp. 1036–1041.

[19] R. Collobert, J. Weston, A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning, in: Proceedings of
the 25th international conference on Machine learning, ACM, 2008, pp.
160–167.

[20] L. Deng, G. Hinton, B. Kingsbury, New types of deep neural network learn-
ing for speech recognition and related applications: An overview, in: 2013
IEEE International Conference on Acoustics, Speech and Signal Processing,
IEEE, 2013, pp. 8599–8603.

[21] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Advances in neural information
processing systems, 2012, pp. 1097–1105.

[22] D. Ciregan, U. Meier, J. Schmidhuber, Multi-column deep neural networks
for image classification, in: Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, IEEE, 2012, pp. 3642–3649.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2015, pp. 1–9.

[24] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, CoRR abs/1409.1556.

[25] A. Van den Oord, S. Dieleman, B. Schrauwen, Deep content-based music
recommendation, in: Advances in Neural Information Processing Systems,
2013, pp. 2643–2651.

[26] X.-W. Chen, X. Lin, Big data deep learning: challenges and perspectives,
IEEE Access 2 (2014) 514–525.

[27] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald,
E. Muharemagic, Deep learning applications and challenges in big data
analytics, Journal of Big Data 2 (1) (2015) 1.

[28] V. Jain, E. Learned-Miller, Fddb: A benchmark for face detection in
unconstrained settings, Tech. Rep. UM-CS-2010-009, University of Mas-
sachusetts, Amherst (2010).

23



[29] S. Yang, P. Luo, C. C. Loy, X. Tang, Wider face: A face detection bench-
mark, in: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[30] B. Wu, H. Ai, C. Huang, S. Lao, Fast rotation invariant multi-view face
detection based on real adaboost, in: Automatic Face and Gesture Recog-
nition, 2004. Proceedings. Sixth IEEE International Conference on, IEEE,
2004, pp. 79–84.

[31] S. Z. Li, L. Zhu, Z. Zhang, A. Blake, H. Zhang, H. Shum, Statistical learning
of multi-view face detection, in: European Conference on Computer Vision,
Springer, 2002, pp. 67–81.

[32] M. Jones, P. Viola, Fast multi-view face detection, Mitsubishi Electric Re-
search Lab TR-20003-96 3 (2003) 14.

[33] J. Li, Y. Zhang, Learning surf cascade for fast and accurate object de-
tection, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2013, pp. 3468–3475.

[34] B. Jun, I. Choi, D. Kim, Local transform features and hybridization for
accurate face and human detection, IEEE transactions on pattern analysis
and machine intelligence 35 (6) (2013) 1423–1436.

[35] M. Mathias, R. Benenson, M. Pedersoli, L. Van Gool, Face detection with-
out bells and whistles, in: European Conference on Computer Vision,
Springer, 2014, pp. 720–735.

[36] B. Yang, J. Yan, Z. Lei, S. Z. Li, Aggregate channel features for multi-
view face detection, in: Biometrics (IJCB), 2014 IEEE International Joint
Conference on, IEEE, 2014, pp. 1–8.

[37] D. Chen, S. Ren, Y. Wei, X. Cao, J. Sun, Joint cascade face detection and
alignment, in: European Conference on Computer Vision, Springer, 2014,
pp. 109–122.

[38] P. Felzenszwalb, D. McAllester, D. Ramanan, A discriminatively trained,
multiscale, deformable part model, in: Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, 2008, pp. 1–8.

[39] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, Cascade object detection
with deformable part models, in: Computer vision and pattern recognition
(CVPR), 2010 IEEE conference on, IEEE, 2010, pp. 2241–2248.

[40] R. Ranjan, V. M. Patel, R. Chellappa, A deep pyramid deformable part
model for face detection, in: Biometrics Theory, Applications and Systems
(BTAS), 2015 IEEE 7th International Conference on, IEEE, 2015, pp. 1–8.

[41] R. Ranjan, V. M. Patel, R. Chellappa, Hyperface: A deep multi-task learn-
ing framework for face detection, landmark localization, pose estimation,
and gender recognition, arXiv preprint arXiv:1603.01249.

24



[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, Im-
ageNet Large Scale Visual Recognition Challenge, International Jour-
nal of Computer Vision (IJCV) 115 (3) (2015) 211–252. doi:10.1007/

s11263-015-0816-y.

[43] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for
accurate object detection and semantic segmentation, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2014, pp.
580–587.

[44] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, arXiv preprint arXiv:1409.1556.

[45] H. Jiang, E. Learned-Miller, Face detection with the faster r-cnn, arXiv
preprint arXiv:1606.03473.

[46] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object
detection with region proposal networks, in: Advances in neural informa-
tion processing systems, 2015, pp. 91–99.

[47] S. Yang, P. Luo, C.-C. Loy, X. Tang, From facial parts responses to face
detection: A deep learning approach, in: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2015, pp. 3676–3684.

[48] S. Zafeiriou, C. Zhang, Z. Zhang, A survey on face detection in the wild:
past, present and future, Computer Vision and Image Understanding 138
(2015) 1–24.

[49] P. Nousi, A. Tefas, Deep learning algorithms for discriminant autoencoding,
Neurocomputing.

[50] B. B. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
L. D. Jackel, Handwritten digit recognition with a back-propagation net-
work, in: Advances in neural information processing systems, Citeseer,
1990.

[51] S. Lawrence, C. L. Giles, A. C. Tsoi, A. D. Back, Face recognition: A con-
volutional neural-network approach, IEEE transactions on neural networks
8 (1) (1997) 98–113.

[52] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks
are universal approximators, Neural networks 2 (5) (1989) 359–366.

[53] K.-I. Funahashi, On the approximate realization of continuous mappings
by neural networks, Neural networks 2 (3) (1989) 183–192.

[54] Y. Bengio, Learning deep architectures for ai, Foundations and trends R© in
Machine Learning 2 (1) (2009) 1–127.

25

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y


[55] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, L. D. Jackel, Backpropagation applied to handwritten zip code recog-
nition, Neural computation 1 (4) (1989) 541–551.

[56] L. Bottou, Large-scale machine learning with stochastic gradient descent,
in: Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.

[57] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann
machines, in: Proceedings of the 27th International Conference on Machine
Learning (ICML-10), 2010, pp. 807–814.

[58] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks., in:
Aistats, Vol. 15, 2011, p. 275.

[59] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in: Proceedings of the
IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.

[60] K. Jarrett, K. Kavukcuoglu, Y. Lecun, et al., What is the best multi-
stage architecture for object recognition?, in: 2009 IEEE 12th International
Conference on Computer Vision, IEEE, 2009, pp. 2146–2153.

[61] Y. LeCun, K. Kavukcuoglu, C. Farabet, et al., Convolutional networks and
applications in vision., in: ISCAS, 2010, pp. 253–256.

[62] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, S.-F. Chang,
An exploration of parameter redundancy in deep networks with circulant
projections, in: Proceedings of the IEEE International Conference on Com-
puter Vision, 2015, pp. 2857–2865.

[63] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for seman-
tic segmentation, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3431–3440.

[64] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting., Journal
of Machine Learning Research 15 (1) (2014) 1929–1958.

[65] C. Athanasiadis, D. Galanopoulos, A. Tefas, Progressive neural network
training for the open racing car simulator, in: 2012 IEEE Conference on
Computational Intelligence and Games (CIG), IEEE, 2012, pp. 116–123.

[66] A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detec-
tors with online hard example mining, arXiv preprint arXiv:1604.03540.

[67] J. F. Henriques, J. Carreira, R. Caseiro, J. Batista, Beyond hard negative
mining: Efficient detector learning via block-circulant decomposition, in:
proceedings of the IEEE International Conference on Computer Vision,
2013, pp. 2760–2767.

26



[68] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks., in: Aistats, Vol. 9, 2010, pp. 249–256.

[69] M. Köstinger, P. Wohlhart, P. M. Roth, H. Bischof, Annotated facial land-
marks in the wild: A large-scale, real-world database for facial landmark
localization, in: Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on, IEEE, 2011, pp. 2144–2151.

[70] Z. Zhang, P. Luo, C. C. Loy, X. Tang, Facial landmark detection by
deep multi-task learning, in: European Conference on Computer Vision,
Springer, 2014, pp. 94–108.

[71] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for
simplicity: The all convolutional net, arXiv preprint arXiv:1412.6806.

[72] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast fea-
ture embedding, in: Proceedings of the 22nd ACM international conference
on Multimedia, ACM, 2014, pp. 675–678.

[73] B. Yang, J. Yan, Z. Lei, S. Z. Li, Convolutional channel features, in: Pro-
ceedings of the IEEE International Conference on Computer Vision, 2015,
pp. 82–90.

[74] Z. L. Kaipeng Zhang, Zhanpeng Zhang, Joint face detection and alignment
using multi-task cascaded convolutional networks, IEEE Signal Processing
Letters 23 (10) (2016) 1499–1503.

[75] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman,
The pascal visual object classes (voc) challenge, International Journal of
Computer Vision 88 (2) (2010) 303–338.

27


	Introduction
	Related Work
	Proposed Method
	Convolutional Neural Networks
	CNN Architecture
	Progressive positive and hard negative example mining
	Training and Deployment
	Training dataset

	Experiments
	System analysis
	Evaluation
	Computational Complexity
	Time Performance
	Discussion

	Conclusion

