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Learning Neural Bag-of-Features for Large
Scale Image Retrieval

Nikolaos Passalis and Anastasios Tefas

Abstract—In this paper, the well-known Bag-of-Features (BoF) model is generalized and formulated as a neural network that is
composed of three layers: a Radial Basis Function (RBF) layer, an accumulation layer, and a fully connected layer. This formulation
allows for decoupling the representation size from the number of used codewords, as well as for better modeling the feature distribution
using a separate trainable scaling parameter for each RBF neuron. The resulting network, called Retrieval-oriented Neural BoF
(RN-BoF), is trained using regular back propagation and allows for fast extraction of compact image representations. It is demonstrated
that the RN-BoF model is capable of a) increasing the object encoding and retrieval speed, b) reducing the extracted representation
size, and c) increasing the retrieval precision. A symmetry-aware spatial segmentation technique is also proposed to further reduce the
encoding time and the storage requirements and allows the method to efficiently scale to large datasets. The proposed method is
evaluated and compared to other state-of-the-art techniques using five different image datasets, including the large scale YouTube
Faces Database.

Index Terms—Information Retrieval, Neural Networks, Retrieval-oriented Optimization, Bag-of-Features Representation.
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1 INTRODUCTION

Large scale content-based information retrieval (CBIR)
has recently received a lot of attention due to the exponential
growth of multimedia data available over the Internet [1].
Retrieval tasks range from face image retrieval [2], [3],
scene retrieval [4], and trademark retrieval [5], to generic
visual retrieval [6], and recommendation systems [7], [8].
The enormous amounts of data push the classical infor-
mation retrieval techniques to their limits. This led to the
development of various encoding and approximate nearest
neighbor search techniques to efficiently tackle the task of
large scale information retrieval [9], [10], [11].

Among the most widely used techniques for content-
based information retrieval is the Bag-of-Features (BoF)
model, also known as Bag-of-Visual-Words (BoVW) or Bag-
of-Words (BoW) [12], [13], [14]. The pipeline of the BoF
model involves the following steps:

1) First, multiple feature vectors, such as SIFT descrip-
tors [15], are extracted from an object, such as an
image. These vectors define the feature space, where
each object is represented as a set of feature vectors.

2) Then, a set of representative feature vectors, known
as codewords or simply words, are learned. This set
of vectors is called codebook (or dictionary) and this
learning process is called codebook/dictionary learning.

3) Finally, each object is encoded by quantizing its
feature vectors using the learned dictionary and a
constant-length histogram is extracted for each ob-
ject. These histograms can be used for the retrieval
tasks and define the histogram space.

The application of the BoF model is not restricted to image
representation, e.g., extracting representations from scene
images [13], face images [16], [17], [18], [19] or gesture
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images [20], [21]. Several types of objects, such as video
[14], audio [22], and time-series [23], can be also represented
using the BoF model. However, the main focus of this
work is learning compact image representations for retrieval
tasks.

The quality of the BoF representation is highly depen-
dent on the used dictionary learning algorithm. The first
approaches used unsupervised clustering techniques, such
as the k-means algorithm, to learn a dictionary [12], [13].
In these approaches the feature vectors are clustered and
the centroids of the clusters are used to form the codebook.
Then, each feature vector is represented by its nearest code-
word. The codewords (centroids) are chosen in such way
to minimize the reconstruction loss of the feature vectors
that belong to the corresponding cluster. These methods
allow for exploiting the available unsupervised information.
However, they usually require very large codebooks in
order to perform well leading to very large representations
that cannot be directly used for retrieval tasks [9].

Although the previous unsupervised approaches have
been successfully applied to a wide range of problems, it
was established that minimizing the reconstruction loss is
not optimal with respect to the final task [24], [25], [26], [27],
[28]. Supervised dictionary learning not only increases the
discriminative power of the learned dictionaries, but also
allows for using significantly smaller dictionaries. These
algorithms can be used for a variety of retrieval tasks
where the queries are usually expected to be from a set
of known classes, e.g., celebrity face image retrieval [2].
However, most supervised dictionary learning approaches
learn discriminative dictionaries that are unable to extract
meaningful representations for objects outside of their train-
ing domain. The interested reader is referred to [28], where
it is demonstrated that highly discriminative representations
can severely harm the retrieval precision for out-of-domain
retrieval. This problem was addressed in [28] by defining
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Fig. 1: The proposed RN-BoF model

an entropy-based loss function for optimizing the dictio-
nary towards information retrieval instead of classification.
Entropy loss follows the clustering hypothesis [29], which
states that objects in the same cluster are likely to fulfill the
same information need, and acts as a mild-discriminative
criterion that increases the retrieval performing for both in-
domain and (relevant) out-of-domain retrieval tasks.

Even these powerful task-oriented dictionary learning
methods are not always enough to reduce the representation
size to acceptable levels, especially when spatial segmenta-
tion techniques, such as Spatial Pyramid Matching [13], are
used. The spatial segmentation techniques segment each im-
age into a number of regions and use a separate dictionary
for each region. Even for relative small dictionaries, e.g., 64
codewords, and pyramid level 2 that uses 8 + 4 + 1 = 13
codebooks, the effective number of codewords builds up to
13× 64 = 832. This limitation is intrinsic to the BoF model,
since the size of the resulting representation depends on the
number of used codewords, posing a barrier for scaling to
large scale data.

In this paper, the BoF model is generalized and formu-
lated as a neural network, that is composed of three layers
(as shown in Figure 1): a Radial Basis Function (RBF) layer
[30], [31], an accumulation layer, and a fully connected layer.
This allows for overcoming the aforementioned limitation
by decoupling the representation size from the number of
used codewords. Also, each RBF neuron is equipped with
a scaling parameter that allows for adjusting the shape of
its Gaussian function to better fit the input distribution.
This neural formulation, called Retrieval-oriented Neural
BoF (RN-BoF), allows for significantly reducing the rep-
resentation size, while still maintaining its representation
power. To further reduce the encoding time and the storage
requirements a symmetry-aware spatial segmentation tech-
nique is proposed. This technique exploits the fact that most
images/visual objects are symmetric around their vertical
axis and only uses horizontal segmentation. The RN-BoF
model can be trained using the regular back-propagation
technique and implemented using standard tools, such as
the Theano library [32].

If trainable feature extractors are used, such as Convo-
lutional Neural Networks (CNNs) [6], the gradients can
also back-propagate, through the RN-BoF, to them (the
extracted feature maps can be considered as slices of feature
vectors that can be fed to the RN-BoF model). That way,
the resulting deep architecture can be further fined-tuned
towards extracting retrieval-oriented representations. Note

that a similar setup is used in Section 4.4, where the pro-
posed RN-BoF approach is evaluated using feature vectors
extracted from a CNN. On the other hand, it should be
stressed that the proposed approach can be also combined
with fast hand-crafted feature extractors, such as SURF [33],
to further increase the encoding speed. Furthermore, exist-
ing hashing and approximate nearest neighbor techniques
can be combined with the proposed approach to increase
the retrieval performance even more. The proposed RN-BoF
formulation also allows for learning retrieval representa-
tions using Extreme Learning techniques, such as [34], and
[35]. Finally, Relevance Feedback techniques [36], [37], [38],
can be exploited to gather training data that can be used
with the proposed method (especially when it is difficult to
gather annotated data or concept drift issues exist).

The contributions of this paper are briefly summarized
below. A neural network that learns to extract retrieval-
oriented representations is proposed. This network gen-
eralizes the BoF model and allows for building powerful
representation machines for image retrieval tasks that can
rapidly encode the input images. The proposed technique
is also combined with a symmetry-aware segmentation
scheme to significantly reduce the encoding time and the
representation size, allowing the method to efficiently scale
to large datasets. The proposed technique is evaluated and
compared to other state-of-the-art techniques using both
small scale and large scale image datasets.

The rest of the paper is organized as follows. The related
work is discussed in Section 2 and the proposed RN-BoF
model is described in Section 3. The experimental evalu-
ation of the proposed method is presented in Section 4.
Finally, conclusions are drawn and possible extensions are
discussed in Section 5.

2 RELATED WORK

This work mainly concerns supervised dictionary learning
for the BoF representation for which a rich literature exists.
In [24], the proposed dictionary learning scheme tries to in-
crease the mutual information between each codeword and
the corresponding features labels. The CSMMI method [39],
uses an information theory-based criterion for the optimiza-
tion of the dictionary towards action and gesture recogni-
tion. In [25], multiple maximum margin hyperplanes are
learned and at the same time the codebooks are adjusted to
maximize the corresponding margins. This method requires
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a quadratic number of codebooks with respect to the num-
ber of the training labels. This problem is addressed in later
works, such as [40], where multi-class SVMs are used. A
simple method for supervised codebook learning that incor-
porates both a traditional MLP layer and a codebook layer is
proposed in [41], while a neural BoF formulation is provided
in [42]. In [43], the optimization aims to minimize the logistic
regression loss, while in [27], to minimize an LDA-based
discriminative loss function. In [26], multiple dictionaries
with complementary discriminative information are learned
by adjusting the weights used during the clustering process
using the predictions of a histogram-space classifier.

The aforementioned approaches focus on learning highly
discriminative (classification-oriented) dictionaries that are
not always optimal for retrieval tasks. This issue is discussed
in detail in [28]. To this end, an entropy-based objective
function was proposed for use either in the feature space
[44], [45], or in the histogram space [19], [28]. These meth-
ods allow for optimizing the dictionary towards retrieval-
oriented tasks, instead of learning a highly discriminative
representation for classification tasks.

Although these retrieval-oriented dictionary learning ap-
proaches allow for using smaller representations [19], the
extracted representation is still bound to the number of used
codewords, leading to quite large representations (especially
when combined with spatial segmentation techniques). To
overcome this limitation, the method proposed in this paper
is able to jointly learn the dictionary and a low-dimensional
projection of the histogram representation allowing to sig-
nificantly reduce the extracted representation size. Further-
more, the BoF model discards most of the spatial infor-
mation contained in the original image, which can harm
the retrieval precision. The BoF-based techniques for face
recognition, e.g., [16], [17], [18], overcome this limitation by
defining a grid over each image (or some regions of interest)
and independently extracting a histogram from each cell
of the grid. Object/scene recognition techniques also use
similar spatial segmentation techniques, such as the Spa-
tial Pyramid Matching (SPM) technique [13]. The method
proposed in this paper exploits the symmetry that arises in
most images to reduce the representation size and increase
the retrieval precision. To the best of our knowledge, this
is the first method that is able to jointly optimize multiple
symmetry-aware codebooks and a final lower dimensional
representation using a retrieval-oriented objective function.

Finally, it should be noted that hashing and approximate
nearest neighbor search techniques have been also devel-
oped to tackle the task of large scale information retrieval
[9], [10], [11]. The efficiency of these methods usually de-
pends on the size of the extracted representation. Therefore,
the proposed method can be also combined with the afore-
mentioned methods, to further increase their performance
and reduce the retrieval time.

3 PROPOSED METHOD

In this Section the proposed RN-BoF model is presented.
First, the regular BoF model is briefly described. Then,
the proposed neural extension of the BoF model, which is
optimized towards information retrieval, and a symmetry-
aware segmentation scheme are presented. Finally, a learn-

ing algorithm for the RN-BoF is proposed and the complex-
ity of the proposed approach is discussed.

3.1 BoF Model
Let X = {xi}Ni=1 be a set of N objects to be represented
using the BoF model. As stated before, each object xi consists
of Ni feature vectors: xij ∈ RD (j = 1...Ni), where D is
the dimensionality of the extracted features. For example,
in image retrieval each xi would be an image and each
xij a vector extracted from it, e.g., a SIFT feature vector.
By quantizing the feature vectors of each object into a
predefined number of histogram bins/codewords a fixed-
length histogram can be extracted. When hard assignment
is used each feature vector is quantized to its nearest
codeword, while when soft assignment is utilized every
feature contributes, by a different amount, to each histogram
bin/codeword.

The set of all feature vectors, S = {xij |i = 1...N, j =
1...Ni}, is clustered into NK clusters. Then, the centroids
(codewords) vk ∈ RD(k = 1...NK) are used to form the
codebook V ∈ RD×NK , where each column of V is a
centroid. The codewords are used to quantize the feature
vectors. In most cases only a subset of S is clustered, since
this allows for reducing the training time without harming
the retrieval precision. The dictionary/codebook is learned
only once and then it can be used to represent any object.

To encode the i-th object the similarity between each
feature vector xij and each codeword vk is computed as:

[dij ]k = exp(
−||vk − xij ||2

σ
) ∈ R (1)

where the notation [dij ]k is used to denote the k-th element
of the vector dij . The parameter σ controls the quantization
process: for harder assignment σ << 1 is used, while for
softer assignment larger values are used. It is also common
to use hard and non-continuous assignments [12], [13]:

[dij ]k =

{
1 if k = arg min

k′
(||vk′ − xij ||2)

0 otherwise
(2)

The first definition in Equation (1) converges to the sec-
ond in Equation (2) as σ → 0. Many codebook learning
algorithms, e.g., [23], [25], [27], [41], [44], [28], use soft-
assignment techniques, similar to Equation (1), since this
allows simple algorithms, such as gradient descent, to be
used for the optimization. Then, the l1 normalized member-
ship vector of each feature vector xij is obtained:

uij =
dij
||dij ||1

∈ RNK (3)

This vector describes the similarity of the feature vector xij
to each codeword. Finally, the histogram si is extracted for
every object xi:

si =
1

Ni

Ni∑
j=1

uij ∈ RNK (4)

The histogram si has unit l1 norm, since ||uij ||1= 1 for every
j. These histograms describe each object and they can be
used for the subsequent retrieval tasks. The training and
the encoding process are fully unsupervised and no labeled
data are required.
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3.2 Retrieval optimized Neural BoF Model

3.2.1 Neural BoF

In this Section, a neural generalization of the BoF model is
proposed. The proposed neural architecture is depicted in
Figure 1. First, a feature extractor is used to extract multiple
feature vectors from each object, as in the regular BoF model.
The proposed network is composed of three layers: an
RBF layer that measures the similarity of the input feature
vectors to the RBF centers, an accumulation layer that builds
a histogram of the input features and a fully connected layer
that compiles the final representation for each object. The
proposed architecture can be thought as a neural network
that can be trained to extract object representations instead
of performing classification tasks.

The output of the k-th RBF neuron is defined as:

[φ(x)]k = exp(−||(x− vk)||2/σk) ∈ R (5)

where x is a feature vector and vk the center of the k-th RBF
neuron. The RBF neurons behave similarly to the codewords
in the BoF model since they are used to measure the similar-
ity of the input vectors to a set of predefined vectors. Each
RBF neuron is also equipped with a scaling factor σk ∈ R
that adjusts the width of its Gaussian function and allows
for better modeling the input feature distribution.

Similarly to the BoF model, which uses l1 scaling in
Equation (3), the used RBF architecture is normalized to
ensure that the output of each RBF neuron is bounded. The
output of the RBF neurons is re-defined as follows:

[φ(x)]k =
exp(−||(x− vk)||2/σk)∑NK

m=1 exp(−||(x− vm)||2/σm
) ∈ R (6)

The output of the RBF neurons is accumulated in the next
layer, similar to the BoF model (Equation (3):

si =
1

Ni

Ni∑
j=1

φ(xij) ∈ RNK (7)

where φ(x) = ([φ(x)]1, ..., [φ(x)]NK )T ∈ RNK is the output
vector of the RBF layer. Note that this behavior can be
emulated in a neural network using a recurrent self loop
and zeroing the memory of the neurons before feeding
the feature vectors of a different object. The output of the
accumulation layer remains normalized, i.e., it has unit l1

norm.
After the histogram is compiled it is fed to the fully

connected layer to obtain the lower dimensional final repre-
sentation:

ti = relu(WT si) (8)

where W ∈ WNK×NR is the weight matrix of fully con-
nected layer, NR is the length of the final representation
and relu(x) = max(0, x) is the rectifier activation function
which is applied element-wise. Note that the relu activation
function also ensures that the final representation will be
non-negative.

3.2.2 Retrieval Optimization

The centers for the RBF neurons can be initialized using
the k-means algorithm (as in the regular BoF model), while
the final fully connected layer can be randomly initialized
(performing random projections of the histogram represen-
tation [46]). However, the proposed model can be further
trained to extract representations oriented towards specific
information retrieval tasks. To this end, a retrieval-oriented
loss function is used: the supervised entropy loss [28].

Let li ∈ {1, ..., NC} be the label of the i-th annotated
object used for learning the representation, where NC is
the number of training classes. To measure the entropy in
the representation space, the ti vectors are clustered into
NT clusters. The centroid of the k-th cluster is denoted by
ck (k = 1...NT ). Then, the entropy of the k-th cluster can be
defined as:

Ek = −
NC∑
j=1

pjk log pjk (9)

where pjk is the probability that an object of the k-th cluster
belongs to the class j. This probability is estimated as
pjk = hik/nk, where nk is the number of vectors in cluster
k and hjk is the number of vectors in cluster k that belong
to class j.

Each centroid can be considered as a representative
query for which the representation is optimized. According
to the cluster hypothesis low-entropy clusters, i.e., clusters
that contain mostly vectors from objects of the same class,
are preferable for retrieval tasks to high-entropy clusters,
i.e., clusters that contain vectors from objects that belong to
several different classes. Therefore, the network is optimized
to minimize the total entropy of a cluster configuration,
which is defined as:

E =
NT∑
k=1

rkEk (10)

where rk = nk/N is the proportion of vectors in cluster k.
By substituting rk and pjk into the entropy definition

given in (10) the following objective function is obtained:

E = − 1

N

NT∑
k=1

NC∑
j=1

hjk log
hjk
nk

(11)

Note that this objective function is not continuous with re-
spect to ti. Therefore, it cannot be directly used for learning
the parameters of the network. To this end, a smooth cluster
membership vector qi ∈ RNT is defined for each vectors ti,
where [qi]k = exp(−||ti−ck||2m ). The corresponding smooth
l1 normalized membership vector is defined as wi as:
wi = qi

||qi||1 ∈ RNT . The parameter m controls the fuzziness
of the assignment process: for m → 0 each histogram is
assigned to its nearest cluster, while larger values allow for
fuzzy membership.

Then, the quantities nk and hjk are redefined as nk =∑N
i=1[wi]k and hjk =

∑N
i=1[wi]kπij , where πij is 1 if the

i-th object belongs to class j and 0 otherwise. Substitut-
ing these values into the objective function (11) leads to
a smooth entropy approximation that converges to (hard)
entropy as m→ 0.
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The parameters of the network can be learned using
simple gradient descent:

∆(V,σ,W) = −η(
∂E

∂V
,
∂E

∂σ
,
∂E

∂W
) (12)

where η is the learning rate and σ = (σ1, σ2, ..., σNK ). In-
stead of using simple gradient descent, the Adam algorithm
is utilized [47]. The Adam algorithm computes adaptive
learning rates for each of the optimization parameters using
estimates of the first and second moments of the gradient.
The default parameters for the decay rate of the first and
second order estimates, i.e., β1 = 0.9 and β2 = 0.999,
are used and a small value ε = 10−8 is utilized to ensure
numerical stability. Also, note that as the network learns the
final representation the initial choice for the representative
queries ck might be no longer valid. Thus, to allow the loss
function to “follow” the representation, the entropy centers
are also adjusted during the learning process:

∆C = −ηC
∂E

∂C
(13)

where C = [c1c2...cNT ]. Typically, the learning rate for the
entropy centers ηC is set to a lower value than the main
learning rate η, since the focus of the method is learning
an optimal representation, instead of learning the optimal
entropy centers. The gradients ∂E

∂V ,
∂E
∂σ ,

∂E
∂W and ∂E

∂C are
derived in detail in Appendix A. Finally, note that even
though calculating the entropy requires the whole training
set to be used, the network can be also trained using mini-
batches and calculating the entropy for each mini-batch.

3.2.3 Spatial RBoF
Spatial segmentation schemes, such as Spatial Pyramid
Matching [13], are usually used with the BoF model to
further increase the image recognition accuracy. The pro-
posed Neural BoF model can be also combined with a
spatial segmentation scheme. A separate set of RBF neurons
and accumulation neurons are used to encode the features
extracted from each separate region of the image. To further
reduce the storage requirements and the encoding time a
symmetry-aware spatial segmentation scheme is proposed.
Instead of using a simple grid over each image, NS horizon-
tal strips are used, as shown in Figure 2. The total number of
RBF neurons used in the spatial RN-BoF model is NS×NK ,
since NK RBF neurons are used for each region. This ex-
ploits the symmetry around the vertical axis that is usually
present in most visual objects and scenes. In Section 4, it is
demonstrated that this scheme improves both the retrieval
accuracy and the encoding time/storage requirements over
the more computational demanding segmentation schemes
that are usually used.

3.3 Learning with RBoF
The complete learning algorithm is presented in Figure 3.
First, the RBF centers are initialized using k-means over
the training features (line 1). If Spatial BoF is used, the RBF
centers are initialized using feature vectors from the corre-
sponding regions. The weights W are randomly initialized
using a uniform distribution over [-1, 1], while the scaling
factors σk are initially set to 0.1. The parameter m controls
the entropy fuzziness and should be set to small enough

Image

4 Horizontal Spatial Regions

Separate Histrogram 
Encoding

Final Representation

Fig. 2: Symmetry-aware spatial segmentation technique for
the RN-BoF

value in order to closely approximate the hard entropy.
A value of m = 0.01 is used for all the experiments in
this paper. Next, the objects are encoded (line 3) and the
entropy centers are chosen (lines 4-7). Each class must be
represented by at least one cluster, i.e., at least NC centers
must be used. In this paper the class mean vector is used
as the corresponding entropy center. If the distribution of
some classes is multi-modal, more centers may be selected
by running k-means over each class. Finally, the parameters
of the network are learned using the Adam algorithm (lines
8-9) using the following learning rates: η = 0.01 and
ηC = 0.001. For all conducted experiments Niters = 100
optimization iterations are used. To accelerate the learning
process a random subsample of 100 feature vectors are used
for each iteration instead of feeding all the feature vectors
extracted from an object. This allows for decreasing the time
needed for learning the parameters of the network with little
effect on quality of the learned representation.

To better understand how the proposed method works a
simple toy example using data from the 15-scene dataset
is provided [13]. Four classes (suburb, store, office and
forest) are used and 50 images are randomly sampled from
each class. A spatial segmentation scheme with 4 horizontal
strips is used, and Nk = 32 RBF neurons are used for
each strip. The length of the final representation is set to
NR = 64. The resulting histograms are projected into a
2-d space using PCA. Figure 4 shows the first two principal
components of the extracted vectors during the optimization
process. It is evident that the proposed RN-BoF technique
successfully lowers the entropy in the final space by learning
a representation that gathers the objects in pure clusters.
Note that the method prevents collapsing the representation
into a few distinct points, maintaining its representation
ability.

3.4 Complexity Analysis
In Table 1 the encoding complexity and the storage re-
quirements of the proposed RN-BoF method is compared
to three other methods: the regular BoF model, the EO-
BoW model [28], which is a retrieval-oriented dictionary
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Fig. 3: RN-BoF Learning Algorithm

Input: A set X = {x1, ...,xN} of N training objects and
their class labels L = {l1, ..., lN}
Parameters: NK , NS , NR, Niters
Output: The optimized network (V,σ,W)

1: procedure RN-BOF LEARNING
2: Initialize V by running k-means on the extracted

training feature vectors
3: T ← ENCODE(X)
4: C ← []
5: for i← 1; i ≤ NC ; i+ + do
6: Calculate and mean vector over the objects that

belong to class i
7: Append the new center to C
8: for i← 1; i ≤ Niters; i+ + do
9: Apply the Adam algorithm to update the

parameters of the network using equations (12)
and (13)

10: procedure ENCODE(X) return the object representation
according to (8)
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Fig. 4: Toy example of the learning process using 4 classes
of the 15-scene dataset

learning method for the BoF model, and the VLAD model
[48], which is a state-of-the-art representation technique.
Note that the value of NR can be independently adjusted
to fit the available storage capabilities and does not depend
on the number of used codewords. This allows the proposed
RN-BoF method to use significantly smaller representations,
while still performing better than the competitive technique,
as shown in the next Section. On the other hand, the pro-
posed method requires slightly more encoding time, since
the extracted histogram must be projected into a lower
dimensional space. However, in almost all the cases is
expected that NR < D, which means that all the methods
have the same asymptotic complexity (O(NSNKD)) when
the same number of codewords are used.

TABLE 1: Comparing representation size and encoding time
for different methods

Method BoF/EO-BoW VLAD RN-BoF
Repr. size O(NSNK) O(NSNKD) O(NR)
Enc. time O(NSNKD) O(NSNKD) O(NSNK(D +NR))

4 EXPERIMENTS

In this section, the proposed method is evaluated using five
image datasets from various domains and it is compared
to other state-of-the-art representation methods, including
a recently proposed retrieval-oriented dictionary learning
method for the BoF model. First, the used datasets, the
evaluation metrics and the other evaluated methods are
briefly described. In the next five subsections the methods
are evaluated on five datasets. Finally, the effect of parame-
ter selection on the proposed method is evaluated.

4.1 Evaluation Setup

4.1.1 Datasets
The proposed method is evaluated using five datasets, the
ORL Database of Faces (ORL) [49], the cropped variant of
the Extended Yale Face Database B (Yale B) [50], [51], the
15-scene dataset [13], the MIT indoor scene dataset (MIT67)
[52], and the large scale YouTube Faces Database [53].

The ORL dataset [49], is a face image dataset that con-
tains 400 images from 40 different persons. The dataset
contains 10 images for each person under varying pose
and facial expression. The cropped Extended Yale Face
Database B is also a face image dataset that contains 2432
images, taken under greatly varying lighting conditions, of
38 different persons. From each image SIFT descriptors of
16 x 16 patches were sampled over a grid with spacing of 4
pixels (using the code supplied by the authors of [54]). For
both datasets half of the images for each subject were used to
build the database and optimize the network, while the rest
of them were used to query the database and evaluate the
retrieval accuracy. This process has been repeated five times
and the mean and the standard deviation of the evaluated
metrics are reported.

The 15-scene dataset [13], contains 15 different scene
categories: office, kitchen, living room, bedroom, store, industrial,
tall building, inside city, street, highway, coast, open country,
mountain, forest, and suburb. The dataset contains 4,485 im-
ages and each category has 200 to 400 images. Each image
is resized to 250x250 pixels and SIFT descriptors of 16 x 16
patches are densely sampled over a grid with spacing of
8 pixels. The standard evaluation procedure was used: 100
images were sampled from each class to build the database
and optimize the network and the rest of them (2985 images)
were used to evaluate the retrieval accuracy. Again, the
experiments were repeated five times and the mean and the
standard deviation of each metric is reported.

The MIT indoor scene dataset [52], is a larger scene
recognition dataset that contains 67 different indoor scene
categories, such as living room, grocery store, church, library,
etc., and 15,620 images. In contrast to the 15-scene dataset,
that contains both indoor and outdoor scenes, the MIT67
dataset contains only indoor scenes, with some of them
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being characterized by their global spatial properties, while
other by the objects they contain. The methods are evaluated
on a more realistic scenario, where only a small subset of the
database has been annotated. To this end, 14950 images are
used to build the database, while only 50 images are anno-
tated for each of the 67 classes (3350 images). The rest 670
images (10 from each class) are used to query the database.
The training and the evaluation processes are repeated five
times using random splits. Each image is resized to 250x250
pixels and SIFT descriptors (16x16 patches, 8 pixels grid
spacing) are extracted.

The YouTube Faces dataset [53], contains frames from
videos depicting 1,595 different individuals. The dataset
is composed of 621,126 frames of 3,425 videos. The face
is already aligned in each frame using face detection and
alignment techniques, in the used cropped variant of the
dataset. Before extracting the feature vectors each image is
resized to 250x250 pixels and cropped by removing 25% of
its margins. SIFT descriptors of 16 x 16 patches are densely
sampled over a grid with spacing of 8 pixels. An evaluation
strategy, similar to those of celebrity face image retrieval
tasks [2], is used. The persons that appear in more than
5 videos are considered popular (celebrities). The training
set is formed by randomly selecting 100 images for each
of the most popular persons (5,900 training images are
collected from the videos of the 59 most popular persons).
The database contains the images of persons that appear
in at least 4 videos, i.e., 197,557 images from 226 persons.
The retrieval performance is evaluated using 100 randomly
selected celebrity queries, i.e., frames that contains popular
persons. The evaluation process is repeated five times.

4.1.2 Evaluation Metrics
Three retrieval evaluation metrics are used (similarly to
[28]): precision, recall and mean average precision (mAP).
To retrieve the relevant objects nearest neighbor search is
used [36]. The precision is defined as Pr(q, k) = rel(q,k)

k ,
where k is the number of retrieved objects and rel(q, k)
is the number of retrieved objects that belong to the same
class as the query q. The recall is similarly defined as
Rec(q, k) = rel(q,k)

nclass(q) , where nclass(q) is the total number
of database objects that belong to the same class as q. The in-
terpolated precision, Printerp(q, k) = maxk′, k′≥k Pr(q, k

′),
is utilized, since it is preferred over the raw precision as
it reduces the precision-recall curve fluctuation [36]. The
average precision (AP) is computed for a given query at
eleven equally spaced recall points (0, 0.1, ..., 0.9, 1) and the
mean average precision is calculated as the mean of APs for
all queries. Two types of curves are plotted: the precision-
recall curve and the precision-scope curve. The scope refers
to the number of objects returned to the user and the
precision-scope curve allow us to evaluate the precision at
lower recall levels. For storing the extracted feature vectors
in the database half precision (16-bit) floating point numbers
are used for all the conducted experiments.

4.1.3 Baseline and Competitive State-of-the-Art Methods
To learn a baseline BoF dictionary 50,000 feature vectors are
randomly sampled and the k-means algorithm is used. The
clustering process is repeated 5 times and the codebook

TABLE 2: ORL Evaluation Results

Method NK Representation Size mAP (%)
FPLBP - 448 (896 bytes) 79.69± 0.95
TPLBP - 7168 (14336 bytes) 80.74± 0.66
VLAD 16 2048 (4096 bytes) 88.59± 0.67
VLAD 64 8192 (16384 bytes) 91.28± 0.47
BoF 16 64 (128 bytes) 81.44± 1.00
BoF 64 256 (512 bytes) 88.94± 0.61
BoF 1024 4096 (8192 bytes) 93.15± 0.53
BoF 4096 16384 (32768 bytes) 93.45± 0.53
EO-BoW 16 64 (128 bytes) 95.63± 0.67
EO-BoW 32 128 (256 bytes) 96.57± 0.40
RN-BoF 8 8 (16 bytes) 80.00± 1.70
RN-BoF 16 16 (32 bytes) 93.48± 0.78
RN-BoF 64 32 (64 bytes) 97.87± 1.00

that yields the lowest reconstruction error is kept. The
proposed method is compared to the VLAD method, which
is among the state-of-the-art representation techniques for
image retrieval [48]. Furthermore, the proposed method is
compared to the FPLBP and the TPLBP features (using the
code provided by the authors of [55]) that are two other
well-established global features. For the YouTube Faces
dataset the precomputed CSLBP and FPLBP features were
used [53]. Finally, the proposed method is compared to
the EO-BoW method [28], which is a recently proposed
method for retrieval optimization of the BoF representation
(m = 0.01 and σ = 0.1 are used). Four horizontal spatial
regions are used for the BoF method, the EO-BoW method
and the proposed RN-BoF method. For both the EO-BoW
and the RN-BoF methods the spatial dictionaries are jointly
optimized.

4.2 ORL Evaluation
The evaluation results for the ORL dataset are shown in
Table 2. The proposed RN-BoF method achieves higher mAP
than the simple BoF method for any number codewords,
while reducing the representation size by three orders of
magnitude. Also, the RN-BoF method performs better than
the FPLBP/TPBLP and the VLAD methods increasing the
retrieval precision and reducing the representation size. As
it was already mentioned, the proposed RN-BoF technique
allows for decoupling the representation size from the num-
ber of used codewords. Thus, significant smaller represen-
tations than the competitive EO-BoW method can be used.
For this dataset the proposed method increases the retrieval
precision, while using 4 times smaller representation than
the competitive EO-BoW method.

It should be noted that the ORL dataset is relatively
small and the supervised methods can easily overfit the
representation. This is especially true for the proposed
RN-BoF method, since it uses a set of scaling parameters
to adjust the width of the RBFs as well as a trainable fully
connected layer. Nonetheless, it manages to achieve better
retrieval precision than the EO-BoW method. This can be
also attributed to the choice of entropy as the objective
function, since entropy is strongly regularized. That way,
it prevents the collapse of the objects into a few points,
allowing the method to maintain its representation ability.

The precision-recall and precision-scope curves for the
best performing methods are shown in Figure 5a and 5e
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TABLE 3: Yale B Evaluation Results

Method NK Representation Size mAP (%)
FPLBP - 1536 (3072 bytes) 35.78± 0.37
TPLBP - 24576 (49152 bytes) 31.88± 0.20
VLAD 16 2048 (4096 bytes) 17.24± 0.07
VLAD 64 8192 (16384 bytes) 21.89± 0.13
BoF 16 64 (128 bytes) 17.78± 0.21
BoF 64 256 (512 bytes) 20.68± 0.16
BoF 1024 4096 (8192 bytes) 25.49± 0.18
BoF 4096 16384 (32768 bytes) 28.25± 0.12
EO-BoW 16 64 (128 bytes) 36.88± 0.70
EO-BoW 32 128 (256 bytes) 36.48± 0.97
RN-BoF 8 8 (16 bytes) 36.93± 2.25
RN-BoF 16 16 (32 bytes) 52.04± 1.81
RN-BoF 64 32 (64 bytes) 76.70± 1.79

respectively. Again, the proposed RN-BoF method outper-
forms all the other evaluated methods, while using smaller
representations.

4.3 Yale B Evaluation

The Yale B is evaluated using a setup similar to this of the
ORL dataset. The results are shown in Table 3. Again, the
RN-BoF significantly outperforms all the other evaluated
methods increasing the mAP by more than 14% using a
16-dimensional (32-byte) representation. This improvement
can be attributed to the greater discriminative capacity of
the fully connected layer used in the RN-BoF. This can be
also confirmed in the precision-scope curves of Figure 5f.
Furthermore, the RN-BoF can match the retrieval precision
of all the other methods using just 16 bytes for each image.
The precision-recall and precision-scope curves are shown
in Figures 5b and 5f respectively. Again, the RN-BoF method
greatly outperform all the other evaluated methods.

4.4 15-scene Evaluation

The evaluation results for the 15-scene dataset are shown in
Table 4. The retrieval precision for the BoF representation
peaks when 1024 codewords per region are used leading to
a mAP of 28.21%. Using more codewords slightly reduces
the retrieval precision. The RN-BoF method outperforms all
the other evaluated methods while using a 16-dimensional
representation. This reduces the representation size from 8
times (when compared to the EO-BoW method) to 256 times
(when compared to the BoF method). The same behavior
is also observed in the precision-recall and precision-scope
curves of Figures 5c and 5g respectively, since the proposed
RN-BoF method leads to better retrieval precision at any
recall/scope level, while using smaller representations.

As it was already mentioned in Section 1, the proposed
approach can be combined with trainable feature extrac-
tors instead of using hand-crafted feature extractors (e.g.,
SIFT). The evaluation results using feature vectors extracted
from the last convolutional layer of a pre-trained VGG-16
network [4], are shown in Table 5. The CNN was trained
using the Places365 dataset [4]. As before, the RN-BoF
method leads to significant precision improvements, while
reducing the size of the extracted representation over all
the other evaluated techniques. Also, using convolutional
features allows for achieving higher precision than using

TABLE 4: 15-scene Evaluation Results

Method NK Representation Size mAP (%)
FPLBP - 2816 (5632 bytes) 16.92± 0.13
TPLBP - 45056 (90112 bytes) 29.71± 0.10
VLAD 16 2048 (4096 bytes) 27.60± 0.18
VLAD 64 8192 (16384 bytes) 28.07± 0.36
BoF 16 64 (128 bytes) 26.78± 0.29
BoF 64 256 (512 bytes) 27.85± 0.19
BoF 1024 4096 (8192 bytes) 28.21± 0.21
BoF 4096 16384 (32768 bytes) 27.26± 0.17
EO-BoW 16 64 (128 bytes) 35.79± 0.22
EO-BoW 32 128 (256 bytes) 36.83± 0.46
RN-BoF 8 8 (16 bytes) 35.63± 1.52
RN-BoF 16 16 (32 bytes) 41.32± 0.72
RN-BoF 64 32 (64 bytes) 46.71± 0.39

TABLE 5: 15-scene Evaluation Results (CNN features)

Method NK Representation Size mAP (%)
BoF 16 64 (128 bytes) 35.73± 0.91
BoF 1024 4096 (8192 bytes) 32.88± 0.67
EO-BoW 16 64 (128 bytes) 38.76± 0.63
RN-BoF 16 16 (32 bytes) 65.12± 0.79

SIFT features (Table 4). Fine-tuning the convolutional layers
by back-propagating the gradients from the RN-BoF layer is
expected to further increase the retrieval precision.

4.5 MIT67 Evaluation

The evaluation results for the MIT67 are shown in Table 6.
Similarly to the 15-scene dataset the mAP peaks for the
BoF representation when 1024 codewords are used. The
RN-BoF outperforms all the other evaluated methods using
smaller representations. The representation size is reduced
4 times (when the method is compared to the EO-BoW) to
128 times (when compared to the BoF method). The same
behavior is observed in the precision-recall and precision-
scope curves shown in Figures 5d and 5h. Although the
differences between the EO-BoW and the RN-BoF methods
are clear in the precision-recall curves, they achieve almost
the same precision for the top-20 results. However the RN-
BoF method uses smaller representations than the EO-BoW
method.

TABLE 6: MIT67 Evaluation Results

Method NK Representation Size mAP (%)
FPLBP - 2816 (5632 bytes) 3.14± 0.06
TPLBP - 45056 (90112 bytes) 5.01± 0.08
VLAD 16 2048 (4096 bytes) 5.80± 0.03
VLAD 64 8192 (16384 bytes) 5.96± 0.09
BoF 16 64 (128 bytes) 4.89± 0.11
BoF 64 256 (512 bytes) 5.75± 0.14
BoF 1024 4096 (81 bytes) 6.04± 0.23
BoF 4096 16384 (32768 bytes) 5.49± 0.13
EO-BoW 16 64 (128 bytes) 6.46± 0.13
EO-BoW 32 128 (256 bytes) 6.63± 0.12
EO-BoW 64 256 (512 bytes) 6.64± 0.21
RN-BoF 64 32 (64 bytes) 6.42± 0.17
RN-BoF 64 64 (128 bytes) 6.80± 0.22
RN-BoF 64 128 (256 bytes) 6.94± 0.24
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Fig. 5: Precision-recall and precision-scope curves for the ORL, Yale B, 15-scene and MIT67 datasets

4.6 YouTube Faces Evaluation

The evaluation results for the YouTube Faces dataset are
shown in Table 7. The train time refers to the time needed
for learning the dictionary using k-means and the time spent
for the supervised optimization of the representation (only
for the EO-BoW and the RN-BoF methods). The encoding
time refers to the mean time needed for encoding one
image using the learned dictionary, while the retrieval time
to the mean time spend for querying the database. Since
the CSLBP and the FPLBP descriptors are pre-calculated
no train and encoding time are reported [53]. A six-core
workstation was used for all the conducted experiments.
Although the train/query times are reported only for this
dataset they follow the same trend for the other datasets
when the methods are used with the same setup, i.e., the
same number of codewords and representation size.

Several interesting conclusions can be drawn from the
results reported in Table 7. First, the training time is highly
dependent on the number of used codewords. When more
than 1024 codewords are used learning an unsupervised
dictionary using k-means requires more time than both
initializing and optimizing a smaller supervised dictionary
that performs better than the larger unsupervised dictio-
nary. Therefore, even though the supervised optimization
requires an extra offline training step it can reduce the
total training time by using smaller codebooks. The encod-
ing time also depends on the size of the used codebook,
although for codebooks smaller than 64 the differences
are very small. The same is also true for the retrieval
time when the representation size is kept under a certain
threshold (1000 bytes). However, for larger codebooks and
larger representations there is a measurable performance
penalty. Note that for retrieving the relevant images simple
sequential scan was used. All the methods can be combined
with approximate nearest neighbors search and hashing
techniques to further reduce the retrieval time.

Regarding the retrieval precision, the RN-BoF signifi-
cantly outperforms all the other method, achieving a mAP

of 46.58%, using 8 times smaller representation than the
second best performing method (EO-BoW). Note that a
relatively small number of SIFT feature vectors are extracted
from each image due to resizing each image to 250x250
pixels and then cropping the 25% of its margins. This seems
to affect only the BoF method that overfits the representation
when more than 64x4=256 codewords are used. If more
computational resources are available, then more feature
vectors can be extracted from each image improving the
performance of all the evaluated methods.

The precision-recall and the precision-scope curves are
shown in Figure 6, where an interesting phenomenon is
observed. Although the proposed RN-BoF method achieves
the highest precision for any recall level greater than 0.15,
there are other methods that achieve slightly higher preci-
sion for the first 200 results. This behavior can be explained
if the nature of the used dataset is considered. The Youtube
Faces dataset contains a large number of similar frames
for each person, since multiple sequential frames were
extracted from each video. If a method captures irrelevant
frame information, e.g., the background, it will manage to
achieve very high precision for the first results, since all
the frames of the corresponding video will be retrieved.
However, it will fail to retrieve frames from other videos
where the same person appears, since it encoded only the
information that relates each frame to its video. The RN-
BoF method achieves slightly lower precision for the top
results, but manages to retrieve different videos in which
each person appears. This also highlights the differences
between a retrieval-oriented and a classification-oriented
representation (the top-1 precision is actually the 1-nn classi-
fication accuracy). Therefore, a representation might be able
to achieve high classification accuracy, but fail to retrieve
enough objects that belong to the same class.

4.7 Parameter Evaluation
The proposed method is relatively stable with regard to its
hyperparameters. The scaling factors for the RBF neurons
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TABLE 7: YouTube Faces Evaluation Results

Method NK Representation Size Train Time Encoding Time Retrieval Time mAP (%)
CSLBP - 480 (960 bytes) N/A N/A 9.7s 40.26± 1.06
FPLBP - 560 (1120 bytes) N/A N/A 9.9 s 37.96± 0.69
VLAD 16 2048 (4096 bytes) 0.8 m 0.023 s 10.4 s 37.36± 1.14
VLAD 64 8192 (16384 bytes) 1.4 m 0.024 s 11.0 s 39.31± 1.24
BoF 16 64 (128 bytes) 2.3 m 0.017 s 9.8 s 37.31± 1.22
BoF 64 256 (512 bytes) 5.6 s 0.021 s 9.8 s 40.49± 1.00
BoF 1024 4096 (81 bytes) 58.0 m 0.059 s 10.3 s 39.09± 0.93
BoF 4096 16384 (32768 bytes) 136.6 m 0.223 s 12.0 s 38.45± 0.88
EO-BoW 16 64 (128 bytes) 2.4 m + 9.8 m 0.017 s 9.8 s 42.81± 1.07
EO-BoW 32 128 (256 bytes) 3.4 m + 15.7 m 0.018 s 9.8 s 42.57± 1.57
EO-BoW 64 256 (512 bytes) 5.5 m + 44.0 m 0.020 s 9.8 s 42.92± 0.99
RN-BoF 16 16 (32 bytes) 2.4 m + 8.5 m 0.017 s 9.8 s 37.05± 1.63
RN-BoF 64 32 (64 bytes) 5.5 m + 43.7 m 0.020 s 9.8 s 46.58± 2.21
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Fig. 6: Precision-recall and precision-scope curves for the
YouTube Faces dataset

are learned using back-propagation, while the entropy pa-
rameter m is set to 0.01. For all the conducted experiments
in this Subsection, three small-scale datasets (ORL, Yale B
and 15-scene) are used. n Figure 8 the effect of the used
spatial segmentation scheme is evaluated using the regular
BoF model . The grid layout refers to the number of hor-
izontal and vertical regions used for the segmentation of
each image (as described in Section 3 and shown in Figure
2). Using schemes that are symmetrical around the vertical
axis, i.e., 4x1 and 4x2, increases the retrieval precision over
the corresponding schemes are symmetrical around the
horizontal axis, i.e., 1x4 and 2x4. This is expected since the
vertical axis carries more useful spatial information than
the horizontal one. For example, the sky is almost always
expected to be on the upper part of image, while a tree
might be in any of the left/center/right parts of an image.
Thus, not using vertical segmentation is expected to increase
the spatial invariance of the method (e.g., a tree can be
located in any vertical region). Indeed, for both the ORL and
the 15-scene datasets, using only horizontal segmentation
yields the best retrieval precision. For the Yale B dataset,
the 4x4 grid leads to slightly better retrieval precision than
the 4x1 grid. This can be attributed to the fact that non-
symmetries in a face, e.g., a mole in the left part of the face,
can sometimes help increase the retrieval precision.

5 CONCLUSIONS

In this paper the well-known BoF model was generalized
and a neural extension, called RN-BoF, capable of work-
ing efficiently in a large scale setting, was proposed. The
RN-BoF method is able to decouple the final representation
size from the number of used codewords and allows for

better modeling the input distribution using a separate
trainable scaling factor for each RBF neuron. The RN-BoF
can be trained with regular back-propagation and com-
bined with retrieval-oriented loss functions, such as entropy
[28]. Through extensive experiments on five datasets it
was demonstrated that RN-BoF is able to a) increase the
object encoding and retrieval speed, b) reduce the extracted
representation size, and c) increase the retrieval precision
over the competitive state-of-the-art methods. The proposed
method is also combined with a symmetry-aware spatial
segmentation scheme to further reduce the encoding time
and the storage requirements.

The proposed method provides a neural framework that
can be easily extended. First, the proposed approach can
be combined with Convolutional Neural Networks (CNNs)
[6]. That way, the gradients can back-propagate to the con-
volutional layers, allowing the resulting deep architecture to
be further fined-tuned toward extracting retrieval-oriented
representations. Also, existing hashing and approximate
nearest neighbor techniques can be combined with the pro-
posed approach to increase retrieval performance even more
[9], [10]. Furthermore, a trainable hashing layer [11], can
be used after the fully connected layer to jointly optimize
both the RN-BoF and the hashing layer using the entropy
objective. Finally, note that the proposed neural formulation
allows the RN-BoF model to be combined with Extreme
Learning techniques, e.g., [34], [35], to reduce the training
time of the proposed algorithm.

APPENDIX A
RN-BOF DERIVATIVES

The RN-BoF derivatives used for the gradient descent algo-
rithm are derived in this Section. The required derivatives
are calculated as follows:

∂E

∂[W]iκ
=

N∑
l=1

NR∑
κ=1

∂E

∂[tl]κ

∂[tl]κ
∂[W]iκ

(14)

∂E

∂vm
=

N∑
l=1

NR∑
κ=1

NK∑
µ=1

∂E

∂[tl]κ

∂[tl]κ
∂[sl]µ

∂[sl]µ
∂vm

(15)
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∂σm
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∂[tl]κ

∂[tl]κ
∂[sl]µ

∂[sl]µ
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TABLE 8: Grid Layout

Dataset 1 x 1 grid 4 x 1 grid 1 x 4 grid 4 x 2 grid 2 x 4 grid 2 x 2 grid 4 x 4 grid
ORL dataset 79.52± 1.27 88.52± 0.44 76.21± 0.82 85.02± 0.46 78.46± 0.60 82.58± 0.98 80.60± 0.85
Yale B dataset 13.03± 0.12 20.63± 0.10 15.16± 0.09 19.78± 0.16 18.23± 0.20 16.09± 0.12 21.86± 0.11
15-scene dataset 24.86± 0.24 26.36± 0.17 24.70± 0.19 25.43± 0.17 24.88± 0.21 24.85± 0.29 25.34± 0.19

Easily it can derived (see [28]) that ∂E
∂[tl]κ

=

− 1
N

∑NT
k=1

∑NC
j=1 log pjkπlj

∂[wl]k
∂[tl]κ

, where ∂[wl]k
∂[tl]κ

=

− [wl]k
m ( [tl]κ−[ck]κ

||tl−ck||2 −
∑NT
k′=1[wl]k′

[tl]κ−[ck′ ]κ
||tl−ck′ ||2

).
Note that when a cluster center (ck) and an object (tl)

coincide this derivative does not exist. When that happens,
the corresponding derivatives are zeroed. This is also true
the derivatives calculated in Equations (15) and (21). The
rest of the derivatives are derived as:
∂[tl]κ
∂[W]iκ

= r([WT ]Tκ sl)[sl]i,
∂[tl]κ
∂[sl]µ

= r([WT ]Tκ sl)[W]µκ

(17)
where r(x) is 0 if x ≤ 0 and 1 otherwise.

Similar to the BoW definition, the following quantity is
defined to simplify the calculations:

[dij ]k = exp(−||(xij − vk)||2/σk) (18)

Using equation (18), the output of the RBF layer is expressed
as [φ(xij)]k =

[dij ]k
||dij ||1 . The derivatives are calculated as:

∂[sl]µ
∂vm

= 1
Nl

∑Nl
j=1

∂[φ(xlj)]µ
∂vm

= 1
Nl

∑Nl
j=1

∂[φ(xlj)]µ
∂[dlj ]m

∂[dlj ]m
∂vm

,
where Nl is the number of feature vectors extracted from
the l-th object, ∂[φ(xlj)]µ

∂[dlj ]m
=

δµm
||dlj ||1 −

[dlj ]µ
||dlj ||21

and ∂[dlj ]m
∂vm

=
[dlj ]m
σm

xlj−vm
||(xlj−vm)||2 . The Kronecker delta function used in the

equations above is defined as δkm = 1, if m = k, and 0
otherwise.

Similarly, for the derivative of the scaling factors:

(19)
∂[sl]µ
∂σm

=
1

Nl

Nl∑
j=1

∂[φ(xlj)]µ
∂[dlj ]m

∂[dlj ]m
∂σm

where ∂[dlj ]m
∂σm

=
[dlj ]m
σ2
m
||(xlj−vm)||2. Finally, the derivative

for adjusting the entropy centers is calculated as:

∂E

∂cm
= − 1

N

NT∑
k=1

NC∑
j=1

log
hjk
nk

∂hjk
∂cm

(20)

where

(21)
∂hjk
∂cm

=
1

m

N∑
i=1

πij [wi]m(δkm − [wi]k)
ti − cm
||ti − cm||2
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[44] Y. Kuang, M. Byröd, and K. Åström, “Supervised feature quanti-
zation with entropy optimization,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops (ICCV Workshops),
2011, pp. 1386–1393.
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