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Abstract—In this paper, the Semi-Supervised Subclass Support
Vector Data Description is presented, a method that operates in
both the supervised and the semi-supervised One-class classi-
fication case. The proposed method consists a novel extension
of the standard SVDD method, by introducing two additional
terms its optimization problem. These two terms correspond to
expressing global and local geometric data information respec-
tively, during the classifier optimization process. Global geometric
data information is employed by minimizing the global target
class variance, assuming that subclasses may have been formed
within as well. In addition, by exploiting the semi-supervised
learning smoothness assumption, local neighborhood information
between all available (labeled and unlabeled) data is preserved,
even in the supervised learning case. We show that the adoption
of both terms results in a regularized feature space, where low
variance directions have been emphasized, while local geometric
data information have been preserved. The proposed method
has been evaluated in classification problems related to face
recognition, human action recognition and generic One-class
classification problems, comparing favorably against related One-
class classification methods in both the semi-supervised and the
supervised learning cases.

Index Terms—One-class classification, Support Vector Data
Description, Semi-supervised SVDD, Subclass SVDD, S’SVDD

I. INTRODUCTION

One-class classification (OCC) involves only a single class,
the so-called target class, which must be distinguished from
the rest of the world. It is commonly employed when sampling
for different classes (negative examples) is difficult, expensive
or even impossible, providing invaluable applications in failure
detection tasks, medical diagnosis, mobile fraud detection [1].
It have also been applied to hyperspectral image classification
[2], image segmentation [3], face authentication [4] video sum-
marization [5], human action recognition and face recognition
[6], [7], [8]. One of the most successful OCC methods is the
Support Vector Data Description (SVDD) classifier [9].

The SVDD training phase determines the minimum bound-
ing hypersphere which encloses the labeled examples of the
target class. Test patterns that fall inside this hypersphere
are classified to the target class, or are considered as out-
liers, otherwise. Over the years, many SVDD extensions
have been proposed to increase training/test speed [10], [11],
improve classification accuracy [6], [8], [12] and perform
semi-supervised learning [13], [14]. For example, SVDD have
been extended in order to automatically determine optimized
Gaussian kernel parameters (i.e., the sigma) [10], or employ
fuzzy rough feature sets [15]. A training approach that obtains

a solution in a regularized space, resembling a hyperellipsoid
in the input space, can be obtained by employing the whitening
transform in the training data [5], [12], [16], [17]. Moreover, as
in every Support Vector based classification method, removing
the non-support vectors from the training set would not affect
the final SVDD classification model, as highlighted in [18].
A method that allows fast SVDD testing was presented in
[11], where the authors propose the calculation of feature
vector preimages, in order to apply the relationships between
this feature vector and the SVDD hypersphere center to re-
expresses the center with a single vector, rather than as a linear
combination of the support vectors. Recently, SVDD has been
extended in the context of semi-supervised learning [19], by
employing relationships between labeled and unlabeled train-
ing patterns, expressed with Nearest Neighbourhood (kNN)
graph structures, in order to learn the optimal hypersphere in
a regularized space, where locality information is preserved
[2], [20].

Despite the important advancements of OCC methods over
the past years, particular characteristics commonly being ex-
ploited by state-of-the-art image and video multiclass classifi-
cation methods [21], [22], [23], [24], are yet to be examined in
the OCC case. Such particular characteristics include modeling
and recognizing innate diverse classes, such as recognizing
crowd scenes, action recognition in scenes shot using differ-
ent settings (e.g., illumination changes, indoor and outdoor
scenes), by addressing each diversion within a class as a
different subclass. Thereby, within-class class dispersion is
minimized by exploiting subclass information that has been
extracted by employing e.g., an additional unsupervised step.
Moreover, there are cases where the labeled data only represent
a subset of all the data available to train the classifer. To
each respective end, methods exploiting subclass information
[8] and methods exploiting unlabeled data [19] have been
devised. However, none of the available OCC methods is
able to combine semi-supervised classification and subclass
information at the same time.

In this paper, the Semi-Supervised Subclass Support Vec-
tor Data Description (S3SVDD) is presented, a method that
operates in both the supervised and the semi-supervised One-
class classification case. The proposed method consists a novel
extension of the standard SVDD method, by introducing two
additional terms its optimization problem. These two terms
correspond to expressing global and local geometric data infor-
mation respectively, during the classifier optimization process.
Global geometric data information is employed by minimizing



the global target class variance, assuming that subclasses may
have been formed within as well. In addition, by exploiting
the semi-supervised learning smoothness assumption, local
neighborhood information between all available (labeled and
unlabeled) data is preserved, even in the supervised learning
case. We show that the adoption of both terms results in a
regularized feature space, where low variance directions have
been emphasized, while local geometric data information have
been preserved. The proposed method has been evaluated in
classification problems related to face recognition, human ac-
tion recognition and generic One-class classification problems,
comparing favorably against related One-class classification
methods in both the semi-supervised and the supervised learn-
ing cases.

The rest of the paper is structured as follows. in Section
II, we review the related work in SVDD based classification,
i.e., the standard SVDD [9] and the Subclass SVDD [8]
methods. The proposed method is detailed in Section III.
Experiments for evaluating the performance of the proposed
method for both supervised and semi-supervised classification
are provided in Section IV. Finally, conclusions are drawn in
Section V.

II. RELATED WORK

In this section, we present the preliminaries required to
introduce the proposed method. We consider the supervised
classification case, where the labeled D —dimensional feature
vectors x; € RP i =1,..., N originate from a target single
class and are, therefore, employed to train the classifiers. The
Standard SVDD [9] classifier is briefly described in Subsection
II-A. In Subsection II-B, we describe the Subclass SVDD [8],
which features one of the core regularization terms of the
proposed method.

A. Support Vector Data Description

The standard SVDD method [9] aims at generating a
hypersphere, having center a € RP and radius R, which
encloses the target class training vectors x;,¢ = 1,..., N.
The primal SVDD optimization problem is defined as follows

[9]:

N
Mlnfgzze: R? +C;§i Q)
subject to : ||lz; — al|? < R? + &,
& >0, i=1,...,N,
where &, ¢ = 1,..., N are the slack variables and ¢ > 0

is a free parameter that allows some training error (i.e., soft
margin formulation), in order to increase the generalization
performance. The equivalent dual-Wolf optimization problem
is given by minimizing:

N N N
L= vale-> Y vz =, 2
=1

i=1j=1

subject to :
N

0<yi<e » wm=1, 3)
i=1

where ~; is the Lagrange multiplier corresponding to each
constraint of the primal SVDD optimization problem (1). For
each training sample x; that satisfies the constraint &; = 0,
the corresponding Lagrange multiplier ; is equal to zero.
The optimal hypersphere center is a linear combination of the
Lagrange multipliers and the support vectors:

N
a=) ;. “
i=1

The hypersphere radius is the distance R of the hyperpshere
center to the boundary. The radius can be calculated by using
any of the support vectors x; whose coefficient satisfies v; >
0, excluding items that fall outside of the description [9] (i.e.,
the support vectors whose coefficient are v; = c), as follows:

R? = ||z}, — al*. (5)

By expressing the center a in terms of support vectors, the
radius can be obtained as follows:

N N N
R? = a;fa:k — Z’yiazika — Z Z ’yi'yja:iTa:j. (6)
i=1 i=1 j=1
By observing (6), the hypersphere radius is expressed in
a dot product form. In order to determine solutions in fea-
ture spaces of increased dimensionality, dot products can be
replaced with kernel products. The kernel products represent
data similarity in a feature space JF, with a kernel function
k(i x;) = d(x;) T d(x;), where ¢(+) : RP s F is a (usually
nonlinear) function which maps the training data from the
input space to the feature space, e.g., the polynomial or the
Radial Basis Function (RBF) function.
Finally, a given test sample € R is classified to the
target class if it satisfies the following inequality:

N N N
H($,$)*2Z’Y¢FL(.’B,$1‘)+ZZ’y{yjlﬁ?(wi,w]’) < R% (7)
i=1

i=1 j=1

B. SVDD exploiting subclass information

In the case where the target class covariance matrix is
not the unity matrix, or when the class has subclasses, the
hypersphere generated by the standard SVDD, might be sub-
optimal. A recently proposed extension of the SVDD, namely
the Subclass SVDD [8], handles this case by minimizing
the dispersion of the training data with respect to subclass
information. Subclasses can be determined in the input space
by applying the k—means algorithm, e.g., [25]. By considering
the case where s subclasses are formed within the target class,
the within class dispersion can be expressed with a matrix
S € RP*D a5 follows:

N s N .
S:ZZW]eg(mi—afj)(mi—CEj)T, (8)

i=1 j=1

where e{ is an index denoting that the training sample x;
belongs to the j—th subclass (i.e., ef = 1), and x; is the
average vector of the j—th subclass. The number of subclasses
s can either be set manually, based on previous knowledge
about the problem at hand, or be automatically determined as



an additional classifier hyper-parameter during the classifier
training process, by applying k-fold (e.g., 5—fold) cross-
validation on the training data. In order to incorporate subclass
information in the SVDD optimization process, the following
optimization problem have been proposed [8]:

N
Minimize: R* + ¢ i 9
inimi ;g )
subject to 1 (z; — a)” S7! (@, —a) < R+ ¢,

&>0, i=1,...,N,

where the description no longer represents a hypersphere,
but a hyperellipsoid with hyperellipsoid center a, R is the
Mahalanobis distance from the hyperellipsoid center, &; are the
slack variables and c is a trade-off parameter between training
error and generalization performance.

The above described optimization problem is equivalent to
the following dual optimization problem:

N N N
Minimize: Z xSl — Z Z%'ijis_le (10)
i i=1 i=1 j=1
N
subject to :0 < y; < c, Z% =1,
i=1

(1)

where ; are the support vector coefficients (i.e., Lagrange
multipliers) for each training sample x;. Values of v; > 0
denote that x; is a support vector. Here, it should be noted
that the parameter c can take any positive value. A value ¢ = 0,
eliminates the chance of convergence, since the constraints in
(11) will never be met. Moreover, setting any value ¢ > 1,
leads to the same solution for ¢ = 1, since the support vector
coefficients should satisfy Zf\il v; = 1. Thus, the parameter
¢ should be limited to values of (0, 1].

The primal variable a (i.e., the hyperellipsoid center) can
be recovered as follows:

a=S"1X~, (12)

where X = [z1,...,zy]7 is the datamatrix and v € RY is a
column vector whose ith column contains the support vector
coefficient v; of x;.

The primal variable R can be recovered from a support
vector xx whose coefficient satisfies 0 < v; < ¢, as follows:

R? = ||lxi — al® = [lz — ST X% (13)

In order to decide whether a test sample 2 € RP falls inside
the hyperellipsoid, the following decision value is obtained:

f(x)=R*— |z —al? (14)

where the test sample is classified to the target class when
f(x) > 0, or otherwise considered as outlier.

By expressing the primal variables in terms of support
vectors, using the equations (12) and (13), the following

solution is obtained:
f@) = |loy — ST XA — |z — ST XA (15)

In the cases where a mapping function ¢(-) has been
employed, the matrix S is defined the arbitrary dimensionality

space JF. Moreover, in the case where the feature space
dimensionality is higher than N, the matrix S is of rank
N, thus not invertible. To this end, a linear classifier can be
applied in a subspace determined by applying kernel PCA on
the training data [5], [12], [16], [17].

In Subclass SVDD [8], a two step approach is followed.
First, the matrix S is decomposed as follows:

k

1
S=@ |+ Y Njeje] | " =dM®",  (l6)
j=1
where e; ¢ RYN is a vector having elements e;; = 1, if

the training data x; belongs to the j—th subclass (having N;
elements), or zero otherwise, M € RV*¥ is the matrix that
encodes subclass information in a pairwise manner and the
matrix ® contains the training data representations in F, i.e.,
® = [p(m1),..., p(mN)]".

Next, a regularized version of S is employed, such that
S =S +rI, where r is a regularization parameter allowing
the matrix S to be invertible and I is an identity matrix of
appropriate dimensions. By exploiting the Woodbury identity,
the inverse of S is given by:

. 1. 1 1. \""
St=-1--% (M—l + K) @, a7
r r r
where K = ®T'® is the so-called kernel matrix. By employ-
ing (17) in (10), following function should be minimized:

S 1 Lo 1 Lo
L=> 1 ki — k[ (M 4 —K) T Ey ) -
1=1

32
1 1.+ 1 1
- ZZ%%‘ ;kij - ﬁki (M~ + ;K) kj ), (18)

where k;; = k(x;, ;) expresses data similarity in 7 between

x; and ; and k; is the i—th column of the kernel matrix K.
Function (18) is of the same form as the standard SVDD

optimization function (2), while using the modified kernel:

-1
1 1 1
IZJ((BZ‘,EEJ') = ;I{((Ei,wj)—ﬁk? (M_1 + rK) k] (19)

Finally, in order to decide whether a test sample = € RP
belongs to the training class, the standard SVDD solution (7)
can be employed, using the modified kernel found in (19).

III. S SVDD

In this section, we describe in detail the proposed method
and its properties. Consider a set X = {x;, ...,z N}, contain-
ing N = ¢+ w available data, from which ¢ are labeled and
u are unlabeled. In the OCC case, we expect that all labeled
data belong to the target class, while no information for the
unlabeled data is available.

We consider the case where a non-linear continuous function
#(-) : RP + F has been employed to all available data,
mapping them from the input space to the feature space F,
and the ith data representation is denoted as ¢; = o(x;).
Also let & € RI71*¢ be the matrix containing the labeled
data representations in F and ® € R1*N the corresponding



matrix containing labeled and unlabeled data mappings. Then,
K = &7® K c R’ denotes the kernel matrix between
the labeled data, while K = ®7®, K € RV*N denotes
the kernel matrix containing data similarity between all data
(labeled and unlabeled) and K = ®T®, denotes the N x ¢
matrix that contains data similarity of labeled data, with all
available data. Both K and K , are submatrices of K.

The mathematical formulation of the proposed S*SVDD
classifier is derived as follows. First, by following the basic
semi-supervised learning smoothness assumption, we expect
that items that fall close to each other, are more likely to
share the same label. According to data similarity, the outputs
of the decision function should be smooth on adjacent data.
To this end, we assume that a kNN graph G = {X, W} is
formed between all available data X' and W is the graph
weight matrix, whose elements W;; are initiated with a heat-
kernel function:

W = { exp (—w) . if @; is labeled and x; € A;
0, otherwise,

(20)
where o2 is the variance between the training data, which the
normal scaling factor of the distances between the training
samples, 7,7 = 1,...,N are the indices of labeled and
unlabeled data respectively and N; denotes if the element x;
is among the kNN neighbors of any labeled sample ;. We
discard the kNN data relationships between unlabeled data as
in [19], since we only require the solution to be supported by
labeled data. In all our experiments, we have fixed k = 5 since
such a value usually provides good results [26], limiting the
outliers regularizing the hyperellipsoid center.

Additionally, we require that the Subclass SVDD regulariza-
tion term to be expressed for the ¢ labeled examples (which
belong to the target class). In all our experiments, we have
fixed the number of subclasses to be s = 3, in order to
restrict the available parameters to be tuned and moreover,
it has shown to provide stable performance in our previous
work [5], [8] in supervised learning. Finally, by introducing
the two terms, the proposed optimization problem is formed
as follows:

Minimize: R? + ¢ i+c Wi 21
inimiz ;5 ij i(i=1)" @y
subject to : (¢; —a)” 87! (¢ —a) < R2+¢;,
& >0, 1=1,...,¢,

where &; > 0 are the slack variables, c is the standard SVDD
parameter, W;; contains data similarity between ¢; and ¢; (if
they belong to the same neighborhood, or zero otherwise), f;
is the output of the standard SVDD decision function defined
in (22) for ¢; and ¢/ > 0 is an additional parameter allowing
unlabeled data information to be incorporated in the Subclass
SVDD optimization problem. In the case where ¢ = 0,
the optimization problem degenerates to the Subclass SVDD
optimization problem (9). For the case where ¢ > 0, we would
like to simplify the third term of the optimization problem.

First, we consider the decision function for a training sample
x € RP, combined with a kernel function, as follows:

f(x) = R — |[¢(z) — al,

and the difference between the outputs of f; and f; for all
kernels that satisfy ¢/ ¢; = ¢] ¢p; = z,z constant for every
1,7 which is true for e.g., the RBF kernel, can be simplified
as follows [11]:

(22)

fi—fi=2(;—¢:)"a

Finally, we substitute the third term of the proposed optimiza-
tion problem with the following equal expression:

Z wij (f.

where L is the graph Laplacian matrix corresponding to the
graph weight matrix W and D = 4®7 L&.

The optimization problem defined in (21) can be solved by
finding the saddle points of the Lagrangian:

(23)

=4a"®"L®a = a" Da, (24)

N N
L=R’+c¢Y &+cda"Da-) Bigi—
i=1 i=1
N
Y (B rs-di-a)" ST (g —a), @9
i=1
where (3; and v; are Lagrange multipliers. By zeroing gradient

the gradients of the Lagrangian with respect to R,&; and a,
we obtain the following formula for the primal variable a:

a= (S +¢D) S @y (26)

Its detailed derivation is explained in Appendix A. The La-
grange multipliers (3; can be discarded, by demanding that
0 < 7v; < c. After derivations described in Appendix B, we
obtain the following optimization problem:

¢ ¢
Minimize: D Ly eyt
¢ ¢ ¢
Y vl S g + ) il ST o
i=1 j=1 i=1
27
subjectto : 0 < v; <e.

The S3SVDD optimization problem can be solved using
standard SVDD implementations [27], by employing a kernel
matrix! Q € R**? | having the following values:

TS 9;— @ (5D +8) ;.

Since we work in spaces of arbitrary dimensionality, we
require that both matrices S and D are invertible. Thus, we
employ their regularized versions, defined as

S=S+r1I and sz—i—mI,

q(xi, x;) = (28)

(29)

'Employing this kernel matrix essentially solves (27) by ignoring its
3rd term as in [9], which is constant for all kernels having the property
q&ZTS_lqﬁi = d, where d is a constant.



where r; and 7y are regularization parameters increasing
the ranks of the matrices, and I are identity matrices of
appropriate dimensions. Moreover, r; and re can tuned to
control the amount of regularization. In all our experiments,
we have employed values of 71 and 7o equal to 10!, where
l=-3,...,3

As proven in Appendix C, the kernel matrix @ is of the
following form:

Q=|al—p(M+p K ") MK

KT (f;l n 51&)71 K, (30

. N1
where L = (L‘1 + %K) + M| is a matrix that com-

bines global geometric information with local data relation-
ships (for every ry # 0), M € R¥*N is a matrix of the
same rank as M (described in Subsection II-B), being equal
to M in the positions of the labeled data, and having zeros
otherwise (i.e., in the positions of the unlabeled data) and for
notation simplicity, we employ the parameters «, 3, and 4§,

(1 e — 1 o — (r2#D(ra—1)

where o = - el ) ﬂ = Y= (rire+1)2 and

5 = wﬁ Finally, the decision value for a test vector
riT5+Trs

x € RP can be obtained through (7), replacing the kernel
matrix with Q.

The proposed method provides an extension of the Subclass
SVDD [8], in the context of semi-supervised learning. Global
within-class variance information about the labeled data, as
well as local neighborhood information pairwise relationships
between labeled and unlabeled data are incorporated in the
SVDD optimization process. The resulting hypershere center is
regularized by both terms. In the case where no unlabeled data
are available (i.e., the supervised learning case), the proposed
method has the effect of combining local and global geometric
data information described by the matrices M and L. For
the supervised learning case, and by ignoring local geometric
data information, the proposed S?SVDD method degenerates
to Subclass SVDD. Moreover, by assuming that no subclasses
are formed within the target class (i.e., s = 1), then the
matrix S becomes the standard within-class scatter matrix.
Thus, for a value of s = 1, when no unlabeled data are
available and when local geometric information is ignored,
the proposed method degenerates to Ellipsoid SVDD meth-
ods [16], [17]. Additionally, in the semi-supervised case, we
have implemented the smoothness assumption from a graph-
theoretic perspective. If the first term of the proposed method
is ignored, i.e, S = I, the proposed method degenerates to
Graph-based SVDD [19]. Thus, the methods described in [16],
[17], [19] can be considered as special cases of the proposed
method.

We demonstrate the regularization effects introduced by the
proposed method by using a 2D example, as depicted in Figure
1. In this example, although the set of labeled data belong
to a single class only, its items form two distinct subclasses.
Moreover, let us assume that there also exists a set of unlabeled
data, that fall very close to the labeled data. We have employed
the standard SVDD and the proposed method in this dataset,
in order to obtain the generated classification boundaries.

We evaluate the boundaries empirically, by examining two
different parameter settings cases. First, we determine the
parameters such that the boundaries generated by both SVDD
and the proposed method tightly enclose all training data,
as can be seen in Figures l.a and l.c, for standard SVDD
and the proposed method, respectively. Next, we depict the
classification boundaries using modified parameter settings,
such that the positive test space is expanded, as can be
seen for standard SVDD in Figure 1.b and the proposed
method in Figure 1.d,. We examine this case since this is a
commonly followed procedure, in order to increase a classifier
generalization performance. As be seen, when appropriate
parameter settings are employed (Figures 1.a and 1.c, a toy
2D dataset can be modeled well enough by both methods.
However, when trying to expand the positive classification
space, the boundaries generated by the proposed method, seem
to follow the data distribution more appropriately than the
ones generated by standard SVDD. This can be explained by
the additional regularization introduced by the two terms, and
the improved distribution modeling using the unlabeled data.
These properties are very important in realistic applications.

Finally, we discuss the parameters r; and r5 defined in (29),
which control the regularization effect. In practice, different
combinations of r; and r should be employed depending on
the application at hand and the target class distribution. That
is, the parameters r; and ro along with the standard SVDD
parameter ¢ should be optimally chosen, which increases
the training algorithm complexity. In our experiments, we
have employed cross-validation for determining the optimal
parameters 71 and ro from a set of predefined values, discussed
in the Section IV. However, no additional computational
complexity is introduced in the optimization process, other
than calculating the kernel matrix in (30), since standard
SVDD implementations are thereby employed.

IV. EXPERIMENTS

In this section, we describe the experiments conducted in
order to evaluate the performance of the proposed S?SVDD
classifier, in supervised and semi-supervised OCC problems.
For comparison reasons, we have also applied the standard
SVDD classifier [9], the Semi-Supervised One-class Support
Vector Machines classifier (S?0C-SVM) [2] and the Graph-
based SVDD (S2SVDD) [19]. We refer to the competing
methods with their respective acronyms, hereafter.

For all methods, we have determined the optimal set of
parameters using a cross-validation procedure, by applying
grid search on a set of predefined values. The set of predefined
values was the same for all methods. Unless stated otherwise in
the following subsections, we have employed the RBF kernel
function and Euclidean distances, where the corresponding
scaling factor was equal to ¢ = {0.01,0.1,1,5,10,100}.
The regularization parameters r; and ry, along with the
corresponding regularization parameter r of S2SVDD and
S20C-SVM, were set equal to 10!, where | = —3,...,3.
The kNN graphs employed by the proposed method, S20OC-
SVM and S2SVDD were formed using (20), for k& = 5.
The SVDD parameter ¢ and the corresponding SVM pa-
rameter v, were determined from a set of values equal to
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Fig. 1: Red crosses represent positive labeled data, black crosses represent unlabeled data, circles represent support vectors.
The light color represent the classification space where the classifier desicion is positive (items in that space belong to the
target class), and dark color represent the negative decision (items in that space are classified as outliers). C1 denotes the use
of tight training data enclosure parameter settings. C2 presents the case of more loose boundaries that could be used in order
to alleviate overfitting, in order to improve generalization performance.

¢ = v = {0.001,0.01,0.05,0.1,...,0.9}, using a cross-
validation procedure.

Since we focus on video and image data classification ap-
plications, we have formed One-class classification problems,
related to Face Recognition and Human Action Recognition.
Moreover, in order to demonstrate the generic effectiveness of
the proposed method, we have also conducted experiments in
generic OCC problems. We have employed publicly available
datasets to this end. For datasets not providing training and
test splits, we have employed the 5—fold cross validation
procedure, i.e., we have split the datasets into 5 sets and for
each fold, we have employed 4 sets for training the classifiers
and 1 set for testing. The reported performance is the average
obtained performance for all folds. In all other cases, we have
employed the standard training and test partitions provided by
the dataset providers.

In order to apply the methods in the semi-supervised
learning scenario, we have followed an additional procedure.
We have used the labels of a randomly selected subset of the
training data, using a variable p € (0, 1], such that £ = pN,
where ¢ is the number of the labeled data and N is the
total number of all training data. Value of p = 1 denotes
the supervised OCC scenario (/ = ), while a value of
p = 0.2 suggests that only 20% of the employed training
data were labeled. In order to derive correct conclusions
for the performance of each method, we have repeated each
experiment (for each value of p) 5 times, and report the mean
performance and the corresponding standard deviation. Here
we should note that the exact same set of randomly selected
hidden labels of the training data were employed for all
competing methods. We should also note that, for the standard
SVDD case, unlabeled data information is not employed at all
in the training process.

In Subsections IV-A and IV-B, we describe in detail the
experiments conducted in face recognition and human ac-
tion recognition, respectively. Finally, experimental results in
generic OCC problems are described in Subsection I'V-C.

A. Experiments in Face Recognition

In our first set of experiments in face recognition, we have
employed the PubFig+LFW [28] dataset. This dataset consists

of 13, 002 facial images representing 83 individuals from Pub-
Fig83, divided into 2/3 training (8720 faces) and 1/3 testing
set (4,282 faces), as well as 12, 066 images representing over
5,000 faces which form the distractor set from LFW. For each
facial image, the extracted features include the Histogram of
Oriented Gradients (HOG), Local Binary Patterns (LBP) and
Gabor wavelet features. The extracted features were reduced to
2048 dimensions with Principal Component Analysis (PCA),
from which we only employed the first 1536 dimensions as
in [28]). In order to create balanced classification problems,
for each of the 83 individuals, we have employed the training
images for this class and tested on the respective test set of
this class, as well the first 500 images (fixed for each OCC
problem) from the distractor set. That is, each (of the 83) test
set consists of a number of test images expected to belong in
the target class, while the 500 from the distractor set should
not. This scenario represents the face authentication scenario
[4].

For evaluation metric in face recognition, we have employed
the g-mean metric [29], which is the geometric mean of the
recall and precision:

g = \/prec X rec,

which have been found to be suitable for binary classification
problems, especially when the data are imbalanced.
Experimental results in PubFig+LFW dataset are depicted
in Table 1. Bold values denote the maximum obtained perfor-
mance. We report the average g-mean metric obtained in each
of the 83 OCC problems. For the semi-supervised classifica-
tion scenario, since each experiment is repeated 5 times, we
report the average g-mean metric, as well as the standard cor-
responding deviation. By observing the experimental results,
it can be seen that the proposed S*SVDD method outperforms
the semi-supervised classification methods by a large extent.
A surprising fact in this dataset, is that the standard SVDD
outperformed the semi-supervised methods, although ANN
regularization is not employed at all in the SVDD case. This
can be explained by the fact that the distribution of the dataset
features, might lie in spaces where 5NN-based regularization
might not be optimal. On the other hand, the proposed method,
although it employs the same SNN regularization process,
alleviates overfitting by additionally employing the within-

3D



class covariance matrix in its optimization process. This is
even more visible in the supervised classification case.

In our second set of experiments, we have employed classic
face recognition datasets, i.e. the AR [30], Yale [31] and
ORL [32] datasets. The datasets contain 2600, and 2432
and 400 frontal facial images belonging to 100, 38 and 40
subjects, respectively. In order to image feature vectors, we
have resized the images to 40 x 30 pixels and employed the
pixel luminance to produce a D = 1200 dimensional vector
for each facial image. Since no standard experimental protocol
is defined on these datasets, we have performed a cross-
validation procedure. That is, we have performed data splits
resulting into 5 sets. We have employed 4 sets for training
the classifiers and left the 1 set for testing purposes. We have
repeated the procedure 5 times (for each test set) and report
the average performance obtained.

Experimental Results are depicted in Table II. The reported
performance was obtained in a similar fashion to the Pub-
Fig+LFW case. In the ORL case, values of p < 0.5 are
not reported, since the remaining labeled examples for each
class are too few, thus no statistically important results can
be obtained. The proposed method outperforms the com-
petition in most supervised classification cases. The semi-
supervised methods outperformed the standard SVDD, unlike
the PubFig+LFW case. Since the employed feature vectors
contain essentially the pixel luminance information, which
may not be as discriminating as the features employed in
the PubFig+LFW scenario, the classification power of semi-
supervised methods is enhanced by adopting the additional
criteria in their optimization process.

In our third set of experiments, we have performed ex-
periments in AR, Yale and ORL datasets for the supervised
learning case, only using augmented feature vectors, in order
to include subclass information in all competing methods. To
this end, we have created an alternative data representation
y € RP, by employing the following approach. First, we have
determined 3 subclasses in the input space using k—means, in
exactly the same way as they are calculated for the proposed
S3SVDD. Next, contrary to the proposed method, we have
calculated the matrix S explicitly (in the input space), using
equation (8). Then, we calculated a transformation, such that
Y = WX, where WIW = S~! and X includes all the
(labeled) training data. We have calculated W in a similar
manner as in calculating the whitening transform, i.e., by
performing eigenanalysis of S, since S is in essence a mod-
ified version of the standard within-class covariance matrix.
Therefore, the augmented datamatrix Y includes subclass
information. Finally, we have employed Y instead of X in
the all competing methods.

Experimental results are shown in Table III. As can be
seen, subclass information employed in the feature vectors,
affected the performance of the competing methods in a
similar fashion. There was an overall increase of performance
among the ORL and Yale datasets, and an overall decrease
in the AR dataset. Moreover, there was no significant change
in the performance rankings. Experimental results denote that
subclass information extracted in the input space, is not carried
optimally to the feature space, when it is introduced as a

feature. This can be explained by the fact that by using this
approach, subclass information is separated from the classifier
optimization process. Moreover, the combination of local and
global data relationships, has different regularization effects in
the feature space than employing only local data relationships,
regardless of having subclass information in the input space or
not. Therefore, our approach of combining such information
in the feature space is superior.

Finally, in our fourth set of experiments in face recognition,
we have employed two additional datasets, namely the Caltech
Faces [33] and Georgia Tech face database [34]. We have
determined the performance of the competing methods in the
supervised learning case, using features extracted by a deep
neural network architecture. To this end, we have employed the
VGG faces descriptor [35], i.e., we have performed a forward
pass to the network, and extracted the 4096-dimensional
features from the fc7 convolution layer, the final layer before
the classifier. With the specific features, we should note that
instead of Euclidean distances, we have employed cosine
distances in order to form the RBF kernel for this specific
experiments, since it is known that they work well with such
features. Experimental results are shown in Table III. The
proposed method outperformed the state-of-the-art in almost
our experiments in face recognition.

B. Experiments in Human Action Recognition

In our human action recognition experiments, we have
employed the i3DPost multi-view action database [36], the
IMPART Multi-modal/Multi-view Dataset [37], as well as the
Hollywood2 [38], Hollywood3D [39] and Olympic Sports
[40] publicly available datasets. The i3DPost dataset contains
512 segmented high-resolution (1080 x 1920 pixel) videos
depicting eight human actors performing eight activities. The
IMPART dataset was collected using a multi-camera outdoor
setup, which consists of 14 fixed cameras placed around
each person performing 12 actions. The Hollywood2 dataset
consists of 810 training and 884 test video segments, of 12
activities. Finally, the Hollywood3D dataset consists of 359
training and 307 test stereoscopic video segments depicting 14
actions. In our experiments, we have employed only the right
video channel. Finally the Olympic Sports dataset consists of
783 videos depicting athletes performing 16 sport activities,
which have been collected from YouTube and were annotated
using Amazon Mechanical Turk. In terms of performance
metrics for the human action recognition case, we report the
mean average precision (mAP), which is the standard metric
employed in Human Action recognition problems [22], [41],
[42].

In order to obtain vectorial video representations for each
video segment depicting each action, we have employed
the dense trajectory-based video description [41]. This video
description calculates five descriptor types, namely the His-
togram of Oriented Gradients, Histogram of Optical Flow, Mo-
tion Boundary Histogram along direction x, Motion Boundary
Histogram along direction y and the normalized trajectory
coordinates on the trajectories of densely-sampled video frame
interest points that are tracked for a number of consecutive



TABLE I: Average g-means and standard deviations within semi-supervised classification folds in PubFig+LFW dataset.

Algorithm/P SVDD S?20C-SVM S2SVDD S3SVDD
p=0.2 6544 £ 048 | 6535 £ 0.14 | 59.45 £ 0.18 || 70.78 £ 1.92
p=0.3 72.44 £ 0.51 | 64.90 + 0.13 | 58.35 + 0.49 || 74.64 + 0.35
p=0.5 7517 £ 022 | 64.24 £ 0.15 | 57.44 £ 022 || 72.62 £ 0.51
p=0.7 75.27 £ 0.11 | 63.93 & 0.07 | 57.44 + 0.20 || 73.31 & 0.84
Supervised 74.86 63.60 57.67 79.31

TABLE II: Average g-means rates and standard deviations within semi-supervised classification folds in various face recognition
datasets, using standard features.

Dataset AR
Algorithm/P SVDD S20C-SVM S2SVDD S3SVDD
p=0.2 55.67 £ 1.26 | 70.49 £+ 0.39 | 69.09 £ 0.44 || 59.08 £ 0.97
p=0.3 64.04 + 1.00 | 72.66 = 0.51 | 71.28 &+ 0.61 59.65 + 1.43
p=0.5 70.39 £ 0.59 | 74.96 + 0.41 | 74.06 £ 0.27 68.42 £+ 1.05
p=0.7 7244 + 046 | 7599 £+ 030 | 75.23 £ 0.41 73.13 + 1.06
Supervised 74.20 77.16 76.42 76.95
Dataset YALE
Algorithm/P SVDD SZOC-SVM SZSVDD S3SVDD
p=0.2 62.18 + 0.75 | 69.76 = 0.51 | 66.05 + 0.53 59.64 + 1.50
p=0.3 64.20 + 0.55 | 70.89 £+ 0.42 | 67.51 £0.42 || 62.10 £ 1.29
p=0.5 66.70 & 0.57 | 71.98 £+ 0.47 | 69.48 £ 0.41 65.23 + 1.35
p=0.7 67.74 + 041 | 7247 £ 0.37 | 70.23 £ 0.36 || 70.81 £ 1.15
Supervised 69.00 73.22 71.09 79.91
Dataset ORL
Algorithm/P SVDD S20C-SVM S2SVDD S3SVDD
p=0.5 - 78.89 + 3.10 | 73.52 £ 2.29 90.52 + 1.94
p=0.7 - 83.46 &£ 4.79 | 79.71 £ 2.14 || 93.94 £ 2.06
Supervised 77.08 85.45 82.34 96.86
TABLE III: Average g-means rates in Face Recognition datasets, using advanced features, in the supervised learning case.
Feature type Subclass info VGG fc7
Algorithm/Dataset AR Yale ORL | Caltech | Georgiatech
SVDD 68.94 | 70.48 | 92.24 64.95 65.10
S20C-SVM 75.01 | 78.55 | 95.40 94.46 93.24
S2SVDD 73.11 | 76.36 | 94.54 91.92 90.68
S3SVDD 77.20 | 76.25 | 97.37 99.93 99.99

video frames (7 frames are used in our experiments). We have
employed these video segment descriptors in order to obtain
five video segment representations by using the Bag-of-Words
model [22], and combined them with kernel methods using a
late fusion approach [43], i.e.,:

x4 — x4|2
k(X;, X;) = exp <—Cll ”Z%C%J”Z) . (32)
d

x¢ € RP is a video feature vector for d = 5 (number of
descriptor types) and o4 is a parameter scaling the Euclidean
distance between z¢ and x?.
In the i3DPost and IMPART datasets, we have employed
a 3-fold cross validation procedure, where we have split the
datasets in 3 mutually exclusive sets. Each set included videos
depicting all activities. We have employed the videos depicting
each distinct activity from two sets in order to train the
classifiers, and tested on the remaining one. This procedure
was repeated for all activities, and repeated 3 times for each
fold. In the Hollywood2, Hollywood 3D and Olympic Sports
datasets, we employed the standard training and test videos,

provided by the dataset providers [38], [39], [40].

In Table IV, we report the obtained mAP rates for each
dataset. That is, we have formed OCC classification problems,
where each classifier was trained using labeled examples from
a single class, as well as unlabeled examples from their 5NN
neighbors (except the standard SVDD case). As can be seen,
the proposed method provides enhanced performance in every
case for the semi-supervised classification cases. Moreover,
the proposed method outperformed the competitors in every
supervised classification case, and in some cases, by a large
margin. Moreover, it can be also seen that both S2SVDD
and S20C-SVM outperformed the standard SVDD. This was
also reported in our face recognition experiments, especially
when the VGG features were employed. In both cases, the
feature vectors employed were of high dimensionality and the
datamatrices in all cases where sparse. Thus, it can be assumed
that data were lying in manifold whose actual dimensionality
was lower, and this effect was described by the KNN term.
The proposed method was able to outperform the competition
because in addition to the kNN term, global within-subclass
variance was minimized at the same time. Thus, we conclude
that both local and global regularization terms have contributed



to the increased classification performance.

C. Experiments in Generic OCC problems

In our final set of experiments, we have evaluated the
performance in generic OCC problems, that are publicly
available in the UCI repository [44]. The corresponding OCC
versions were obtained from the Netherlands Pattern Recog-
nition Laboratory [27], which have been modified to include
binary labels only. Since no specific train and test data are
predefined by the dataset providers, we have performed the 5-
fold cross validation procedure. For each fold, we kept 80% for
training purposes and 20% for testing. In order to implement
the semi-supervised scenario, we have followed the procedure
described in the beginning of Section IV. We note that for
semi-supervised methods, we have employed both labeled and
unlabeled training data, except for the standard SVDD case,
where we only used the positive labeled ones.

In Table V, we report the obtained mAP rates for all
competing methods. The proposed method outperformed the
competition in amost every case. Additionally, it can be seen
that the standard SVDD outperformed the semi-supervised
learning methods in almost every case. By combining both
facts, it can be explained that local geometric data relationships
between £ = 5 neighboring data did not contribute in a
positive manner in regularizing the obtained classification
space, and based on our insights, a different value of neighbors
may did have a positive effect in the obtained results, e.g.,
k = 10, 15. However, the same value of £ = 5 was used for
the proposed method as well, where it was shown that it still
outperformed the standard SVDD and alleviated the negative
effects by exploiting subclass information.

V. CONCLUSION

In this paper, we have described a novel semi-supervised
OCC method based on SVDD, that is regularized by two
additional terms, combing global and local geometric data
relationships. Our experiments indicated that there are cases,
where either or both of of the additional terms contribute to
derive the classification space, where enhanced classification
performance is obtained. Therefore, the proposed method is
superior to existing OCC methods in both the semi-supervised
and the supervised learning case as well.

Future work could include applications or extensions in
different classification problems and methods. Moreover, since
we have proven that exploiting two regularization parameters
at the same time for the SVDD case is beneficial, adding even
more regularization terms describing different properties of the
data, could be promising. However, we should note that every
additional regularization term usually requires optimizing an
additional hyperparameter. To this end, methods automatically
determining the optimal parameters settings would be an-
other research direction. Finally, the proposed method exploits
spaces that have been explicitely estimated using transforma-
tion on a standard RBF kernel matrix. Estimating this space
directly with a continuous piece-wise mapping function, i.e.,
novel kernel functions perhaps based on deep learning, could
be promising.
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APPENDIX A
DERIVING THE S® SVDD HYPERSPHERE CENTER

For easier derivative calculation, we employ a vector be
defined as w = S~ za, where a is the actual hypersphere
center. In addition, by employing u in equation (24), the
proposed S?SVDD optimization problem takes the following
form:

‘
Minimize: R? + ¢ Z & +duTS:DSTu  (33)
Ragisu i—=1

Subject to : ||S™2ep; — ul|2 < R? + &,
5120, Z':1,...,€7

which can be solved by finding the saddle points of the
Lagrangian:

N N
L=R+ cz& +uTS:DS%u — Zﬁlgi_

=1 i=1

N
> W <R2+€i— HS_%d)i_u”2)7 (34)
i=1
leading to the following optimality conditions:
N
9L
= — i =1, 35
g =0= ;v (35)
9L
1951_—0:61'—0_%’» (36)

Condition (36) can always be met if we demand 0 < ; < ¢,
thus the Lagrange multipliers (3; can be discarded. Finally, by
zeroing the gradient of L with respect to u, we obtain:

9L
Ju
= 2082 DS u+2u =28 2 Hy =
= SDS?*u+ S*u = by =
=dSDa+a=®y =

=dDa+ S 'la=S"'1®y=>
=a=(S"+ C/D)71 S~ 1@,

=0=

(37

which is the S3SVDD hypersphere center.



TABLE IV: Mean Average Precision and standard deviation within semi-supervised classification folds in Human Action

Recognition Datasets.

Dataset 13DPost
Algorithm/P SVDD S20C-SVM S2SVDD S3SVDD
p=0.2 75.14 £ 1.48 | 81.25 £ 0.68 | 80.30 + 0.58 || 84.21 £ 0.59
p=0.3 77.60 + 1.11 | 82.57 + 0.60 | 81.67 + 0.64 || 86.00 £ 0.66
p=0.5 80.58 £ 0.95 | 83.36 + 0.36 | 82.84 + 0.70 || 87.24 £+ 0.78
p=0.7 82.57 + 0.47 | 83.82 + 0.18 | 83.32 4+ 0.30 || 87.72 + 0.39
Supervised 83.78 84.11 83.70 88.93
Dataset IMPART
Algorithm/P SVDD S?20C-SVM S?2SVDD S3SVDD
p=0.2 5146 + 1.13 | 62.74 +0.52 | 61.46 £ 0.76 || 68.19 + 1.09
p=0.3 51.56 £ 0.58 | 62.64 + 0.67 | 61.07 &+ 0.70 || 69.80 £1.90
p=0.5 52.11 £ 0.65 | 62.81 £ 0.61 | 61.27 + 0.34 || 71.50 £ 1.69
p=0.7 53.15 +£ 0.64 | 62.76 + 0.31 | 61.27 + 0.24 || 71.28 +1.05
Supervised 53.44 62.94 61.24 72.44
Dataset Hollywood2
Algorithm/P SVDD S20C-SVM S2SVDD S3SVDD
p=0.2 26.29 £ 0.72 | 26.37 + 0.30 | 26.40 £+ 0.33 || 33.97 &+ 0.51
p=0.3 26.04 £ 0.63 | 26.63 £ 0.29 | 26.64 + 0.27 || 35.16 £ 1.20
p=0.5 26.08 + 0.78 | 26.45 4+ 0.31 | 26.50 + 0.28 || 35.72 £ 0.66
p=0.7 26.03 + 0.42 | 26.41 + 0.15 | 2645 £+ 0.09 || 35.51 + 1.29
Supervised 25.22 26.75 26.52 33.12
Dataset Hollywood3D
Algorithm/P SVDD S20C-SVM S2SVDD S3SVDD
p=0.2 24.65 £ 023 | 27.53 £ 0.17 | 27.41 £ 0.17 || 37.46 £ 1.79
p=0.3 24.19 £+ 045 | 27.36 + 0.21 | 27.58 + 0.25 || 37.67 &+ 0.54
p=0.5 2426 + 027 | 27.49 £ 0.19 | 27.54 £ 0.19 || 37.72 + 1.29
p=0.7 23.87 £ 026 | 27.37 £ 0.14 | 27.50 + 0.09 || 38.47 £+ 2.01
Supervised 23.38 27.44 27.64 38.47
Dataset Olympic Sports
Algorithm/P SVDD S20C-SVM S2SVDD S3SVDD
p=0.2 36.71 £ 2.14 | 4554 £ 023 | 44.97 + 045 || 62.48 £+ 1.50
p=0.3 35.82 £ 1.29 | 4585 £ 0.41 | 45.04 + 0.16 || 62.81 £+ 1.55
p=0.5 3575 £ 0.89 | 45.30 & 0.22 | 44.94 £+ 0.16 || 62.20 + 1.67
p=0.7 36.58 £ 0.92 | 4529 4+ 0.17 | 45.05 + 0.14 || 65.34 £+ 1.63
Supervised 36.89 44.98 44.99 66.84
APPENDIX B Let B =

DERIVATION OF THE LAGRANGIAN OF S® SVDD

S~! + ¢ D. By substituting (37) in (38), the
Lagrangian takes the following form:

After replacing (35), (36) in the Lagrangian function (34) i=1j=1
(using the hypershere center a instead of w), we obtain the ¢ S
following: + Z Vi ST ¢ =
i=1
¢ I
=Y nd ST =Y > vl ST BTS¢
i=1 i=1 j=1

L

L=ca"Da + Z%(Qsz - a)TS_l(d’i —a).

=1

(39
Moreover, by using the Woodbury identity:

(38) (S 4+¢D)' =S S(%D‘l +S)°lS, (40



Dataset Breast Malignant

Algorithm/P SVDD S20C-SVM S2SVDD S3SVDD
p=0.2 9849 £ 035 | 97.92 £ 0.09 | 97.94 £ 0.06 || 99.00 £ 0.14
p=0.3 98.48 + 0.27 | 97.97 £ 0.11 | 97.93 £ 0.09 || 99.11 & 0.22
p=0.5 98.62 + 0.22 | 97.95 £ 0.70 | 97.91 & 0.10 || 99.19 & 0.17
p=0.7 98.72 £ 0.17 | 97.97 £ 0.11 | 97.98 + 0.15 || 99.16 + 0.20
Supervised 98.71 97.95 97.95 99.16
Dataset Breast Benign

Algorithm/P SVDD S?20C-SVM S2SVDD S3SVDD
p=0.2 98.82 £ 0.28 | 98.80 £ 0.09 | 98.86 £ 0.04 || 99.23£ 0.19
p=0.3 98.83 + 0.29 | 98.82 4 0.07 | 98.85 £ 0.08 || 99.25 + 0.21
p=0.5 98.97 & 0.26 | 98.79 & 0.08 | 98.79 & 0.08 || 99.31 + 0.28
p=0.7 99.04 + 0.16 | 98.85 & 0.06 | 98.86 & 0.11 || 99.28 4 0.19
Supervised 99.02 98.80 98.80 99.07
Dataset Diabetes

Algorithm/P SVDD S?20C-SVM S2SVDD S3SVDD
p=02 67.82 £ 252 | 5278 £ 1.19 | 51.25 £ 1.34 || 66.27 £ 2.35
p=0.3 68.88 &= 3.01 | 52.89 & 1.17 | 52.22 4+ 1.52 || 66.84 + 1.81
p=0.5 69.18 + 1.20 | 5274 & 1.20 | 52.32 &+ 1.13 || 66.68 + 1.33
p=0.7 69.36 + 1.69 | 52.55 &+ 0.81 | 52.07 & 1.24 || 65.36 & 1.75
Supervised 68.91 52.04 52.66 65.94
Dataset Heart

Algorithm/P SVDD S20C-SVM S2SVDD S3SVDD
p=0.2 7822 £ 5.12 | 6501 £ 1.61 | 65.79 £ 1.56 || 78.32 £ 1.59
p=0.3 79.78 £ 4.56 | 65.01 & 1.01 | 65.88 & 1.44 || 80.80 + 1.77
p=0.5 80.78 4 2.24 | 64.43 £0.62 | 66.17 & 1.89 || 82.36 & 2.37
p=0.7 83.10 &= 2.82 | 64.12 4+ 045 | 65.63 + 0.56 || 82.70 + 1.19
Supervised 82.87 63.91 65.33 82.01
Dataset Liver

Algorithm/P SVDD S20C-SVM S2SVDD S3SVDD
p=02 7576 £3.99 | 7550 £ 0.83 | 75.17 £ 0.61 || 82.84 £ 1.58
p=0.3 75.16 & 3.10 | 75.59 & 0.76 | 75.45 & 0.71 || 83.46 & 1.77
p=0.5 77.72 4 2.76 | 75.38 &£ 0.49 | 75.20 4+ 0.38 || 83.25 4 1.57
p=0.7 80.17 £2.92 | 7528 £ 0.66 | 75.11 4 0.59 || 83.30 £ 1.55
Supervised 81.10 75.78 75.29 83.34

TABLE V: Mean Average Precision and standard deviation within semi-supervised classification folds in generic OCC problems.

the Lagrangian takes its final form as follows:

I
1 _
L= %l (5D +8) " ¢

i=1 j=1
4 4 4

= > b ST b+ D> bl ST . (4D)
i=1 j=1 i=1

APPENDIX C
DERIVATION OF THE KERNEL MATRIX

The S3SVDD optimization problem can be solved using
standard SVDD implementations, by employing the following
kernel matrix Q € R¢*¢;

1
q(ms, ;) = ¢ S~ p; — ¢f(gD71 +S) g (42

Since we work in spaces of arbitrary dimensionality, we
require that both matrices S and D are invertible. Thus, we
employ their regularized versions, defined as

S=S8+mrI and D =D+, (43)

where 7; and ry are parameters set to a small value increasing
the ranks of the matrices, and I are identity matrices of
appropriate dimensions.

Since the matrix S is the same matrix employed in Subclass
SVDD described in Section II, its inverse is obtained from
equation (17), replacing the regularization parameter r with
r1, as follows:

g-1_ 1 L 1 1 o T
St="T1-S8(M'+-K) @, @
T1 7"1 T1

where M is a ¢ x ¢ matrix encoding subclass information
between the labeled data, having values as described below
equation (16). In a similar fashion, the inverse of D is given
by:

A1 _ L l & 1, 1g 71~T
D™= —I-&(L7'+ K| &' @5
2

T2 T2

where ® contains labeled and unlabeled data representations
in the feature space JF. We employ the same notation, as in
Section III. Hereafter, we consider the case where ¢ = 1,
since similar regularization effects to the kernel matrix can be
obtained with the parameter r5.



Then, we calculate the quantity in the parenthesis of (42):

179 + 1

S e
(S+D )= -

I—
1 1\ s
- —® (L1 + K) T +oMeT.
5 T2
(46)

The matrix ® is a submatrix of <i>, containing the labeled data
representations. Let us replace ® with &. The added values
included in ® should not be employed in the calculations.
To this end, let us replace M, by defining a matrix M €
RN*N “which is of the same rank as M, being equal to M
in the positions of the labeled data, and having zeros otherwise
(i.e., in the positions of the unlabeled data). Without loss of
generality, the quantities can therefore be added.

- N\ —1 ~
Let L = (Lfl + %K) + M| be the matrix that

describes this summation for every ro # 0. Then, the inverse
of (46) is:

. 1 2 1.\
(S+DH = <W2+ I+ <I>L<I>T) -
T2 7”‘2
" 4
r1ro —+ 1
-1
_ (7’24‘1)(7”2—1)&) ja (7‘2+1)(7’2—1)K T
(rirg +1)2 rird +1r2
47

Finally, after applying the derived equations in (42), we obtain
the following kernel:

Q=|al-p(M+5 K ") MK

+yKT (i‘l + 5K) Tk s

Where:a:(%—n:ﬁ>,5:%,7:%and
§ = (r2+1)(r2—1)

[ r%—&-rz
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