
IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Robust Multidimensional Scaling using a

Maximum Correntropy Criterion

Fotios D. Mandanas, Constantine L. Kotropoulos, Senior Member, IEEE

Abstract

Multidimensional Scaling (MDS) refers to a class of dimensionality reduction techniques, which

represent entities as points in a low dimensional space so that the interpoint distances approximate

the initial pairwise dissimilarities between entities as closely as possible. The traditional methods for

solving MDS are susceptible to outliers. Here, a unified framework is proposed where the MDS is

treated as maximization of a correntropy criterion, which is solved by half-quadratic optimization in

either multiplicative or additive forms. By doing so, MDS can cope with an initial dissimilarity matrix

contaminated with outliers, because the correntropy criterion is closely related to M -estimators. Three

novel algorithms are derived. Their performance is assessed experimentally against three state-of-the-

art MDS techniques, namely the Scaling by Majorizing a Complicated Function, the Robust Euclidean

Embedding, and the Robust MDS under the same conditions. The experimental results indicate that the

proposed algorithms perform substantially better than the aforementioned competing techniques.
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I. INTRODUCTION

Multidimensional Scaling (MDS) has been widely used to visualize the hidden structures among entities

in a geometric space. Being a dimensionality reduction technique, MDS can be treated as a transformation

yielding a geometric model (or configuration), so that the resulting interpoint distances between the entities

in the new space approximate the initial pairwise dissimilarities as closely as possible. MDS seeks a

configuration that corresponds to a given dissimilarity matrix, which captures the pairwise dissimilarities

between the entities. MDS was inaugurated in psychology [1], [2], [3], [4]. Its spectrum of applications

includes dimensionality reduction [5], graph drawing [6], [7], texture mapping on arbitrary surfaces [8],

and localizing nodes in a wireless sensor network [9] to mention a few.

This paper extends the preliminary results presented in [10]. It is inspired by the work in [11]. It is

motivated by the fact that when outliers are present, the use of M -estimators in the algorithms solving the

MDS problem mitigates their effect more efficiently than the state of the art. In summary, the contributions

of the paper are: 1) The development of a general framework based on half quadratic (HQ) minimization

in combination with M -estimators in order to estimate the MDS embedding when the dissimilarity matrix

is contaminated with outliers. 2) The proposal of three efficient algorithms, one based on the additive

form of the HQ and another two resorting to the multiplicative form of the HQ, for finding the MDS

solution. 3) The thorough study of the Welsch M -estimator, which is closely related to the maximum

correntropy criterion, for solving the MDS problem when outliers are present. 4) The demonstration of

the impact of various M -estimators in the solution of the MDS problem.

Throughout the paper the following notation is adopted: Scalars are denoted by lowercase letters (e.g.,

λ1), vectors appear as lowercase boldface letters (e.g., x), and matrices are denoted by uppercase boldface

letters (e.g., O). (·)T denotes transposition, tr(·) stands for the trace of the matrix inside parentheses, and

the (i, j) element of X is represented by [X]ij or xij . If X is a square matrix, then X−1 is its inverse. I

stands for the identity matrix with compatible dimensions, diag(x) yields a square diagonal matrix with

the elements of vector x appearing on its main diagonal, while diag(X) yields a column vector formed by

the elements of the main diagonal of X. The i-th row of X is declared by the row vector xi, while the j-th

column is indicated with the column vector xj . The set of real and nonnegative real numbers is denoted

by R and R+, respectively. Several norms of real-valued vectors and matrices are used. If |·| denotes the
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absolute value operator, then, for x ∈ Rn×1, ‖x‖1 =
∑n

i=1|xi| and ‖x‖2 =
√∑n

i x
2
i are the `1 and `2

norms of x, respectively. The Frobenius norm of X ∈ Rn×m is defined as ‖X‖F =
√∑n

i=1

∑m
j=1 x

2
ij .

The double sum
∑N

i=1

∑N
j=i+1(·) is represented as

∑N
i<j(·).

The remainder of this paper is structured as follows: The fundamentals of the MDS are surveyed in

Section II. MDS techniques that reduce the influence of outliers are explored in Section III. Special

emphasis is given to the Robust MDS (RMDS) proposed in [11]. An overview of M -estimators and their

relation to correntropy is presented in Section IV. Section V deals with the additive and multiplicative

forms of the HQ minimization. The proposed algorithms are detailed in Section VI. Section VII includes

experimental results and a detailed comparison with the state-of-the-art techniques, demonstrating the

merits of the proposed algorithms. Finally, Section VIII concludes the paper and provides pointers for

further research.

II. MDS OVERVIEW

Let N denote the number of entities (objects) and d be their embedding dimension, e.g., 2 or 3. Let also

∆ = [δij ] denote the pairwise dissimilarity matrix, where δij , i, j = 1, 2, ..., N refers to the dissimilarity

between objects i and j. Such dissimilarities satisfy the nonnegativity and symmetry properties, i.e., a)

δii = δjj = 0, b) δij ≥ 0, and c) δij = δji. The triangle inequality holds, if and only if the dissimilarities

are distances. The derived embedding in a d dimensional space is represented by X = [x1|x2|, ..., |xN ]T ∈

RN×d. That is, the i-th object is mapped to xi = (xi1, xi2, ..., xij , ..., xid)
T ∈ Rd×1, where xij is the j-th

coordinate of xi. Let D(X) = [dij(X)] ∈ RN×N denote the distance matrix, having as ij-th element the

`2 norm between xi and xj , i.e., dij(X) = ‖xi − xj‖2. It can be shown that the Hadamard product of

D(X) with itself can be expressed as

[D(X)]2 = diag(diag(XXT ))E + E diag(diag(XXT ))− 2XXT (1)

where E is a N ×N matrix of ones. The elements of [D(X)]2 are squared distances.

A least-squares (LS) loss function that measures the goodness of fit between δij and dij(X) is the raw

stress defined as:

σr(X) =

N∑
i<j

wij(δij − dij(X))2 (2)
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where wij is a nonnegative user-defined weight representing the importance of the dissimilarity between

objects i and j. In most cases, all the weights are equal to one. Several schemes were proposed for

employing unequal weights, such as the elastic scaling where wij = δ−2ij [12] and Sammon mapping

where wij = δ−1ij [13]. The MDS is seeking X that minimizes (2). This is a non-convex optimization

problem. Its solution is not unique, since rigid transformations (e.g., translation, rotation, or reflection)

do not alter the value admitted by the stress function. Moreover, the axes arising by the application of

MDS lack any physical interpretation.

A well known algorithm for solving MDS is the Scaling by Majorizing a Complicated Function

(SMACOF) [14], where an iterative majorization of the stress function takes place. Prior to SMACOF,

the popular classical MDS algorithm [1] and the gradient descent methods [3], [15] were applied. The

majorization technique was later expanded in order to incorporate Minkowski distances [16], [17]. A

survey of MDS can be found in [18], [19].

III. ROBUST MULTIDIMENSIONAL SCALING

The fragility of any least-squares loss function (e.g., the stress) to outliers has motivated researchers

to investigate alternatives that eliminate the influence of gross errors. Classical MDS and SMACOF

techniques, despite their simplicity, are not robust, when the initial dissimilarities have been contaminated

with outliers. Even a single outlier in the dissimilarity matrix ∆ may distort severely the solution of

the classical MDS, because the noise is propagated to each element of the distance matrix through the

double-centering process −1
2J∆2J, where J = I−N−1 e eT is the centering operator, e is a N×1 vector

of ones, and I is the N × N identity matrix [20], [21]. Indeed, the classical MDS minimizes the loss

function
∥∥−1

2J[∆2 − D2]J
∥∥2
F

. One could easily compensate for the effect of the double centering process

by modifying the loss function of the classical MDS so as it does not incorporate the term −1
2J∆2J.

Alternatively, the cost function
∥∥∆2 − D2

∥∥
1
, employed in the Robust Euclidean Embedding (REE)

[21], could be used. A related idea was proposed in [22], i.e., σ1(X) =
∑N

i<j wij |δij−dij(X)|. However,

the `1 norm is not smooth, due to its singularity at its origin. To alleviate this problem, the Huber loss
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function, which belongs to the broad class of M -estimators, was proposed [23]:

σH(X) =

N∑
i<j

wij φH(δij − dij(X)) (3)

where

φH(r) =


r2

2 if |r| ≤ a

a|r| − a2

2 if |r| > a
(4)

and a is the threshold that can be chosen arbitrarily or adaptively from the data.

Let us assume that each dissimilarity is modeled as δij = dij(X) + oij + εij , where εij denotes a

zero-mean independent random variable modeling the nominal errors and oij models an outlier. Due to

the sparseness of the outliers, a small amount of them is expected to admit a non-zero value. Accordingly,

the inclusion of the `1 norm of the N ×N outlier matrix O in the MDS loss function is fully justified,

yielding [11]:

(Ô, X̂) = argmin
O,X

{ N∑
i<j

(δij − dij(X)− oij)2 + λ1

N∑
i<j

|oij |
}
. (5)

The first term in (5) corresponds to the goodness of fit between δij and dij(X) after subtracting the

impact of outliers. The second term is a penalty related to sparsity requirement for O, where λ1 is a

regularization parameter. By finding a majorizer function of the `1-norm regularized stress in (5) and

implementing a Majorization-Minimization algorithm applied to the mazorizer with regard to O and X

separately, the solution of (5) is given by the iterative procedure [11]:

o
(t+1)
ij = Sλ1

(δij − dij(X(t))) (6)

X(t+1) = L†L+(O(t+1),X(t))X(t) (7)

where Sλ(x) = sign(x)(|x| − λ
2 )+ is the soft-thresholding operator, with (·)+ = max(·, 0). L is a

symmetric matrix with diagonal elements [L]ii = N − 1 and off-diagonal elements [L]ij = −1. Its

rank is N − 1. Accordingly, L is not invertible, being not full rank. For this reason, the Moore-Penrose

pseudoinverse is used in (7), which is defined as L† = N−1J. In (7), the L+(O,X) is the Laplacian
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matrix having elements:

[L+(O,X)]ij =


−(δij − oij) d−1ij (X) (i, j) ∈ S

0 (i, j) ∈ T

−
∑N

k=1,k 6=i[L+(O,X)]ik (i, j) ∈ Q

(8)

where S(O,X) = {(i, j) : i 6= j, dij(X) 6= 0, δij > oij}, T(O,X) = {(i, j) : i 6= j, dij(X) = 0, δij >

oij} and Q(O,X) = {(i, j) : i = j, δij > oij}. The just described algorithm was coined as Robust MDS

(RMDS). The initial configuration X(0) is chosen randomly, while the initial outlier matrix O(0) is set to

zero.

Given X(t), the estimation of O(t+1) via (6) constitutes a `1 regularization (LASSO) problem. Given

O(t), (7) is essentially the least-squares solution of the system of the equations LX(t+1) = L+(O(t+1),X(t))

X(t). That is, it is the solution of the optimization problem
∥∥∥LX(t+1) − L+(O(t+1),X(t))X(t)

∥∥∥2
F

. It has

been attested by extensive experimentation that (5) is still vulnerable to outliers, even though it alleviates

their impact. In highly contaminated environments, the RMDS cannot yield an acceptable approximation

of the initial configuration for any λ1 value in most of the cases.

Taking into account the aforementioned ascertainment that (7) is a LS solution and the certitude that

a LS problem is strongly influenced by outliers, it is proposed to substitute the squared Frobenius norm

yielding (7) with an M -estimator which downweights the impact of gross errors due to outliers. More

precisely, it is proposed to seek the M -estimator of X, passing the residual LX − L+(O(t+1),X(t))X(t)

through a function φ(·) that is non-negative and differentiable with respect to X and to impose a

smoothness regularization term through the Frobenius norm of X, i.e.,

X(t+1) = argmin
X

{
φ(LX− L+(O(t+1),X(t))X(t)) + λ2 ‖X‖2F

}
. (9)

The adoption of M -estimators pursues to mitigate the outliers effect further since even if O(t+1)

estimation is not robust, X(t+1) will be not so sensitive to inaccurate O(t+1) calculation. Essentially, the

solution of the optimization problem (9) is proposed as an principled alternative to substitute (7) within

the RMDS algorithm [11].

To summarize, this work addresses the major limitations of RMDS due to the LS viewpoint yielding
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(7) and the lack of any smoothness term. Moreover, the optimization problem (9) proposed here is

solved in a principled way by HQ minimization. Links are established with the maximum correntropy

criterion, which is strongly related to the Welsch M -estimator, to increase cohesion. By doing so, a

unified framework emerges that extends the work in [11].

IV. M -ESTIMATORS AND CORRENTROPY

Let ri denote residuals that depend on parameter x. M -estimators minimize a loss function
∑N

i=1 φ(ri;x)

with respect to x, i.e., x̂ = argmin
x

∑N
i=1 φ(ri;x), where φ(r;x) is called potential function [24]. M -

estimators aim at the minimization of bias due to outliers by replacing the least-squares loss function,

that constitutes a special case of M -estimators being susceptible to outliers, with another function that

increases less than the squared error and thus being less fragile to gross errors. Potential functions for

a variety of M -estimators are detailed in the next Section. Beyond convex M -estimators (like the `2,

`1, `p, `1-`2, log-cosh, Huber, and Fair estimators), there are also non-convex M -estimators, such as

the Cauchy, Geman-McClure, Welsch, and Tukey estimators. Frequently, the non-convex M -estimators

are more efficient than the corresponding convex ones [25]. The properties of potential functions can be

found in [26].

The (cross) correntropy, first introduced as a generalized correlation function [27], is a nonlinear

similarity metric between two arbitrary random variables W and Y , defined as Vσ(W,Y ) = E[gσ(W−Y )]

where E[·] is the expectation operator and gσ(x) = 1√
2πσ

exp(− x2

2σ2 ) is the Gaussian kernel with σ

denoting its size [26]. It is well known that the joint probability density function (pdf) can not be

accurately estimated when a finite amount of data (yi, wi), i = 1, 2, ..., N is available. In such a case,

the sample estimator of correntropy is recommended [26], i.e., V̂σ(W,Y ) = 1
N

∑N
i=1 gσ(wi − yi).

The correntropy measure is symmetric, positive, and bounded. The maximum is achieved at W = Y .

All correntropy properties depend on the kernel size, which is application specific [26]. For two random

vectors W = (w1, w2, . . . , wN )
T and Y = (y1, y2, . . . , yN )

T , the Correntropy Induced Metric (CIM) is

defined as [26]

CIM(W,Y ) =

[
gσ(0)−

1

N

N∑
i=1

gσ(wi − yi)
]1/2

. (10)

The CIM possesses the properties of symmetry, non-negativity and triangle inequality [26]. Additionally,
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the identity of indiscernibles holds, i.e., CIM(W,Y ) = 0, if and only if W = Y [26]. The Maximum

Correntropy Criterion (MCC) aims at maximizing the sample correntropy (i.e., the last term in (10)).

Since CIM is a decreasing function of correntropy, the maximization of correntropy is equivalent to the

minimization of the CIM.

It is seen that E[gσ(W−Y )] resembles the mean squared error MSE = E[(W−Y )2] for gσ(W−Y ) =

(W − Y )2. The Gaussian kernel function makes the MCC a local criterion, while the MSE is a global

one [26]. The term global implies that all sample errors conduce significantly to the estimation of MSE.

On the contrary, the Gaussian kernels restrict the analysis to a local region of the joint space. Indeed,

the correntropy depends heavily on the kernel function along the line w = y. The correntropy is closely

related to M -estimators [26]. By setting φ(x) = 1− gσ(x), the CIM becomes equivalent to the Welsch

M -estimator [28]. The MCC, as a similarity metric, has proven to be appropriate in non-linear, non

Gaussian signal processing applications, such as robust regression [26], feature selection [29], etc.

V. HALF-QUADRATIC MINIMIZATION

Next, let us briefly describe the half-quadratic minimization for a scalar function. A new objective

function is introduced that depends both on the initial variable x and a new auxiliary variable p. Precisely,

if J (x) is the initial objective function and J(x, p) is the new objective function, then one requires

J (x) = min
p
{J(x, p)}, ∀x. If p is fixed, J is quadratic w.r.t. x. Hence, the name Half Quadratic. The

global minimum of the new objective function w.r.t. x is the same with that of the initial objective

function. However, the estimation of the argument x becomes considerably easier, because of the specific

formulation by which the auxiliary variable p is initiated and the alternating minimization procedure that

takes place. Essentially, the HQ theory is based on the estimation of alternating updates of p and x. For

simplicity, let J(x, p) = h(x) + β Q(γ x, p) + ψ(p), where h(x) is quadratic w.r.t. x, Q(·, p): R→ R is

quadratic for any p ∈ R, and ψ(·): R→ R satisfies [25]:

φ(x) = min
p
{Q(x, p) + ψ(p)} ∀x ∈ R (11)

where φ(·) is a potential function either convex or non-convex. (11) implies that ψ(·) is the conjugate

function of φ(·) (see further [30, ch. 3, p. 90]). The auxiliary variable p is determined by the HQ minimizer

DRAFT October 22, 2016



MANDANAS AND KOTROPOULOS, MANUSCRIPT FORMATTED USING LATEX 9

function δ(·) derived by ψ(·) and thus related to φ(·). The minimizer function satisfies the constraint

Q(x, δ(x)) + ψ(δ(x)) ≤ Q(x, p) + ψ(p), ∀p ∈ R [31].

The loss function φ(·) may be one of M -estimators, while Q(x, p) is a quadratic function admitting

two forms. Namely, the multiplicative form

QM (x, p) = px2 p ∈ R+, x ∈ R (12)

which results to the loss function φ(x) = min
p
{px2+ψ(p)} [32] and the additive form, proposed in [33]:

QA(x, p) = (x
√
c− p√

c
)2 p ∈ R, x ∈ R (13)

which results to the loss function φ(x) = min
p
{(x
√
c− p√

c
)2 + ψ(p)}, where c is a positive constant. In

both forms of the HQ minimization φ(x) should fulfil certain conditions [31].

The minimizer function δ(·) is called weighting function. δ(x) admits distinct additive and multiplicative

formulations. For φ(x): R→ R, these formulations are [31]:

δA(x) = cx− φ′(x) (14)

δM (x) =

 φ′′(0+) if x = 0

φ′(x)
x if x 6= 0.

(15)

It is proven [31] that the optimal value of the positive constant c is c = sup
x∈R

φ′′(x). Taking into account

that for most M -estimators φ′′(0) = sup
x∈R

φ′′(x), it follows that c = φ′′(0).

As mentioned previously, the potential (or loss) function φ(x): R → R can be associated to an M -

estimator. Table I summarizes the various potential functions φ(x) and their corresponding weighting

functions δ(x): R → R for the additive and multiplicative form of the HQ. Note that not all potential

functions φ(x) fulfil the conditions in [31]. Various weighting functions δ(x) for convex and non-convex

potential functions in the multiplicative form of HQ are plotted in Figures 1a and 1b.

The augmented function J(x, p): R→ R is non-increasing at each iteration. Let us denote the solutions

found at iteration t as (x(t), p(t)). A basic property of the HQ minimization is J(x(t+1), p(t+1)) ≤

J(x(t), p(t+1)) ≤ J(x(t), p(t)) [31]. Furthermore, the convergence of the sequence (. . . , J(x(t), p(t)), J(x(t),

p(t+1)), J(x(t+1), p(t+1)), . . .) is guaranteed, when HQ is employed [31]. Although the multiplicative form
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Fig. 1: Weighting functions for convex and non-convex potential functions for the multiplicative form of
HQ.

requires fewer iterations than the additive form to converge, the computational cost at each iteration is

heavier [31].

TABLE I: Potential and Weighting functions δ(x) of M -estimators for either the additive or multiplicative
form of HQ.

M-estimator Potential Function Multiplicative Form Additive Form

`2 φ(x) = x2/2 δ(x) = 1 δ(x) = (c− 1)x

`1 φ(x) = |x| δ(x) = 1
|x| δ(x) = cx− sign(x)

`p φ(x) = |x|p
p

p ∈ (1, 2] δ(x) = |x|p−2 Not Applicable

`1-`2 φ(x) = 2(
√

1 + x2

2
− 1) δ(x) = 1√

1+ x2

2

δ(x) = cx− x√
1+ x2

2

Log-cosh φ(x) = log(cosh(ax)) δ(x) = a tanh(ax)
x

δ(x) = cx− atanh(ax)

Huber φ(x) =

{
x2/2 |x| ≤ a
a|x| − a2

2
|x| > a

δ(x) =

{
1 |x| ≤ a
a
|x| |x| > a δ(x) =

{
(c− 1)x |x| ≤ a
cx− asign(x) |x| > a

Fair φ(x) = a2( |x|
a
− log(1 + |x|

a
)) δ(x) = 1

1+
|x|
a

δ(x) = cx− x

1+
|x|
a

Welsch φ(x) = a2

2
(1− exp(−x2

a2 )) δ(x) = exp(−x2

a2 ) δ(x) = cx− xexp(−x2

a2 )

Cauchy φ(x) = a2

2
log(1 + (x

a
)2) δ(x) = 1

1+( x
a
)2

δ(x) = cx− x
1+( x

a
)2

Geman-McClure φ(x) = x2

2(1+x2)
δ(x) = 1

(1+x2)2
δ(x) = cx− x

(1+x2)2

Tukey φ(x) =

{
a2

6
(1− [1− (x

a
)2]3) |x| ≤ a

a2

6
|x| > a

δ(x) =

{
[1− (x

a
)2]2 |x| ≤ a

0 |x| > a
δ(x) =

{
cx− x[1− (x

a
)2]2 |x| ≤ a

0 |x| > a
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VI. A UNIFIED HALF-QUADRATIC FRAMEWORK FOR MDS WHEN OUTLIERS ARE PRESENT

In this section, the optimization problem (9) is solved with HQ minimization, extending the analysis

of Section V to multivariate functions. Let φ(x) =
∑N

i=1 φ(xi) be a loss function on a vector x ∈ RN×1,

where xi is the i-th entry of x. The minimization problem (9) can take the form:

(x̂, p̂) = argmin
x,p

{J(x,p)} = argmin
x,p

{
Q(x,p) +

N∑
i=1

ψ(pi) + h(x)
}
. (16)

The solution (x̂, p̂) of the optimization problem (16) can be obtained in an alternating fashion as follows:

p(t+1) = δ(x(t)) (17)

x(t+1) = argmin
x
{Q(x,p(t+1)) + h(x)}. (18)

For φ(x): RN×1 → R, (14) and (15) are applied componentwise. The convex penalty function h(x) can

be defined as h(x) = λ2 ‖x‖1, h(x) = λ2 ‖x‖22, or h(x) = λ2 ‖x‖2,1. In the following, we derive the

solutions of (17) and (18) in the context of (9).

A. Additive Form

The quadratic function QA(·) of the additive form of the HQ is defined as

QA(LX− L+X(t),P) =
∥∥∥∥√c (LX− L+X(t))− 1√

c
P
∥∥∥∥2
F

(19)

where P ∈ RN×d is a matrix of auxiliary variables, determined by the minimizer function δA(·). The

potential loss function φA(·) is defined as:

φA(LX− L+X(t)) = min
P

{
QA(LX− L+X(t),P) +

N∑
n=1

d∑
m=1

ψ(pnm)

}
(20)

where ψ(·) is the conjugate function of φA(·). Accordingly, JA(X,P) in (16) is given by:

JA(X,P) =
∥∥∥∥√c (LX− L+X(t))− 1√

c
P
∥∥∥∥2
F

+

N∑
n=1

d∑
m=1

ψ(pnm) + λ2 ‖X‖2F (21)

where λ2 is a positive parameter that regulates the Frobenius norm of X. The estimation of (X,P) can be

derived by solving (X̂, P̂) = argmin
X,P

{JA(X,P)}. When the solution for X is sought, the terms including
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ψ(·) can be omitted due to the fact that the auxiliary variables depend only on the minimizer function

δA(·), as indicated in (17), and are fixed. Let Y = L+(O(t+1),X(t))X(t). Then, the unknown variables

(X,P) are estimated by the alternating minimization procedure:

P(t+1) = δA(LX(t) − Y) (22)

X(t+1) = argmin
X

{∥∥∥∥√c (LX− L+X(t))− 1√
c

P(t+1)

∥∥∥∥2
F

+ λ2 ‖X‖2F

}
. (23)

The optimization problem (23) can be reformulated as:

X(t+1) = argmin
X

{
c tr((LX−H(t+1))T (LX−H(t+1))) + λ2 tr(XTX)

}
. (24)

where

H(t+1) = Y +
1

c
P(t+1). (25)

By applying the first order optimality condition to (24) w.r.t. X, a closed form solution for X(t+1) is

obtained1:

X(t+1) = c (cLTL + λ2I)−1LTH(t+1). (26)

The objective function is minimized at each iteration until its convergence. In this form of the HQ, the

auxiliary variables P can be viewed as errors incurred by noise. At each iteration, outlying observations

are adjusted gradually, because the loss function φA(·) corresponds to an M -estimator. The complete

procedure for the solution of (9) by the additive form of the HQ minimization is outlined in the Algorithm

1. The initial configuration X(0) can be chosen randomly or can be set to the solution of the classical

MDS algorithm. The initial outlier matrix O(0) is set to zero.

B. Multiplicative Form (Version 1)

For the multiplicative form of the HQ, the quadratic function QM (·) is defined as

QM (LX− L+X(t),p) =
N∑
i=1

pi

∥∥∥(LX− L+X(t))i
∥∥∥2
2

(27)

1Recall that L is symmetric, so LT = L.
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Algorithm 1 Additive Form of the HQ Minimization for MDS (HQAMDS)

Input: Initial outlier matrix O(0) and initial configuration X(0)

Output: Outlier matrix O(t+1) and coordinate matrix X(t+1)

1: for t = 0, 1, 2, ... do
2: Find each entry of O(t+1) via (6)
3: Update P(t+1) via (22) with L+ as in (8)
4: Update H(t+1) via (25) with L+ as in (8)
5: Update X(t+1) via (26)
6: end for

where p ∈ RN×1 is the vector of the auxiliary variables, which is determined by the minimizer function

δM (·) defined in (15). It is seen that QM (·) is the weighted sum of squared `2 norms of the rows of the

residual matrix LX− L+(O(t+1),X(t))X(t). The potential loss function φM (·) is defined as

φM (LX− L+X(t)) = min
p

{ N∑
i=1

pi

∥∥∥(LX− L+X(t))i
∥∥∥2
2
+

N∑
i=1

ψ(pi)

}
. (28)

Using (28), the objective function in (16) takes the form

JM (X,p) =
N∑
i=1

pi

∥∥∥(LX− L+X(t))i
∥∥∥2
2
+

N∑
i=1

ψ(pi) + λ2 ‖X‖2F . (29)

Let (X̂, p̂) = argmin
X,p

{JM (X,p)}. Due to the fact that the auxiliary variables in (17) depend only on

the minimizer function δM (·), the terms ψ(·) can be omitted, because the auxiliary variables are fixed,

when we minimize w.r.t to X. Thus, a local minimizer (X̂, p̂) can be estimated using the alternating

minimization:

p
(t+1)
i = δM

(∥∥∥(LX(t) − Y)i
∥∥∥
2

)
(30)

X(t+1) = argmin
X

{
tr((LX− Y)TP(t+1)(LX− Y)) + λ2tr(XTX)

}
(31)

where P(t+1) = diag(p(t+1)) is a diagonal matrix with ii-th element equal to p
(t+1)
i . A pertinent

approach was proposed in [29], focusing on robust feature selection. The optimization problem (31)
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can be reformulated as a least-squares regression problem:

X(t+1) = argmin
X

{∥∥L̃X− Ỹ
∥∥2
F
+ λ2 ‖X‖2F

}
(32)

where L̃ =
√

P(t+1)L and Ỹ =
√

P(t+1)Y. Setting the derivative of (31) w.r.t to X equal to zero, the

following closed-form solution is obtained:

X(t+1) = (LTP(t+1)L + λ2I)−1LTP(t+1)Y. (33)

At each iteration, the auxiliary variable pi represents the weight that regulates the impact of ‖(LX−L+

X(t))i‖2. The introduction of M -estimators into the augmented objective function reduces the influence

of the outliers, since p(t+1)
i always admits a low weight, as manifested by the presence of δM (·) in (30)

that is associated to the potential function φM (·) of an M -estimator. The multiplicative form 1 of the

HQ minimization is essentially an iterative reweighed least-squares (IRLS) minimization. The complete

procedure for the solution of (9) by using this version of the multiplicative form of HQ is outlined in

Algorithm 2. Initialization can be done as in Subsection A.

C. Multiplicative Form (Version 2)

Alternatively, the quadratic function QM (·) can be defined as the weighted sum of all squared elements

of LX− L+(O(t+1),X(t))X(t):

QM (LX− L+X(t),P) =
N∑
i=1

d∑
j=1

pij

[
LX− L+X(t)

]2
ij

(34)

where P ∈ RN×d. The potential loss function φM (·) associated to (34) is given by

φM (LX− L+X(t)) = min
P

{
N∑
i=1

d∑
j=1

pij

[
LX− L+X(t)

]2
ij

+

N∑
i=1

d∑
j=1

ψ(pij)

}
. (35)

Using (35), the objective function in (16) is rewritten as

JM (X,P) = φM (LX− L+X(t)) + λ2 ‖X‖2F . (36)
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The main difference between (29) and (36) is the incorporation of all individual residuals [LX − Y]ij

instead of the `2 norm for each row (LX− Y)i. A related approach was proposed in [34], focusing on

robust subspace clustering problem. The function JM (X,P) can be minimized in an alternating fashion

as follows:

p
(t+1)
ij = δM

(
[LX(t) − Y]ij

)
(37)

x(t+1)
j = argmin

xj

{
(Lxj − yj)

TP(t+1)
j (Lxj − yj) + λ2 ‖xj‖22

}
(38)

where yj = L+x(t)j and P(t+1)
j is a diagonal matrix with (i, i)-th element [P(t+1)

j ]ii = p
(t+1)
ij . The

optimization problem (38) can be transformed into a least-squares regression problem

x(t+1)
j = argmin

xj

{∥∥∥L̃xj − ỹj

∥∥∥2
2
+ λ2 ‖xj‖22

}
(39)

where L̃ =
√

P(t+1)
j L and ỹj =

√
P(t+1)
j yj . By applying the first order optimality condition to (38) w.r.t

to xj , the following closed form results:

x(t+1)
j = (LTP(t+1)

j L + λ2I)−1LTP(t+1)
j yj . (40)

The complete procedure for the solution of (9) by using this version is outlined in Algorithm 2. The

initial matrices can be set as said previously.

Algorithm 2 Multiplicative Forms of the HQ Minimization for the MDS (HQMMDS1 and HQMMDS2)

Input: Initial outlier matrix O(0) and initial configuration X(0)

Output: Outlier matrix O(t+1) and coordinate matrix X(t+1)

1: for t = 0, 1, 2, ... do
2: Find each entry of O(t+1) via (6)
3: if version 1 then
4: Update p(t+1)

i via (30) with L+ as in (8)
5: Update X(t+1) via (33)
6: else if version 2 then
7: Update p(t+1)

ij via (37) with L+ as in (8)

8: Update x(t+1)
j via (40)

9: end if
10: end for
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VII. NUMERICAL TESTS

The additive and the multiplicative forms of the HQ minimization for the MDS were implemented in

Matlab and tested on several dissimilarity matrices ∆. In order to evaluate and benchmark the proposed

algorithms, three additional MDS techniques were implemented in the same environment and tested

on the same dissimilarity matrices. These techniques were: a) the popular SMACOF algorithm [14],

reported to be one of the most efficient algorithms, b) the subgradient version of REE algorithm [21],

and c) the RMDS [11]. For all techniques, authors’ recommendations were strictly followed, while the

implementation was intended to achieve the best possible performance.

The quality of the embedding for each algorithm was evaluated with respect to four figures of merit: a)

the normalized outlier-free stress σ(X̂, Ô) =

√∑
(i,j)∈U(δij−dij(X))2∑

(i,j)∈U δ
2
ij

, where U denotes the set of outlier-

free dissimilarities, namely when [O]ij = 0, as in [11]; b) the number of estimated outliers Ŝ, as in

[11]; c) the distortion (raw stress) σr(X̂), defined in (2), between the derived embedding and the noise-

free configuration; and d) the standardized Procrustean goodness-of-fit criterion % defined as the sum of

the squared errors standardized by a measure of the scale X2. The last criterion can only be applied to

fixed configurations and assesses the linear transformation of an embedding against the points of the fixed

configuration. The MDS is highly related with Procrustean techniques, whose objective is to transform an

initial configuration, which can be an MDS solution, to a target configuration, as closely as possible [19].

These techniques unveil the coherence between the different MDS solutions and serve as an important

tool for rejecting deceptive and inappropriate MDS embeddings.

To assess the aforementioned methods, 100 Monte Carlo simulations of RMDS algorithm were run,

using a different random initial configuration X(0) in each run. From all runs, the reported figures of

merit refer to the case where RMDS algorithm has exhibited the minimum value in the raw stress σr(X̂),

namely when the derived embedding was closer to the noise-free configuration. RMDS, HQAMDS, and

HQMMDS algorithms terminated when the fraction
∥∥∥X(t+1) − X(t)

∥∥∥
F
/
∥∥∥X(t+1)

∥∥∥
F

was less than 10−6

or when the number of iterations reached 5000.

An important aspect of MDS algorithms is their initialization. In the majority of the experiments, the

2In Matlab, the measure of the scale X is given by sum(sum((X− repmat(mean(X, 1), size(X, 1), 1)).2, 1)).
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Fig. 2: HQAMDS, HQMMDS1 and HQMMDS2 embedding quality on the first data set for $ = 12%.

classical MDS solution [1] was proven to be a worse initialization than a random configuration. All

algorithms were tested on four data sets. The first data set was chosen to be a fixed configuration. Three

real data sets were also employed.

A. First Data Set

The first data set comprises a square with N = 100 points in the two-dimensional space. The bottom-

left point is at (1, 1), the upper-right point is at (10, 10), while all points are equidistant from their vertical

and horizontal neighbors by one unit. Each element of the initial dissimilarity matrix was contaminated

with a background error εij derived from a zero mean truncated Gaussian distribution with variance 0.1

and threshold −dij(X), in order to avert negative values in ∆. The indices of the outliers were chosen

randomly, while their values were derived from a uniform distribution in [0,40]. The outlier contamination

percentage $% was set at 594/(100 · 99/2) = 12%. Another way of selecting the outlier indices is to

shuffle randomly the elements in ∆ and then select the first $% elements that will be contaminated with

outliers [20].

Let ah be the parameter of the Huber M -estimator and σ̂ε be the median absolute deviation (MAD)3

of nominal errors. Taking into account the equivalence with Huber M -estimator for λ1 = 2ah and that

3Median of the absolute deviations of nominal errors from their median
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ah = 1.345 × 1.483 × σ̂ε yields 95% asymptotic efficiency for the normal distribution [35], λ1 was set

to 3.98927 σ̂ε for both RMDS and HQMMDS.

Table II gathers the figures of merit related to the embedding quality delivered by SMACOF, REE, and

RMDS. The reported figures of REE algorithm were measured after 4000 iterations. Due to lack of space,

only the raw stress σr(X̂) of the three proposed algorithms is plotted in Figures 2a-2b for λ2 ∈ [1, 100].

More specifically, σr(X̂) for HQMMDS1 is shown in Figure 2a with a being set to 31.6228, 20, and

15 for the Welsch, Cauchy, and Fair M -estimators. σr(X̂) is plotted for HQAMDS, HQMMDS1 and

HQMMDS2 in Figure 2b for Welsch M -estimator for a = 316.228. The plots of the same figure of

merit for the Fair M -estimator in HQAMDS, HQMMDS1 and HQMMDS2 are overlaid in Figure 2b for

a = 15. In HQAMDS, parameter c was equal to 1. The plots of Ŝ and % for the aforementioned M -

estimators in Figures 2a-2b look similar to σr(X̂) and are always smaller than RMDS for λ2 ∈ [1, 100].

Generally, σ(X̂, Ô) for these M -estimators admits smaller values than RMDS for λ2 ∈ [1, 50], which

indicates that σ(X̂, Ô) without Ŝ or σr(X̂) is not a reliable figure of merit for judging the quality of an

embedding.

It can be seen in Figure 2b that the additive form and both versions of the multiplicative form for the

same parameter a yield similar results provided that a admits a large value (e.g., a = 316.228) so that

the Welsch M -estimator approximates the `2 estimator. On the contrary, when a admits a small value

(e.g., a = 15 for Fair M -estimator), it appears that σr(X̂) is affected by λ2 values less in HQMMDS2

than HQMMDS1.

TABLE II: Figures of merit for the embedding quality obtained by SMACOF, REE, and RMDS applied
to the 1st data set.

Outlier percentage $ = 12% SMACOF REE RMDS

Normalized outlier-free stress σ(X̂, Ô) 0.6830 0.7206 0.0375

Estimated outliers Ŝ - - 1354

Procrustean goodness-of-fit % 0.3925 0.0006 0.0004

Raw stress σr(X̂) 52728.4 58.0572 51.3491

It is self-evident that when the aforementioned M -estimators are employed in HQAMDS, HQMMDS1

and HQMMDS2, the resulting embedding outperforms the one derived by RMDS with respect to σr(X̂)
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Fig. 3: HQMMDS1 and HQAMDS embedding quality on the 2nd data set for $ = 15.82%.

for a wide range of values admitted by λ2. Needless to say that the same remark holds for the embeddings

derived by SMACOF and REE.

B. Second Data Set

The second data set is composed by sequential employment records for N = 80 randomly selected

Lloyds Bank employees from cohort 1925-1929 [36]. The data file contains 73 variables: an ID variable,

a variable corresponding to the first year of employment (which is between 1925-1929), and 71 variables

with the sequential data concerning career characteristics, as branch size, branch type, and job category

[37]. An optimal matching algorithm, which estimates the minimum total cost of transforming one

sequence into another between all potential transformations, is used to generate the dissimilarity matrix

[37]. That is, the assessment of the difficulty for transforming the sequence i into sequence j is quantified

by the dissimilarity δij . The transformation of one career into another can encompass substitution,

insertion, and deletion operations. The cost of each insertion or deletion is fixed, while substitution

cost depends solely on the transformation pairs. In addition, the distances are standardized by the length

of the longest career sequence. The data set was artificially contaminated by 500/(80 · 79/2) = 15.82%

outliers, which were drawn from a uniform distribution on the range [0, 3max(δij)]. The outliers indices

were chosen randomly.
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λ1 was set to 3.58 in order RMDS identifies Ŝ = 500 outliers. The same value for λ1 was used in

both HQMMDS and HQAMDS. For HQMMDS1, the parameter a was set to 60 for the Welsch, Cauchy

and Fair M -estimators. In HQAMDS, parameter c was equal to 1, while a was set to 81.6497, 1000, and

50 for the Welsch, Cauchy, and Fair M -estimators, respectively. It is worth noting that the parameter a

of the Welsch M -estimator in HQAMDS was set to such a value so that HQAMDS with the Welsch M -

estimator would converge to a local minimum of the raw stress σr(X̂) for a smaller λ2 value than when

HQAMDS with the Cauchy M -estimator was used. In the latter case, the parameter a of the Cauchy

M -estimator was set to a large value so that its performance within HQAMDS is identical with that

achieved by the `2 M -estimator.

TABLE III: Figures of merit for the embedding quality obtained by SMACOF, REE, and RMDS applied
to the 2nd data set.

Outlier percentage $ = 15.82% SMACOF REE RMDS

Normalized outlier-free stress σ(X̂, Ô) 0.6045 0.6821 0.1971

Estimated outliers Ŝ - - 500

Raw stress σr(X̂) 14175.5 3017.7 2105.8

The figures of merit used to judge the embedding quality obtained by SMACOF, REE, and RMDS

are summarized in Table III. The reported figures for REE were measured after 2000 iterations. The

raw stress σr(X̂) of HQAMDS and HQMMDS1 is plotted in Figure 3 for λ2 ∈ [1, 100] and various

M -estimators. For λ2 ∈ [1, 100], the plot of the normalized outlier-free stress σ(X̂, Ô), in both forms, is

roughly the same with that of σr(X̂) and is always smaller than that of RMDS. The estimated number

of outliers Ŝ, in both forms, was proven to be relatively constant, near the value of 500. It is apparent

that the proposed algorithms outperform the state-of-the-art techniques.

The Shepard diagrams contrasting the embeddings delivered by RMDS and HQMMDS1 are illustrated

in Figure 4. HQMMDS1 embedding was obtained by the Welsch M -estimator for a = 60, λ1 = 3.58 and

λ2 = 100. The number of estimated outliers for these algorithms is ŜRMDS = 500 and ŜHQMMDS1 =

499. The majority of the pairwise distances dij(X) for HQMMDS1 that were deemed as outliers lie below

the diagonal δij = dij as in RMDS. In any case, both RMDS and HQMMDS1 generate embeddings

in such a way that the resulting pairwise distances are densely congregated around the diagonal line
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Fig. 4: Shepard diagrams for RMDS and HQMMDS1

Matching the embedding delivered by HQMMDS1 with that of REE and RMDS via Procrustes analysis

reveals that the embeddings derived by HQMMDS1 and REE differ significantly, while those derived

by HQMMDS1 and RMDS are approximately the same, even though the former algorithm exhibits a

smaller normalized outlier-free stress σ(X̂, Ô) and a smaller raw stress σr(X̂) than the latter one.

C. Third Data Set

The third data set comprises real data from average Scholastic Aptitude Test (SAT) scores for the

N = 51 states in the US, including six attributes, such as population, average verbal and math scores,

percentage of eligible students taking the exam, percentage of adult population without a high school

education, and annual teacher pay in thousands of dollars [38]. To normalize the initial values in the

range between 0 and 1, the minimum value of each attribute was subtracted from the initial values of the

corresponding attribute and the resulting value was divided by a measure of dispersion, such as the range

(i.e., the difference between the maximum and the minimum of each attribute). Then, the dissimilarity

matrix was computed according to (1). The data set was artificially contaminated by 128/(51 · 50/2) =

10.04% outliers, which were drawn from a uniform distribution in [max(δij), 4max(δij)]. The outliers

indices were chosen randomly. λ1 was set to 0.75 in order to identify Ŝ = 128 outliers with RMDS. In

HQMMDS1 and HQMMDS2, the parameter a was set to 316.228, 4, and 2 for the Welsch, Cauchy, and

Fair M -estimators, respectively.
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Fig. 5: HQMMDS1 and HQMMDS2 embedding quality on the third set for $ = 10.04%.

TABLE IV: Figures of merit for the embedding quality obtained by SMACOF, REE, and RMDS applied
to the 3rd data set.

Outlier percentage $ = 10.04% SMACOF REE RMDS

Normalized outlier-free stress σ(X̂, Ô) 0.6862 0.7608 0.1511

Estimated outliers Ŝ - - 128

Raw stress σr(X̂) 251.3171 11.7846 11.6615

The embedding quality delivered by SMACOF, REE, and RMDS is summarized in Table IV. The

reported figures of REE were measured after 8000 iterations. Due to space limitations and taking into

account that the multiplicative form was proven to be much faster than the additive one, only σr(X)

for HQMMDS1 and HQMMDS2 is plotted in Figure 5a for λ2 ∈ [1, 100]. The plot of σ(X̂, Ô), in

both versions, is roughly the same with that of σr(X̂) and is always smaller than that of RMDS for

λ2 ∈ [1, 100]. The estimated number of outliers Ŝ was proven to be rather constant and specifically for

λ2 ∈ [1, 100] it admits values between 128 and 130. It is obvious that HQMMDS1 and HQMMDS2

outperform RMDS for a wide range of values admitted by λ2.

The embeddings delivered by RMDS and HQMMDS2 are shown in Figure 5b. HQMMDS2 embedding

was obtained by the Fair M -estimator with λ1 = 0.75, λ2 = 100 and a = 2. It is obvious that RMDS

and HQMMDS2 embeddings approximately coincide, although HQMMDS2 exhibits a smaller raw stress
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σr(X̂) and a smaller normalized outlier-free stress σ(X̂, Ô) than RMDS. This is not the case with

SMACOF and REE embeddings, which differ significantly from that of HQMMDS2, as it is conferred

by Procrustes’ analysis.

D. Fourth Data Set

The fourth data set is derived from a delay-based scheme, entitled ”sandwich probing”, which is

initiated to measure packet-delay differences [39]. Each sandwich probe involves three packets sent from

a fixed source, namely a small packet first sent to receiver node i followed by a large packet sent to node

j and finally a small packet sent once more to node i. This network includes N = 10 terminal (receiver)

nodes, thus there are (10 · 9)/2 = 45 terminal pairs. Each measurement is emanated from the difference

between the arrival times of the first and second small packet at their terminal node i, which is relevant to

the path bandwidth shared with terminal node j [39]. The sandwich probe was implemented totally 9, 567

times encompassing, inter alia, swaps between the small and the large packet receiver nodes. The mean

packet-delays τij , representing similarities between paths, constitute the outlier free (non-contaminated)

data. Their transformation into dissimilarities is implemented via δij = 100 exp(− τij
1000) as in [11]. The

same transformation was imposed on minimum and maximum packet-delays for each pair of terminals in

order to acquire their largest δmaxij and the smallest δminij dissimilarities respectively [11]. The data was

artificially contaminated by 12 outliers, drawn from a uniform distribution in [δminij , δmaxij ]. The outliers’

indices were chosen randomly. λ1 was set to 29.9 in order to identify Ŝ = 12 outliers with RMDS.

The raw stress σr(X̂) for HQMMDS1 and HQMMDS2 is plotted in Figure 6a with a being set to 105

and 400 for the Welsch and log-cosh M -estimators, respectively. It can be seen that σr(X̂) for Welsch

M -estimator admits smaller values than RMDS for λ2 ∈ [1, 39]. The same conclusions are drawn for

the Cauchy and Fair M -estimators for a = 105. This small range of λ2 values (λ2 ∈ [1, 39]) can be

attributed to the small data set (N = 10). The plots of Ŝ and σ(X̂, Ô) for the Welsch M -estimator for

both versions of multiplicative form look similar to σr(X̂). REE is proven to be extremely efficient on

this data set. The proposed algorithms HQMMDS1 and HQMMDS2 for the Welsch M -estimator obtain

slightly smaller values of σr(X̂) than REE for λ2 ∈ [16, 20]. Logcosh M -estimator is proven to be

better than RMDS w.r.t σr(X̂) for both versions of the multiplicative form for λ2 ∈ [1, 100]. For that
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Fig. 6: HQMMDS1 and HQMMDS2 embedding quality on the fourth set for $ = 26.67%.

M -estimator, the estimated number of outliers Ŝ, in both versions, was proven to be relatively constant,

near the value of 12, while the plot of σ(X̂, Ô) was comparable with that of σr(X̂).

The embeddings delivered by SMACOF on non-contaminated data (used as a benchmark), and REE,

RMDS, and HQMMDS1 on contaminated data are shown in Figure 6b. The embeddings of REE, RMDS

and HQMMDS1 were matched to that of SMACOF via Procrustes analysis. HQMMDS1 embedding

was derived by the Welsch M -estimator with λ1 = 29.9, λ2 = 19 and a = 105. It is obvious that

HQMMDS1 embedding is closer to SMACOF benchmark than those achieved by REE and RMDS. By

visual inspection, REE embedding is proven to be better than that of RMDS. These deductions are also

confirmed by σr(X̂) values (2371.8 for SMACOF on non-contaminated data, 5823.4 for HQMMDS1,

5941.1 for REE and 14111.4 for RMDS).

E. Discussion

It is apparent that HQAMDS and HQMMDS outperform the state-of-the-art techniques for a wide

range of values admitted by λ2. Regardless of the λ1 value, HQMMDS and HQAMDS yield a better

approximation of the true configuration than RMDS for a wide range of λ2 values. SMACOF is extremely

inefficient, while REE delivers a better embedding than SMACOF, but still this is inferior to that of RMDS

in most cases. In the following, we discuss several practical issues.
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M -estimator selection: The efficiency of an M -estimator depends heavily on the proper selection of

the parameter a. In addition, the choice of the M -estimator is influenced by the selection of parameter λ2

within the proposed solution (9) that yields the HQAMDS and HQMMDS, as is discussed next. Numerical

tests demonstrate that the Cauchy, Fair, and Welsch M -estimators yield the most stable performance (i.e.,

a decreasing function of stress) for a wide range of values for λ2. Thus, they are strongly recommended

compared to other M -estimators. The greatest range of λ2 values, where the proposed HQMMDS and

HQAMDS algorithms attain a smaller raw stress σr(X̂) than RMDS, is captured with the use of `2

M -estimator.

The Geman McClure estimator was extremely inefficient in both forms. The log-cosh estimator was

superior than the RMDS for a wide range of λ2 values in both versions of the multiplicative form.

However, the critical tuning of the parameter a was found to be difficult enough. Its additive form should

be avoided. The `1 − `2 estimator exhibits in both forms a better performance than the RMDS for a

narrow range of λ2 values compared to that achieved by the Welsch, Cauchy, and Fair M -estimators.

Huber and Tukey M -estimators exhibit comparable performance with that of Welsch, Cauchy, and Fair

M -estimators, but their tuning seems to be rather difficult.

Kernel size of the potential function: A well-tuned parameter a can definitely minimize the influence

of outliers and noise. It can be estimated from the data or may be determined empirically. For example,

the kernel size of the Welsch M -estimator in both forms can be determined by a2 =
‖LX−Y‖2F

2Nd [34] or

alternatively by applying Silverman’s rule [40]. It has been attested that both rules yield similar values

with a tendency to select a rather small kernel size. Let â be the kernel size estimated by either of the

two rules. A rule of thumb is to set a = ξâ for ξ ∈ [2, 5]. The parameter a of the Cauchy and Fair

M -estimators can similarly be set equal to the Welsch M -estimator kernel size.

The experimental results validate that when the kernel size a of the Welsch potential function becomes

larger, then the region where the MSE metric is applicable expands. Under these circumstances, the

performance of the Welsch M -estimator approximates that of the `2 M -estimator. These remarks were

also validated for the Cauchy, Fair, Huber and Tukey M -estimators. It should be accentuated, however,

that the value of the parameter a, above which the equivalence with the `2 M -estimator takes place,

is different for each M -estimator and depends highly on the data. On the contrary, a small kernel size

October 22, 2016 DRAFT



26 IEEE TRANSACTIONS ON SIGNAL PROCESSING

of the Welsch potential function shrinks the region where the `2 norm is applied, while the `1 and `0

regions are enlarged. Nonetheless, a large value of a impedes the derivation of the optimal embedding,

which takes place for a larger value of λ2. Thus, if user’s objective is a wide range of λ2 values where

the proposed algorithms are more efficient than the RMDS w.r.t the raw stress σr(X̂), then a large value

of a (much larger than the values predicted in [34] and [40]) should be chosen. If the objective is to find

the true configuration quickly, then a small value of a is recommended.

Parameter selection within HQAMDS and HQMMDS: The performance of the proposed multiplicative

forms depends on three parameters: the regularization weights λ1 and λ2 as well as the parameter a

for each M -estimator. The performance of the proposed additive form depends also on the constant

c, appearing in the minimizer function δA(·). The choice of these parameters should be made in the

following order: λ1, a, λ2 for the multiplicative form and λ1, c, a, λ2 for the additive form. Regarding

the parameter c, the typical choice is c = φ′′(0).

Assuming that the MAD of the nominal errors σε is known, then λ1 can be estimated as λ1 = 3, 99σε

borrowing the expression, which is valid for the Huber M -estimator. Otherwise, one may exploit the plot

of Ŝ versus λ1 in the implementation of RMDS. The value of λ1 where this curve exhibits an elbow

should be selected. It has been proven that the resulting embedding, for this value of λ1, is in close

proximity with that corresponding to the RMDS minimum raw stress σr(X̂).

Regarding the parameter λ2, one may exploit the procedure for estimating λ̂CLS in [41, eq. 11]. Then,

λ2 = λ̂CLS × max(δ̃ij)
max(δij)

, where max(δ̃ij) is the maximum value of the contaminated dissimilarity matrix

and max(δij) is the maximum value of the initial non-contaminated dissimilarity matrix.

Algorithm comparison: Even though the additive and the multiplicative forms solve the same HQ

optimization problem, their performance appears to be rather different. Theoretically speaking, both

forms should yield indistinguishable results with respect to all figures of merit for the same M -estimator,

provided that the parameter a for the potential function is effectively tuned for each data set. Nevertheless,

the multiplicative form appears to be more adaptable, since the tuning of a is found to be simpler than

that in the additive form.

The computational complexity of both forms is the same. A thorough exploration in a variety of data

sets has indicated that the multiplicative form requires fewer iterations than the additive one to converge.
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Hence, the multiplicative form of the HQ minimization is recommended for configurations contaminated

with outliers. Furthermore, exhaustive experiments have demonstrated that the HQMMDS2 requires more

iterations than the HQMMDS1 to converge, rendering it eventually more time consuming.

It has been demonstrated, in practice, that both versions of the multiplicative form for the same

parameter a yield similar results with respect to all figures of merit, provided that the parameter a

admits such a large value (much larger than that determined in [34] and [40]) so that the Welsch

(Cauchy or Fair) M -estimator approximates the `2 estimator. This can be attributed to the fact that

both methods, even though they require different iteration numbers, converge to weights that are equal

to 1, delivering eventually almost identical configurations. However, when a is small, it appears that

HQMMDS2 is affected by λ2 less than HQMMDS1. In such a case, the derivation of the optimal

embedding in HQMMDS2 takes place for a larger value of λ2 than that required for HQMMDS1. When

a is much smaller than the value predicted in [34] and [40], HQMMDS1 is not recommended due to a

poentially unstable performance. In such a case, HQMMDS2 is preferable. On the contrary, if a is much

larger than the values determined in [34] and [40], then HQMMDS1 is recommended.

To sum up, parameter a can be easily tuned within the multiplicative form of HQ. For this reason,

it is more preferable than the additive form. Furthermore, it is advised to select a large value of a, to

achieve stability, and then to implement HQMMDS1 since it yields similar results with the HQMMDS2,

but requires less iterations to converge.

Computational time: The proposed algorithms entail fewer iterations than RMDS until convergence in

many cases. However, each iteration of HQ minimization for MDS requires a slightly larger computational

time than RMDS. This is due to the incorporation of P in the multiplicative form or H in the additive

form, even though their estimation is not computationally demanding.

Computational complexity: At each iteration, the alternating minimization procedure in HQMMDS1

involves the updates of O, P, and X. The update of an N ×N matrix O entails the solution of N(N−1)
2

Lasso problems, each requiring O(d) computations, leading totally to O(N2d) operations. The updates

of the N × N matrices L+ and P incur O(N2) operations at each iteration. The update of X in (33)

encompasses 5 matrix multiplications with O(N3) total operations in the worst case. The inversion of the

N×N matrix (LTP(t+1)L+λ2I) involves O(N3) operations in the worst case, depending on the inversion
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algorithm. Thus, the total computational complexity per iteration is dominated by O(N3) operations in

the worst case. The same applies for the remaining proposed algorithms.

Unavailability of the outlier-free dissimilarity matrix: In this case, only the normalized outlier free

stress σ(X̂, Ô) and the number of outliers Ŝ can be used as figures of merit. In order to assess the

efficiency of the proposed methods, HQMMDS or HQAMDS is implemented for a reasonable range

of λ2 values, having selected λ1 according to the elbow rule. Then the embedding with the minimum

value of Ŝ is selected. Extensive experiments have demonstrated that this embedding is very close to

that corresponding to the minimum raw stress σr(X̂), which indicates that the true configuration is best

approximated. If the number of outliers Ŝ is approximately constant for a wide range of λ2 values, then

the embedding with the minimum value of σ(X̂, Ô) is chosen. Even in highly contaminated environments,

no matter if the initial dissimilarity matrix is available or not, the proposed HQMMDS and HQAMDS

algorithms can find an embedding, whose distortion from the true configuration is quite smaller compared

to the state of the art techniques.

Outlook: To determine whether a given dissimilarity matrix is contaminated with outliers, one may

apply SMACOF as well as one of the proposed algorithms for λ2 = 0 (or 1) and compare their raw stress

σr(X̂) values. If the raw stress estimated by SMACOF is smaller than that estimated by the proposed

algorithms, the dissimilarity matrix is not contaminated.

Several real data sets encompass inherently a small proportion of outliers due to remarkably disparate

behavior of entities, which inevitably leads to a diversity of measurements. It has been proved that the

proposed algorithms exhibit superior performance than SMACOF algorithm for a fairly small range of

λ2 values (e.g., λ2 ∈ [1, 5]) in such data sets. This is due to the fact that the proposed algorithms are

appropriate if and only if the dissimilarity matrix is contaminated with outliers. The inherent existence

of outliers in such data sets is diminished quickly with small values of the regularization parameter λ2.

In an outlier-free dissimilarity matrix, the SMACOF has been proven to be better than the proposed

algorithms.
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VIII. CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS

A new, efficient HQ framework has been introduced for solving the MDS problem in the presence

of outliers. The proposed framework has been compared with three state-of-the-art MDS techniques

(i.e., SMACOF, REE, RMDS) under the same conditions. The experimental results indicate that the HQ

minimization, in either additive or multiplicative form, performs substantially better than the aforemen-

tioned competing techniques in all cases. For any given configuration contaminated with outliers, it has

been demonstrated that it is possible to find an M -estimator so that the HQ framework outperforms

the state of the art MDS techniques. Moreover, the HQMMDS2 algorithm appears to be suitable for

parallel implementation, because each dimension of the coordinates can be computed separately. This is

critical in big data problems emerging in scientific visualization and data mining as well as in real-time

implementations of an iterative MDS in the context of sensor networks.

It is worth mentioning that all possible variants of the proposed models were not explored. For instance,

the ‖X‖2,1 norm as a regularization term could also be useful in the additive and multiplicative form.

The estimation of the kernel size of any potential function within HQMMDS and HQAMDS could be

another subject of future research.
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