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Abstract

This paper introduces the Graph Embedded One-Class Support Vector Machine

and Graph Embedded Support Vector Data Description methods. These methods

constitute novel extensions of the One-Class Support Vectors Machines and Sup-

port Vector Data Description, incorporating generic graph structures that express

geometric data relationships of interest in their optimization process. Local or

global relationships between the training patterns can be expressed with single

graphs or combinations of fully connected and kNN graphs. We show that the

adoption of generic geometric class information acts as a regularizer to the solu-

tion of the original methods. Moreover, we prove that the regularized solutions for

both One-Class Support Vector Machine and Support Vector Data Description are

equivalent to applying the original methods in a transformed (and shared) feature

space. Qualitative and quantitative evaluation of the proposed methods shows that

they compare favorably to the standard OC-SVM and SVDD classifiers, respec-

tively.
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Support Vector Data Description, Graph-based Regularization.
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1. Introduction

Media data classification involves the analysis of video streams in order to ex-

tract semantic visual information related to, e.g., face recognition, human action

recognition, video summarization and many other visual data classification tasks.

In some cases, recognizing a specific class (usually called target class), e.g., the

recognition of the leading actor in a movie, is more important that distinguishing

any other classes (in such an application data forming such classes can be con-

sidered as outliers). In addition, classes of interest are usually easier to sample

and annotate. In our previous example, it is expected that the leading actor will

appear multiple times during the entire movie, and he (or she) will be easier to be

identified by an annotator. In order to efficiently model a class of interest in media

classification tasks, we consider the use of One-Class Classification (OCC) meth-

ods [1, 2, 3, 4, 5]. Related OCC applications include hyperspectral image classi-

fication [3], video summarization [6, 7], image segmentation [8]. Other OCC use

case scenarios include applications when only one class is well sampled and must

be distinguished from every other possibility, e.g., medical diagnostic problems,

faults and failure detection, video surveillance and mobile fraud detection [9].

Perhaps the two most successful OCC methods are the One-Class Support

Vector Machine (OC-SVM) [1] and the Support Vector Data Description (SVDD)

methods [2]. OC-SVM discriminates the target class from the rest of the world by

calculating the optimal hyperplane, with a bias term, such that all training data pat-

terns are classified to the target class. The optimal hyperplane can be expressed as

a linear combination of the training data patterns that fall close (or on) the hyper-

plane, i.e., the so-called support vectors. SVDD follows a similar approach, where
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the target class is modeled by calculating the minimum bounding hypersphere that

encloses all (or most of the) training patterns. The support vectors in this case are

the training patterns that lie close to the optimal hypersphere enclosing most of

the training data and satisfying a constraint minimizing its volume. Both OC-

SVM and SVDD have been successfully applied in many one-class classification

problems, where class uni-modality (either in the input or in the kernel space) is

assumed. However, since the solution of both methods exploits information of

samples belonging to the class boundaries, the obtained solutions do not consider

the class distribution [10], rendering them sub-optimal for multi-modal classes

and in the appearance of outliers.

In multi-class classification tasks, learning a discriminant space by considering

the data distribution is important to achieve increased classification performance.

To this end, the low-dimensional projection can be optimized by maximizing the

geometric mean of the divergences and normalized divergence sbetween the dif-

ferent pairs of classes, at the same time [11]. Especially in image classification,

the dimensionality of the feature space may be higher than the number of training

samples, thus tensor-based image representation combined with subspace learn-

ing have been proposed in [12]. Besides the class distribution, multi-modal infor-

mation can be incorporated through graph-based learning methods [13, 14]. For

example, different features can be combined with labeling information under a

probabilistic framework, in which the probability distributions express high-order

distances between data points [13]. Data multi-modality can also be expressed in

a space of reduced dimensionality which incorporates geometric pairwise infor-

mation between uni-modal [15] or multi-modal descriptors [16]. Uni-modal or

multi-modal information contained in graph structures have been also exploited
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in recently proposed multi-class classification methods [17, 18], with decent re-

sults. Moreover, information contained in graph structures has been exploited in

the semi-supervised classification case. In [19], kNN graphs are employed for

manifold regularization, so that local geometric data relationships between la-

beled and unlabeled data are expressed in the deformed space. The corresponding

semi-supervised OCC method has been proposed in [3].

In the OCC case, the exploitation of within-class multi-modal information

in order to improve classification performance, has not been thoroughly consid-

ered. However, manifold regularization techniques have been proposed to this

end. Considering the data distribution in the optimization process of the OC-

SVM [10] and SVDD [20], e.g. by employing the data covariance matrix, leads to

a regularized solution that emphasizes on the low variance directions. However,

there might be cases where the target class will form multiple subclasses which are

related to, e.g., illumination changes or different viewing angles [18, 21]. Thus,

employing the methods proposed in [10] and [20] does not model the subclass

properties of the target class, sufficiently. To this end, one could employ kNN

graphs in the OC-SVM optimization process as in [3] (for the supervised clas-

sification case). By employing kNN graphs, local geometric data relationships

between the training data may be sufficiently modeled. However, since there is no

consideration about the data distribution in the optimization process, the obtained

solution might be sub-optimal.

In this paper, we describe a generic Graph Embedding framework for OC-

SVM and SVDD, that models intrinsic geometric data information of the target

class in the OC-SVM and SVDD optimization process. In order to exploit such

geometric information in the proposed framework, we employ graph structures
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that describe local or global relationships between the training patterns, or com-

binations of fully connected and kNN graphs. Using this framework, the standard

OC-SVM and SVDD methods [1, 2], as well as the covariance based OC-SVM

and SVDD approaches [10, 20] can be considered as special cases of the proposed

approach, when a specific type of fully connected graph is employed. Moreover,

the proposed method allows us to create graphs which describe subclass infor-

mation, e.g. by applying data clustering. In addition, by employing a generic

description of the data relationships being exploited in both optimization prob-

lems, the proposed methods can be directly applied by using any kind of graph

structure, allowing us to exploit a priori information for the problem to be solved.

Such graphs can either be automatically created (e.g. the k-NN graph) or be de-

signed specifically for the targeted application (e.g. a hand-crafted graph provided

by a human expert).

We show that the adoption of generic geometric class information in one-

class classification has the effect of regularization. Moreover, we prove that the

obtained regularized solutions for both One-Class Support Vector Machine and

Support Vector Data Description are equivalent to mapping the input space to a

new feature space of specific structure (which is the same for both OC-SVM and

SVDD). At that feature space, the application of the original methods is equivalent

to the application of the regularized methods in the input space. This analysis ver-

ifies the findings of prior works [22, 23] denoting that the two methods are closely

related. In addition, it allows us to use efficient OC-SVM and SVDD implemen-

tations for obtaining general solutions incorporating geometric data information

in one-class classification problems [24, 25].

In summary, the contributions of the paper are as follows:
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• Two novel extensions of the OC-SVM and SVDD methods which can ex-

ploit generic data relationships encoded in graph structures are proposed.

• We show that the solutions of the proposed GE-OC-SVM and GE-SVDD

methods is equivalent to the solution of the original methods in a trans-

formed feature space. Moreover, we prove that this transformed kernel

space is the same for both GE-OC-SVM and GE-SVDD methods.

• We show that geometric data relationships encoded in multiple graph struc-

tures can also be employed in order to regularize the solution of the GE-

OC-SVM and GE-SVDD methods.

• We evaluate the proposed methods and compare their performance with re-

lated ones in a wide range of applications, i.e. face recognition, human

action recognition, video summarization and generic one-class classifica-

tion problems. The proposed methods compare favourably to the competing

ones.

The remainder of this paper is structured as follows. In Section 2, we de-

scribe in detail the proposed methods and provide a discussion explaining their

connection with other methods. Experiments conducted in order to evaluate the

performance of the proposed approach are provided in Section 3. Finally, conclu-

sions are drawn in Section 4.

2. Method Description

In this section, we start by briefly describing the Graph Embedding framework

for supervised subspace learning in Subsection 2.1. Subsequently, in Subsections
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2.2 and 2.3, we describe in detail the proposed Graph Embedding One-Class SVM

and Graph Embedding SVDD methods, respectively. Next, in Subsection 2.4, we

describe how multiple Graph types can be combined in the GE-OC-SVM and

GE-SVDD optimization processes. Finally, in Subsection 2.5, we discuss the

connection of the proposed methods with other related methods, the differences

between them, as well as the computational complexity of the proposed methods.

Important notations used in the entire paper are summarized in Table 1.

Table 1: Nomenclature

Notations Descriptions

xi ∈ RD, i = 1, . . . , N A dataset consisting of N training patterns xi, with feature dimensionality D.

φ(·) : RD 7→ F Any non linear function that maps the training patterns from the input space to the kernel space.

Φ ∈ F ,Φ = [φ(xi, . . . , φ(xN)] A matrix that contains the training data representations in F .

K ∈ RN×N ,K = ΦTΦ The kernel matrix which contains dot products between the training pattern representations in F .

w The OC-SVM hyperplane.

a, R The hypershere center a and Radius R of SVDD.

λi, `i The Lagrange multipliers corresponding to the constraints of the OC-SVM and SVDD optimization problems.

β ∈ RN A reconstruction vector employed to represent the hyperplane w in F , such that w = Φβ.

G = {Φ,A} Undirected weighted graph, describing connections in F between the training data representations Φ.

A,D,L ∈ RN×N A is the graph weight matrix, D is the Degree and L is the Laplacian matrix.

S = ΦLΦT Matrix encoding geometric data relationships in the GE-OC-SVM and GE-SVDD optimization processes.

2.1. Graph Embedding

In this section, we describe how geometric data relationships can be expressed

by employing the graph embedding framework [15], which has been proposed for

dimensionality reduction and manifold learning. This approach can also be used to

describe geometric data relationships for the supervised learning case [17, 18, 26].

Let G = {Φ,A} be an undirected weighted graph, where it is assumed that the

training data representations in F , i.e. Φ = [φ(x1), . . . , φ(xN)], form the vertex

set of the graph and A ∈ RN×N is the graph weight matrix. The graph Laplacian

matrix L ∈ RN×N is defined by L = D−A, where D ∈ RN×N is the (diagonal)
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degree matrix having elements [D]ii =
∑

i 6=j[A]ij, i = 1, . . . , N . L can be used in

order to describe geometric data relationships employed in several dimensionality

reduction and manifold learning techniques, such as Principal Component Anal-

ysis (PCA), Linear Discriminant Analysis (LDA), Clustering-based Discriminant

Analysis (CDA), Laplacian Eigenmap (LE) and Locally Linear Embedding (LLE)

[15]. For example, the scatter of the training data used in PCA can be expressed

by:

ST =
1

N
Φ

(
I− 1

N
11T

)
ΦT = ΦLTΦT , (1)

where I ∈ RN×N is the identity matrix and 1 ∈ RN is a vector of ones.

In the case where the data form subclasses, e.g. in visual-based activity recog-

nition applications when the data correspond to different activities or camera view

angles, subclasses can be determined in the feature space by employing the kernel

K-means algorithm [27]. In this case the scatter of the training data, forming Z

groups or subclasses, can be expressed by:

Sw = Φ

(
I−

Z∑
z=1

1

Nz

1z1
T
z

)
ΦT = ΦLwΦT , (2)

where Nz is the total number of patterns belonging to cluster z and 1z ∈ RN is a

vector having ones in its elements that correspond to data belonging to subclass z

and zeros everywhere else.

In order to exploit local geometric information, pair-wise similarities between

the graph vertices can be expressed by adopting the heat kernel function:

aij = exp

(
−||φ(xi)− φ(xj)||

2
2

2σ2

)
, (3)

where σ is a parameter scaling the Euclidean distance between φ(xi) and φ(xj).
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Finally, a kNN graph weight matrix is formed such that:

[A]ij =

 aij, if φ(xj) ∈ Ni
0, otherwise,

where Ni denotes the neighborhood of xi in the feature space F . Subsequently,

the scatter matrix describing local data relationships is obtained by:

SkNN = Φ(D−A)ΦT = ΦLkNNΦT . (4)

By comparing (1), (2) and (4), we can observe that both global and local geo-

metric data relationships can be expressed by using a generic matrix of the form:

SX = ΦLXΦT , (5)

where the subscript X denotes the adopted graph type. In what follows, we drop

the subscript X for notation simplicity. We will employ such a matrix in order to

formulate the proposed Graph Embedded OC-SVM and Graph Embedded SVDD

classifiers in the following Subsections.

2.2. Graph Embedded One-Class Support Vector Machines

Within the one-class classification framework, we would like to obtain a deci-

sion hyperplane w ∈ F , by using an optimization problem that exploits geometric

data relationships expressed in a matrix S (5). We propose the Graph Embedded

One-Class Support Vector Machines (GE-OC-SVM) optimization problem to this

end:

min
w,ξi,ρ

1

2
wTSw +

1

νN

N∑
i=1

ξi − ρ (6)

s.t. : wTφ(xi) ≥ ρ− ξi, i = 1, . . . , N, (7)

ξi ≥ 0, i = 1, . . . , N, (8)
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ξi, i = 1, . . . , N are the slack variables, ρ is the bias term and ν > 0 is a pa-

rameter that defines a trade-off between minimizing the two terms. An additional

constraint wTSw ≥ 0 is also imposed to ensure the positive definiteness of S.

The dimensionality of F is determined by the adopted kernel function choice. For

example, the dimensionality of F in the case where the linear kernel function is

used is D, while it is infinite when the RBF kernel function is used. In the case

whereF is of arbitrary dimensions, S might be singular. Thus, in order to improve

numerical stability, we employ a regularized version of S such that:

S̃ = ΦLΦT + rI, (9)

where r is a regularization parameter ensuring the positive definiteness of S and

I is the identity matrix of appropriate dimensions. Based on Representer theorem

[28], the non-linear decision hyperplane w can be expressed as a linear combi-

nation of the training data representations in F , by using a reconstruction vector

β ∈ RN such that:

w = Φβ. (10)

Thus, the optimization problem in (6)-(8) can be redefined by using (9) and (10)

as follows:

min
β,ξi,ρ

1

2
βT (KLK + rK)β +

1

νN

N∑
i=1

ξi − ρ (11)

s.t. : βTki ≥ ρ− ξi, i = 1, . . . , N, (12)

ξi ≥ 0, (13)

where K = ΦTΦ is the kernel matrix and ki is a vector containing the dot prod-

ucts between the i-th training pattern with all the training patterns in F (i.e. the
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i-th column of K). Based on KKT conditions, this optimization problem can be

solved by determining the saddle points of the Lagrangian:

L(β, ξi, ρ) =
1

2
βT (KLK + rK)β +

1

νN

N∑
i=1

ξi − ρ

−
N∑
i=1

λi
(
βTki − ρ+ ξi

)
−

N∑
i=1

`iξi, (14)

where λi and `i are the Lagrange multipliers corresponding to the constraints (27)

and (28). The optimization can be achieved when the following optimality condi-

tions are met:

ϑL(β, ξi, ρ)
ϑβ

= 0⇒(KLK + rK)β =
N∑
i=1

λiki, (15)

ϑL(β, ξi, ρ)
ϑξi

= 0⇒`i =
1

νN
− λi, (16)

ϑL(β, ξi, ρ)
ϑρ

= 0⇒
N∑
i=1

λi = 1. (17)

From (15), the reconstruction vector β is given by:

β = (KLK + rK)−1 Kλ, (18)

where λ = [λ1, . . . , λN ]
T is a vector containing the Lagrange multipliers. Thus,

the optimal hyperplane w can be calculated through (10). The training vectors xi

corresponding to λi 6= 0 are called support vectors. In order to recover the term ρ

we can employ any support vector xi whose co-efficient λi satisfies 0 < λi <
1
νN

:

ρ = wTφ(xi) =
N∑
j=1

βjκ(xj,xi), (19)

where κ(xj,xi) expresses data similarity in F between xj and xi. By substituting

(15), (16) and (17) in (14) the Lagrangian function of GE-OC-SVM problem takes
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the following form:

L = −1

2
λTK(KLK + rK)−1Kλ. (20)

Finally, the response of the classifier for a test pattern vt ∈ RD is given by:

f(vt) = wTφ(vt)− ρ = βTkt − ρ, (21)

where kt = ΦTφ(vt) = [κ(vt,x1), . . . , κ(vt,xN)]
T is a vector that contains the

dot products of the test pattern vt with all training patterns xi in F . The test

pattern vt is classified to the target class when f(vt) ≥ 0.

In order to employ standard OC-SVM implementations, we can employ a de-

formed version of the kernel K, such that:

κ̃(xj,xi) =
1

r

[
I− (L + rK−1)−1L

]
κ(xj,xi). (22)

All auxiliary steps followed to derive (22) can be found in Appendix A.

2.3. Graph Embedded SVDD

As in GE-OC-SVM, we would like to exploit geometric data relationships

within the SVDD optimization problem. We follow the same approach as before

by exploiting a generic graph structure defining the (regularized) matrix S̃ that ex-

presses geometric information as in (9). We would like to calculate the minimum

bounding hypershere that encloses (most of) the training data representations in

F , where a is the hypershere center and R the minimum radius. We formulate the

proposed Graph Embedded SVDD (GE-SVDD) optimization problem as follows:

min
R,ξi,u

R2 + c

N∑
i=1

ξi (23)

s.t. :
(
φ(xi)− a

)T
S̃−1
(
φ(xi)− a

)
≤ R2 + ξi, (24)

ξi ≥ 0, i = 1, . . . , N, (25)
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where ξi, i = 1, . . . , N are the slack variables and c > 0 is a parameter that affects

the optimal radius R by allowing some training errors. As can be observed from

(24), the proposed GE-SVDD problem defines a distance function in which each

dimension is appropriately scaled based on the matrix S̃ expressing geometric data

relationships of interest. By defining a vector u = S̃
1
2 a, the problem in (23)-(25)

can be expressed as follows:

min
R,ξi,u

R2 + c
N∑
i=1

ξi (26)

s.t. : ‖S̃−
1
2φ (xi)− u‖22 ≤ R2 + ξi, (27)

ξi ≥ 0, i = 1, . . . , N, (28)

Based on (KKT) conditions, the corresponding Lagrangian function is given by:

L(R, ξ,u) = R2 + c
N∑
i=1

ξi −
N∑
i=1

`iξi−

−
N∑
i=1

λi

(
R2 + ξi − ‖S̃−

1
2φ (xi)− u‖22

)
, (29)

where λi and `i are the Lagrange multipliers corresponding to the constraints (27)

and (28).

By calculating the saddle points of the Lagrangian, we obtain the following

optimality conditions:

ϑL(R, ξ,u)
ϑu

= 0⇒u =
N∑
i=1

λiS̃
− 1

2φ (xi) (30)

ϑL(R, ξ,u)
ϑξi

= 0⇒`i = c− λi, (31)

ϑL(R, ξ,u)
ϑR

= 0⇒
N∑
i=1

λi = 1. (32)
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From (31) and (32), (31) is satisfied when 0 ≤ λi ≤ c [2]. The vector u is calcu-

lated using (30), while the relative to u hypersphere center a can be calculated as

follows:

a = S̃−1Φλ, (33)

where λ = [λi, . . . , λN ]
T is a vector containing the Lagrange multipliers and

Φ = [φ(xi), . . . , φ(xN)] is a matrix that contains the data representations in the

feature space F .

The Lagrangian function of GE-SVDD, after replacing equations (30), (31)

and (32) in (29), takes the following form:

L =
N∑
i=1

λiφ(xi)
T S̃−1φ(xi)−

N∑
i=1

N∑
j=1

λiλjφ(xi)
T S̃−1φ(xj). (34)

The optimal radius R can be calculated as the distance of the hypersphere center

to a support vector [2], i.e.:

R2 = {min ‖S̃−
1
2φ (xi)− u‖22, xi is a SV}. (35)

The response of the classifier for a test pattern vt is given by:

f(vt) = R− ‖S̃−
1
2φ(vt)− u‖2, (36)

and vt is classified to the modeled class if it falls inside the hypersphere defined

by the radius R and center a.

By observing the dual optimization problem of GE-SVDD in (34) and com-

paring it with that of the standard SVDD [2], we can conclude that the solution

of the proposed GE-SVDD classifier is equivalent to the solution of SVDD in a

transformed feature space, defined as follows:

κ̃(vt,vt)− 2
N∑
i=1

λiκ̃(vt,xi) +
N∑
i=1

N∑
j=1

λiλjκ̃(xi,xj) 6 R2, (37)
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where κ̃ is the deformed kernel space where the geometric data relationships have

been expressed. As proven in Appendix B, this space is the same as the one

obtained for the GE-OC-SVM classifier (22).

2.4. Graph Embedded OCC exploiting multiple graphs

The proposed GE-OC-SVM and GE-SVDD methods can exploit single or

multiple graph types, in their optimization processes. In this Subsection, we

demonstrate the general case of M graphs. Let M undirected graphs Gj =

{Φ,Aj}, j = 1, . . . ,M , expressing different reltionships between the vertex set,

formed by the training data representations in the feature space Φ = [φ(xi), . . . , φ(xN)]

and Aj is the j-th graph weight matrix. By employing the graph embedding

framework described in Subsection 2.1, a combination of geometric data relation-

ships described in the M graphs can be expressed in a matrix S as follows:

S = µ1S1 + · · ·+ µMSM =

= µ1ΦL1Φ
T + · · ·+ µMΦLMΦT

= Φ (µ1L1 + · · ·+ µMLM)ΦT , (38)

where Sj is the matrix formed for the j−th graph and Lj is the corresponding

Laplacian matrix. The geometric data relationships of the M graphs can be com-

bined using a weight parameter µj for each Laplacian matrix. In order to alleviate

the effect of over-regularization caused by employing multiple graphs, we restrict

the parameter µj ∈ [0, 1] and demand that
∑M

j=1 µj = 1.

Essentially, the parameters µj denote the membership of each graph in the

regularization. If we assume that all graph types present equally important in-

formation about the training data, µj can be set equal to µj = 1/M . In the case

where two graphs are employed, and we would like to set different weights in each
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graph (i.e. in the case where one of the employed graph types is hand-crafted),

only one parameter needs to be tuned if we set µ1 = α and µ2 = 1 − α, where

α ∈ [0, 1]. In our experiments, we employ a combination of two automatically

generated graphs, with weights α and 1 − α, respectively. First, we employ a

graph that represents the class distribution with respect to subclass information,

mentioned in equation (2), along with the kNN graph described in equation (4),

which implies that local geometric data relationships should be preserved as well.

Finally, since S can be defined in feature spaces of high (or even infinite)

dimensionality, we adopt a regularized version such that:

S̃ = Φ (µ1L1 + · · ·+ µMLM)ΦT + rI, (39)

where r is a regularization parameter. In order to employ multiple graphs in the

OC-SVM and SVDD optimization processes, we define a matrix L̃ ∈ RN×N as

follows:

L̃ = µ1L1 + · · ·+ µMLM , (40)

and replace it with L in (22) as follows:

κ̃(xt,xi) =
1

r

[
I− (L̃ + rK−1)−1L̃

]
κ(xt,xi). (41)

Finally, in order to solve the GE-OC-SVM or GE-SVDD optimization problems

with multiple graphs, we can employ standard OC-SVM or SVDD implementa-

tions, by employing the deformed kernel matrix defined in (41).

2.5. Discussion

The proposed GE-OC-SVM and GE-SVDD optimization processes are equiv-

alent to a two-step process where both training and test patterns are mapped from
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the input space to a deformed kernel space followed by the application of the orig-

inal OC-SVM and SVDD methods. As detailed in Appendix A and Appendix B,

the derived space is the same for both GE-OC-SVM and GE-SVDD, which is in-

line with related literature [1, 23] showing that (in the case where a normalized

kernel function is used) the solutions of OC-SVM and SVDD are identical.

In the following, we also show that the proposed approach can be seen as a

general way of incorporating geometric data information in one-class classifica-

tion models. This means that most of the existing methods following the OC-SVM

and SVDD formulations are special cases of the proposed methods. We can iden-

tify the following cases:

• No geometric data information is used: This case corresponds to the choice

of L = 0, where 0 is a matrix of zeros. In this case the proposed GE-OC-

SVM and GE-SVDD methods degenerate to the OC-SVM [1] and SVDD

[2] methods.

• The total variance of the (unimodal) class is used: This case corresponds

to the choice of L = LT (given in (1)). In this case the proposed GE-OC-

SVM degenerates to the method of [10] and the GE-SVDD degenerates to

the method of [20].

Here we should also note that local geometric information expressed by kNN

graphs has also been exploited in a semi-supervised one-class classification set-

ting, as in [3] where the Laplacian One-Class SVM (LAP-OC-SVM) is proposed.

However, LAP-OC-SVM assumes that the training set is formed by data belong-

ing to both positive and negative classes (in fact LAP-OC-SVM is modeled as a

two-class classification model). The assumption of LAP-OC-SVM is that, while
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samples from both classes are available during the training phase, a part of the

samples forming the positive class is labeled, while the remaining data forming

the positive class (and the data forming the negative class) are unlabeled. This

problem is usually defined as the single-class classification problem [29]. On

the contrary, the proposed GE-OC-SVM and GE-SVDD methods assume that the

training set is formed only by positive data, i.e. addresses the standard one-class

classification problem. By using the graph Laplacian matrix LkNN (described in

(4)), they provide a natural way of incorporating local geometric data information

in one-class classification models.

Since the proposed methods can be solved using existing OC-SVM and SVDD

implementations, their additional computational complexity depends on the adopted

graph type. Let us consider the GE-OC-SVM case. For a dataset formed by sam-

ples xi ∈ RD, i = 1, . . . , N , the additional steps followed to derive the GE-OC-

SVM solution require:

• Deriving the Laplacian matrix L, whose complexity depends on the adopted

graph type. For example, in the case where L = LT , only multiplications

with vectors of ones are required. In the case where L = Lw, a data cluster-

ing step is required to derive the subclasses. When a heat kernel is employed

in order to determine the graphs weights A an additional computational cost

of O(DN2) is required. However, in the latter case, one can substitute the

weight matrix A with the kernel matrix K and then, truncate the elements

not corresponding to neighbors. This approach allows us also to address

scaling issues that may appear in cases where different distance metrics are

employed for K and A calculation.

• Kernel space deformation using (22). This includes a matrix multiplication
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and an inversion, which are of O(2N3).

The computational complexity of GE-SVDD can be derived in a similar manner.

Optimization of the proposed methods also involves one additional parameter tun-

ing (r). In the case where two graphs are employed, an additional parameter a

could also be fine-tuned if required.

Finally, as has been described in subsections 2.2 and 2.3, the proposed meth-

ods exploit a generic graph description of the form:

S̃ = Φ(D−A)ΦT + rI, (42)

where [D]ii =
∑

i 6=j[A]ij, i = 1, . . . , N and [D]ij = 0, i 6= j. This fact allows us

to exploit any type of graph designed (or that will be designed) within the Graph

Embedding approach (as described in subsection 2.1). In addition, it allows us

to exploit problem-related information through the creation of appropriate graph

weights A (which may be even rule-based or hand-crafted, i.e. provided by a

human expert). An example of data relationships that can be obtained by rule-

based methods is the use of spatial video frame and temporal video information

for face recognition. In that case, facial images belonging to the same person

(determined by applying a face tracking technique) can be enforced to be similar

by assigning a high graph weight value, while facial images appearing in the same

video frame (and thus it is known that they belong to different persons) can be

enforced to be dissimilar by assigning a low graph weight value. Such information

can be of a high value, since in this way we can establish connections between

frontal and side views of a person’s face (e.g. if the person is depicted with a

frontal view and turns to a side view in the succeeding frames), which would not

be possible by exploiting distance-based criteria. In addition, very similar faces

appearing in the same frame can be better distinguished.
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3. Experiments

In this Section, we present experiments conducted in order to evaluate the

performance of the proposed GE-OCSVM and GE-SVDD methods. We perform

qualitative evaluation of the proposed methods in a 2-dimensional toy dataset and

demonstrate the effects of the introduced parameters in Subsection 3.1. In order to

perform quantitative evaluation, we applied the proposed methods in media data

classification problems. The addressed media data classification problems include

face recognition, human action recognition and video summarization, described

in Subsections 3.3, 3.4 and 3.5, respectively. Moreover, we have applied the pro-

posed method in well known standard one-class classification problems, including

publicly available medical diagnostic problems and sonar signal classification, as

described in Subsection 3.6. Information regarding the experimental protocol and

parameter settings are described in Subsection 3.2.

3.1. Qualitative evaluation of different regularization terms

In order to demonstrate the effect of the various regularization choices that

can be employed by the proposed methods, we have employed a toy dataset. In

Figure 1, we illustrate the decision functions of the GE-OC-SVM, regularized by

the total scatter of the training data. We demonstrate different settings of the pa-

rameter r. Decreasing the parameter r increases the effect of regularization in the

obtained test space. More specifically, by decreasing r, the support vectors tend

to be adjusted to low variance directions. That affects the shape of the resulting

test space, so that it resembles the distribution of the training patterns. In this spe-

cific dataset, decreasing the value of parameter r, results in enclosing the training

data in tighter boundaries. However, in the general case, decreasing the value of
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parameter r too much may lead in over-fitted models.

In Figure 2, we demonstrate the decision functions obtained by applying the

GE-OC-SVM using subclass information. Using this variant of the proposed GE-

OC-SVM, the overall class distribution is considered along with the within-class

data distributions of subclasses formed inside the training class. A different num-

ber of subclasses can be determined within the target class by applying a clustering

approach [27]. We have determined 2, 3, 5 and 10 subclasses within the employed

toy dataset. When a small number of subclasses is used, support vectors tend be

placed around the total class distribution. When a large number of subclasses is

used, the classification boundary is tightened to locations of subclass boundaries.

This is useful when the training data form subclasses and the directions corre-

sponding to the minimum variance are not appropriate to model the training data

distribution.

(a) `=0 (b) `=-1 (c) `=-2 (d) `=-3

Figure 1: Demonstrating the effect of the parameter r of GE-OC-SVM, for different values of r =

10`, by employing the total variance of the class, using ν = 0.05. As can be seen in (a),(b),(c),(d),

decreasing r, the support vectors tend to be adjusted to low variance directions. Thus, the derived

test space follows the training data distribution.
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(a) Z=2 (b) Z=3 (c) Z=5 (d) Z=10

Figure 2: Demonstrating the effect of increasing the number of subclasses GE-OC-SVM, by em-

ploying the within-subclass scatter, for a different number of subclasses Z. As can be seen in (a),

(b), (c), (d), increasing Z increases the total number of support vectors. Moreover, it enforces the

support vectors to be lying around subclasses formed inside the class, as shown especially in (d).

The rest of the parameters were set ν = 0.05 and r = 0.01, respectively. In this case, the obtained

test space is adjusted to enclose groups of training data, as well as the data distribution.

3.2. Experimental protocol

All experiments were conducted on a Windows workstation featuring 32GB

of RAM, using a MATLAB implementation. In all our experiments, we have ap-

plied the proposed method along with standard OCC methods. The competing

methods include the proposed GE-OCSVM and GE-SVDD methods, the stan-

dard One-class Support Vector Machines (OC-SVM) [1], the standard Support

Vector Data Description (SVDD) [2], the Laplacian One-Class Support Vector

Machines (LAP-OC-SVM) [3] (in its one-class classification case), the Kernel

Principal Component Analysis for Novelty Detection (KPCS) method [4] and the

Kernel Null Space Method for Novelty Detection (KNFST) [5].

The best parameter values for each completing method were determined by

using a set of parameter options and following a grid search strategy. The best set

of parameters were automatically chosen by applying the n-fold cross validation
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procedure, described in the following subsections.

For the proposed GE-OC-SVM method, we have tuned the parameter ν which

controls the errors allowed in the optimization process and essentially controls the

number of the resulting support vectors. Low values of ν limit the number of the

resulting support vectors. We have chosen the parameter ν from a set of values

l = {0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. Moreover, the kernel deformation pa-

rameter r was set to different orders of a magnitude, such that r = 10`, where

` = −4, . . . , 4. In a similar fashion, we have tuned the corresponding parameters

c and r of the proposed GE-SVDD. The parameter c was set to c = 1/Nl, and

r = 10`. Since GE-OC-SVM and GE-SVDD methods can exploit several graph

types, we have employed four graph types in the conducted experiments, as well

as a combination of two graph types. The exploited graph type is denoted with

the respective acronym, as in GE-OC-SVM-X and GE-SVDD-X, where X can be

equal to:

• ST, which denotes the use of the total scatter of the class.

• SW, which denotes the use of the within-subclass scatter, formed by Z =

{2, 3, 5} subclasses.

• FC, which denotes the use of the global geometric data relationships de-

scribed by a fully connected weighted graph.

• KNN, which denotes the use of local geometric data relationships described

in a kNN graph, where k = {5, 7}.

• SW-KNN, denotes the use of a combination of SW and KNN graphs.
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For the remaining competing methods, the best parameters were determined as

follows:

• For OC-SVM and SVDD, since they are special cases of the proposed meth-

ods, we employed the same set of parameters as in the proposed GE-OC-

SVM and GE-SVDD.

• For LAP-OC-SVM we have employed the same set of parameters as in the

GE-OC-SVM-KNN case.

• For KPCS, we have set the parameter p equal to {0.90, 0.95, 0.98}, where

p is the PCA energy preserved. We have also set the parameter N =

{0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5}, where N is a parameter denoting the

importance of the reconstruction error, in the classification process.

• In KNFST we have set the reconstruction error importance parameter N =

{0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5}.

In order to evaluate the performance of the methods we have employed the

g-mean metric [30], which incorporates both precision and recall measurements

as follows:

g =
√
prec× rec. (43)

G-mean has been designed for binary (imbalanced) classification problems, thus,

is more suitable for our experiments, when compared to other metrics, e.g. classi-

fication rate.

3.3. Experiments in Face recognition

In order to evaluate the performance of the proposed methods in face recog-

nition problems, we have employed the AR Face Database [31], the Yale Face
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Database B [32] as well as the Public Figure and Labeled Faces in the Wild (Pub-

Fig83+LFW) [33] face recognition datasets.

In our first set of experiments, we have employed the AR and Yale datasets,

which contain 2600 and 2432 frontal facial images from 100 and 38 subjects,

respectively. We have employed the normalized pixel luminosities as feature vec-

tors. To this end, the facial images were downsized to 40 × 30, and vectorized

to produce 1200-dimensional vectors. We have performed the 5−fold cross vali-

dation procedure, where we have split each dataset in 5 sets, mutually exclusive.

For each fold, we created a number of binary problems, equal to the number of

subjects, which is 100 for the AR and 38 for the Yale dataset, respectively. For

each fold, we have trained the classifiers by employing the positive training sam-

ples belonging to the target class from 4 of the 5 sets, and tested on the remaining

set, using all classes. This procedure was repeated five times, each for a test fold.

Finally we report the average obtained g-mean metrics for all target classes.

In our second set of experiments, we employed the PubFig83+LFW dataset.

We have employed the feature vectors (Histogram of Oriented Gradients, Local

Binary Patterns, and Gabor wavelet features, reduced to 2048 dimensions with

PCA), which were extracted from 13, 002 facial images representing 83 individu-

als from PubFig83, divided into 2/3 training (8720 faces) and 1/3 testing set (4, 282

faces), as well as 12, 066 images representing over 5, 000 faces which were used

as a distractor set from LFW. We have employed the first 1536 dimensions from

the 2048, as suggested in [33]. For each of the 83 individuals, we have employed

the training images for each class and tested on the respective test set of this class,

as well the 500 first images of the distractor set.

In Table 2, we report the performance obtained for all subjects (all target
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classes), in AR, Yale and PubFig83 + LFW datasets, respectively. In every case,

all proposed GE-OC-SVM and GE-SVDD variants outperformed the standard

OC-SVM and SVDD, respectively. When a single graph is employed, the best

performance was reported by employing the proposed GE-OC-SVM-SW variant

of the proposed method, which makes it suitable for face recognition applications.

The best obtained performance in AR and Yale datasets, was reported when SW

and KNN graphs were employed at the same time (GE-OC-SVM-SW-KNN).

3.4. Experiments in human action recognition

In this section, we present the experiments conducted in Human Action Recog-

nition problems. For our experiments, we have employed the i3DPost multi-view

action database [34], the IMPART Multi-modal/Multi-view Dataset [35], as well

as the Hollywood2 [36] and Hollywood3D [37] publicly available datasets. The

i3DPost dataset contains 512 high-resolution (1080 × 1920 pixel) videos depict-

ing eight human actors performing eight activities. The database camera setup

consists of eight cameras placed in the perimeter of a ring at a height of 2 meters

above the studio floor. The IMPART dataset consists of a multi-camera outdoor

setup, which consists of 14 fixed cameras placed around each subject, where each

subject is performing 12 actions. In order to automatically create short video seg-

ments depicting distinct human activities from all cameras, we have employed a

temporal video segmentation algorithm [38]. The Hollywood2 dataset consists

of 810 training and 884 test video segments, of 12 activities. Finally, the Holly-

wood3D dataset consists of 359 train and 307 test stereoscopic video segments

depicting 14 actions. In our experiments, we have employed only the right video

channel.

In order to obtain vectorial video representations for each video segment de-
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Table 2: Average g-means performance in Face recognition datasets

AR YALE PubFig83+ LFW

OC-SVM [1] 71.41 63.71 76.02

SVDD [2] 70.39 63.42 76.55

LAP OC-SVM [3] 75.07 71.64 76.95

KPCS [4] 73.23 68.61 28.77

KNFST [5] 38.18 39.25 56.50

GE-OC-SVM-FC 74.81 74.93 77.52

GE-OC-SVM-ST 75.01 75.11 77.34

GE-OC-SVM-SW 83.23 81.00 78.23

GE-OC-SVM-KNN 74.79 67.98 77.02

GE-SVDD-FC 71.86 64.90 77.20

GE-SVDD-ST 71.88 65.13 77.45

GE-SVDD-SW 73.40 66.59 77.94

GE-SVDD-KNN 74.15 68.07 77.15

GE-OC-SVM-SW-KNN 84.59 81.25 76.94
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picting one activity, we have employed the dense trajectory-based video descrip-

tion [39]. This video description calculates five descriptor types, namely the His-

togram of Oriented Gradients (HOG), Histogram of Optical Flow (HOF), Motion

Boundary Histogram along direction x (MBHx), Motion Boundary Histogram

along direction y (MBHy) and the normalized trajectory coordinates (Traj), on

the trajectories of densely-sampled video frame interest points that are tracked for

a number of consecutive video frames (7 frames are used in our experiments).

The five descriptors are calculated on the trajectory of each video frame interest

point. We haved employed these video segment descriptions in order to obtain

five video segment representations by using the Bag-of-Words model [40]. Thus,

by following this process, each video segment was represented by 5 vectors, i.e.

xdi , d = 1, . . . , 5. In order to fuse the information described in different video

representations, we have combined the video segment representations with ker-

nel methods, as in [39]. That is, we have employed the RBF kernel function,

combining different descriptor types using a multi-channel approach [41]:

k(Xi,Xj) = exp

(
−1

d

∑
d

‖xdi − xdj‖22
2σ2

d

)
, (44)

where σd is a parameter scaling the Euclidean distance between xdi and xdj . In our

experiments, we set the value of σd proportional to the mean Euclidean distance

between the xdi , i = 1, . . . , N , which is the natural scaling factor for the Euclidean

distances for each descriptor type on each dataset. After calculating the kernel

matrices for the training and test samples, we employed them in each classification

problem.

In the i3DPost and IMPART datasets, we have employed a 3-fold cross vali-

dation procedure, where we have split the datasets in 3 sets, mutually exclusive.
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Each set included videos depicting all activities. We have employed the videos

depicting each distinct activity from two sets in order to train the classifiers, and

tested on the remaining one. For each activity, we have obtained g-mean metric.

This procedure was repeated for all activities, and repeated 3 times for each fold.

In the Hollywood2 and Hollywood 3D datasets, we employed the standard train

and test videos, provided by the authors of [36, 37]. The average g-mean metrics

obtained for all activities between the folds is depicted in Table 3.

It all cases, every variant of the proposed GE-OC-SVM outperformed the stan-

dard OC-SVM, as in face recognition. The proposed GE-SVDD outperformed the

standard SVDD, in most cases. The GE-SVDD-KNN variant outperformed other

GE-SVDD variants. LAP-OC-SVM outperformed the proposed methods in IM-

PART dataset. In all other cases, the maximum performance was obtained with

the proposed GE-OC-SVM-SW-KNN method.

3.5. Experiments on video summarization

In this section, we present the experiments conducted in order to evaluate the

performance of the proposed methods in the video summarization scenario. To

this end, we have created a dataset where we seek the most interesting parts of a

movie, based on similarity to generic movie trailers, namely the IMPART-AUTH

Movie Trailer Dataset. This dataset has been created to provide a movie summa-

rization scenario, since other publicly available datasets specially created for video

summarization (e.g., [42]) provide simplistic or unrealistic video summarization

scenarios. In the case of movies, video shots appearing in movie trailers are good

examples of salient video segments, since they have been specially edited, in order

to catch the viewer attention and, at the same time, to describe the movie plot. In

order to train the classifiers, we have employed thirty movie trailers. In order to
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Table 3: Average g-means rates in Human action recognition datasets

IMPART i3DPost Hollywood2 Hollywood3D

OC-SVM [1] 61.45 74.53 58.54 55.90

SVDD [2] 61.55 74.19 58.29 56.15

LAP OC-SVM [3] 78.09 84.87 61.91 62.48

KPCS [4] 43.97 78.30 55.99 28.98

KNFST [5] 69.61 77.47 53.87 55.28

GE-OC-SVM-FC 64.94 76.09 62.53 58.22

GE-OC-SVM-ST 64.69 75.86 62.70 58.02

GE-OC-SVM-SW 65.35 77.56 64.49 59.77

GE-OC-SVM-KNN 71.70 86.52 59.66 59.82

GE-SVDD-FC 62.22 73.58 60.12 58.08

GE-SVDD-ST 62.70 74.43 59.84 58.61

GE-SVDD-SW 63.10 74.86 61.19 58.72

GE-SVDD-KNN 69.67 82.65 59.37 57.98

GE-OC-SVM-SW-KNN 77.91 87.54 66.88 64.29

30



test the summarization performance, we have employed three full-length movies.

The employed movies genres was action, adventure and drama, respectively. The

movie trailers belong to action, adventure, comedy, thriller and drama categories.

We would like to employ a one-class classification model in order to retrieve the

video segments that were employed to form the real movie trailer.

In order to segment the videos into short video segments, we have employed a

shot-cut detection algorithm [43]. This procedure resulted in 2788 video segments

of the movie trailers, 1961 for the first, 2099 for the second and 2687 for the third

movie. The ground truth contained information on whether a video segment of a

test movie was employed in order to create its own movie trailer. In the annotation

process we have observed that, in some cases, video segments that appear in the

movie trailers are shorter or contain some scenes that do not appear in the respec-

tive movies. We have annotated the longer video segments contained in movies as

salient, creating three summarization scenarios for each movie, containing a total

of 6310 non salient and 437 salient salient video segments for test. Since saliency

in this sense can be related to human activity, we have employed the Dense tra-

jectories video description [39], which is the same as the one employed in Human

action recognition problems.

We have employed the 2788 video segments of the movie trailers, in order to

train the classifiers and the 6747 video segments to test the summarization perfor-

mance. We should note here that the trailers of the three (test) movies were not

included in the training set. Experimental results are shown in Table 4. We report

the obtained g-mean, F-measure, precision and recall metrics. All variants of the

proposed GE-OC-SVM outperformed the standard OC-SVM, as well as the LAP

OC-SVM. The proposed GE-SVDD outperformed the standard SVDD, in most
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cases.

Table 4: Performance in IMPART-AUTH Movie Trailer Dataset.

G-mean F-measure precision recall

OC-SVM [1] 51.54 51.53 52.74 50.36

SVDD [2] 49.06 48.61 42.82 56.20

LAP OC-SVM [3] 48.99 48.61 43.26 55.47

KPCS [4] 50.84 50.83 52.08 49.64

KNFST [5] 44.00 37.66 78.02 24.82

GE-OC-SVM-FC 53.10 53.02 55.98 50.36

GE-OC-SVM-ST 54.14 54.03 50.82 57.66

GE-OC-SVM-SW 53.81 53.77 55.87 51.82

GE-OC-SVM-KNN 58.81 58.81 58.50 59.12

GE-SVDD-FC 48.49 47.96 41.83 56.20

GE-SVDD-ST 51.33 51.30 49.45 53.28

GE-SVDD-SW 50.45 50.23 45.89 55.47

GE-SVDD-KNN 55.52 55.51 56.30 54.74

GE-OC-SVM-SW-KNN 58.56 58.56 58.00 59.12

3.6. Experiments on standard OCC problems

In order to further evaluate the performance of the proposed GE-OC-SVM and

GE-SVDD methods, we have also employed standard One-Class Classification

problems, namely the Arrythmia (ARR), Breast Benign (BB), Breast Malignant

(BM), Diabetes (DB), Heart (HRT), Liver (LVR), Sonar Mines (SM), Sonar Rocks

(SR) and Thyroid (THR) datasets. The above mentioned datasets are publicly
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available in the UCI repository [44]. One-class versions can also be downloaded

from Pattern Recognition Laboratory, Netherlands, using the DDtools library [25],

which is the case in the present paper.

Each dataset consisted of a binary classification problem, containing positive

and negative examples. For each dataset, we have performed the 5-fold cross

validation procedure, where 80% each set of each dataset was employed for train-

ing purposes and 20% for test. We have trained the classifiers by employing the

positive examples in each dataset. The reported performance is the average per-

formance obtained between each fold. Experimental results are shown in Table

5. Each column depicts the best obtained performance for each method in each

dataset. The last column contains the average obtained performance for all the

datasets. As can be seen, in almost every dataset, all versions of the proposed

GE-OC-SVM and GE-SVDD perform consistently better than the standard OC-

SVM and SVDD, respectively, having an average 5− 7% gain, depending on the

exploited graph type. The proposed methods outperformed the competition, in

most of the cases. Finally, the performance of the proposed methods is further

enhanced when the combination of SW and KNN graphs is employed.

4. Conclusion

In this paper, we have described a generic One-Class classification framework

that exploits geometric data relationships in the OC-SVM and SVDD optimiza-

tion processes. We have shown that the adoption of geometric class information

improves the target class modeling, by acting as a regularization term. Moreover,

the proposed method can be applied using existing OC-SVM and SVDD imple-

mentations, in several One-Class classification problems.
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Table 5: G-means Rates for standard OCC problems.

ARR BB BM DB HRT LVR SM SR THR AVG

OC-SVM [1] 73.14 95.67 90.99 55.05 57.51 55.53 60.62 59.45 52.91 66.76

SVDD [2] 72.60 95.55 92.09 25.08 55.12 48.47 60.62 57.68 50.38 61.96

LAP OC-SVM [3] 39.48 93.63 24.33 57.35 55.63 56.10 52.91 56.96 65.87 55.81

KPCS [4] 54.33 80.02 23.56 55.76 50.59 50.17 72.68 55.15 62.02 56.03

KNFST [5] 72.29 96.57 80.58 45.68 47.04 42.97 54.11 48.64 50.56 59.83

GE-OC-SVM-FC 73.14 96.22 92.37 64.40 63.94 60.68 65.66 60.34 67.29 71.56

GE-OC-SVM-ST 73.21 96.22 91.89 59.22 64.23 62.80 66.92 60.86 64.78 71.13

GE-OC-SVM-SW 74.17 96.22 92.12 61.61 65.07 61.66 71.01 61.53 67.63 72.34

GE-OC-SVM-KNN 73.14 97.74 94.15 55.59 59.89 64.31 60.62 59.45 52.91 68.65

GE-SVDD-FC 73.73 95.55 95.98 49.99 58.40 56.76 61.09 59.45 53.16 67.12

GE-SVDD-ST 72.60 96.12 96.43 49.59 59.89 55.47 60.62 63.54 52.95 67.47

GE-SVDD-SW 72.60 96.68 96.27 56.91 62.98 59.90 61.09 61.84 54.04 69.15

GE-SVDD-KNN 72.60 96.68 96.27 44.41 54.43 59.06 60.62 59.45 52.91 66.27

GE-OC-SVM-SW-KNN 77.27 98.49 97.42 65.02 65.44 61.45 73.85 74.06 77.71 76.74

Future work can include inducing additional manifold learning/discriminating

criteria in the optimization process, as well as linear combinations of multiple

graph types. Our work could also be extended in the scope of automatic determi-

nation of training parameters introduced by our methods.
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Appendix A. Graph Embedded One-Class SVM solution

Here we present the auxiliary steps performed to derive in the final GE-OC-

SVM solution (22). The dual GE-OC-SVM optimization problem is given by:

L =
1

2
λTK(KLK + rK)−1Kλ. (A.1)

The solution is similar with the standard OC-SVM if we replace K̃ = K(KLK+

rK)−1K. Using the following steps, K̃ takes the form:

K̃ = K

[
1

r
K−1

1

r2
(L−1 +

1

r
K)−1

]
K

K̃ =
1

r

[
I− (L + rK−1)−1L

]
K. (A.2)

Then, the dual GE-OC-SVM optimization function is given by:

L =
1

2r
λT K̃λ, (A.3)

which is of the same form as the standard OC-SVM solution. Thus, any standard

OC-SVM implementation, e.g., [24], can be exploited to find the solution of the

GE-OC-SVM optimization problem, using the deformed kernel K̃.

Appendix B. Graph Embedded SVDD solution

In this Appendix we present the auxiliary steps performed in order to compute

the final solution of GE-SVDD. The Lagrangian function obtained after replacing

equations (30), (31) and (32) in (29) is as follows:

L =
N∑
i=1

λiφ(xi)
T S̃−1φ(xi)−

N∑
i=1

N∑
j=1

λiλjφ(xi)
T S̃−1φ(xj), (B.1)
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where λi are the Lagrange multipliers and S̃ is defined in (9). By using the Wood-

bury identity, we have:

S̃−1 =
1

r
I− 1

r2
Φ(L−1 +

1

r
K)−1ΦT . (B.2)

Replacing (B.2) in (B.1) we obtain:

L =
N∑
i=1

λiφ
T
i

(
1

r
I− 1

r2
Φ(L−1 +

1

r
K)−1ΦT

)
φi−

−
N∑
i=1

N∑
j=1

λiλjφ
T
i

(
1

r
I− 1

r2
Φ(L−1 +

1

r
K)−1ΦT

)
φj,

L =
N∑
i=1

λi

(
1

r
kii −

1

r2
kTi (L

−1 +
1

r
K)−1ki

)
−

−
N∑
i=1

N∑
j=1

λiλj

(
1

r
kij −

1

r2
kTi (L

−1 +
1

r
K)−1kj

)
,

L =
N∑
i=1

λi

(
1

r
kii −

1

r2
kTi (L

−1 +
1

r
K)−1ki

)
−

−λT
(
1

r
K− 1

r2
K(L−1 +

1

r
K)−1K

)
λ. (B.3)

We observe that the solution of the GE-SVDD is equivalent to solution of the stan-

dard SVDD, in a different space. In order to exploit standard SVDD implemen-

tations, we can employ the following matrix in the standard SVDD optimization

problem:

K̃ =
1

r
K− 1

r2
K

(
L−1 +

1

r
K

)−1
K,

K̃ =
1

r
K− 1

r2
K
[
rK−1(L + rK−1)−1L

]
K,

K̃ =
1

r
K− 1

r
(L + rK−1)−1LK,

K̃ =
1

r

[
I− (L + rK−1)−1L

]
K. (B.4)
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Thus, the derived space for GE-SVDD (B.4) is equivalent to the one GE-OC-

SVM, found in (A.2).
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