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Abstract—The Visual Voice Activity Detection (V-VAD) prob-
lem in unconstrained environments is investigated in this paper.
A novel method for V-VAD in the wild, exploiting local shape
and motion information appearing at spatiotemporal locations
of interest for facial video segment description and the Bag
of Words (BoW) model for facial video segment representation,
is proposed. Facial video segment classification is subsequently
performed using state-of-the-art classification algorithms. Exper-
imental results on one publicly available V-VAD data set, denote
the effectiveness of the proposed method, since it achieves better
generalization performance in unseen users, when compared to
recently proposed state-of-the-art methods. Additional results on
a new, unconstrained data set, provide evidence that the proposed
method can be effective even in such cases in which any other
existing method fails.

Index Terms—Voice Activity Detection in the wild, Space-Time
Interest Points, Bag of Words model, kernel Extreme Learning
Machine, Action Recognition

I. INTRODUCTION

HE task of identifying silent (vocal inactive) and non-

silent (vocal active) periods in speech, called Voice
Activity Detection (VAD) has been widely studied for many
decades using audio signals. In the last two decades, though,
considerable attention has been paid to the use of visual
information, mainly as an aid to the traditional Audio-only
Voice Activity Detection (A-VAD). This is due to the fact
that, contrary to audio, visual information is insensitive to
environmental noise. It can, thus, be of help to A-VAD
methods for speech enhancement and recognition [1], speaker
detection [2], segregation [3] and identification [4] as well
as speech source separation [5], [6] in noisy and reverberant
conditions or in Human Computer Interfaces (HCIs).

All V-VAD methods proposed in the literature till now,
set several assumptions concerning the visual data recording
conditions, which are rather constraining in their vast majority.
In brief, the available data sets used for evaluating the per-
formance of such methods are recorded indoors, under fully
constrained conditions, e.g., using preset static illumination,
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simple background and no or negligible background noise
produced by humans speaking or by other sound sources.
Moreover, no or slight speaker movements are encountered
and the recording setting is calibrated so that the entire speaker
face as well as the mouth are always fully visible from a
camera positioned right in front of the speaker. In this way,
special features describing their shape and/or motion can
be easily calculated. In other words, the human face has a
frontal orientation with respect to the capturing camera and
the facial Region Of Interest (ROI) has adequate resolution
(in pixels). Such a scenario restricts the applications where V-
VAD methods can be exploited. For example, in movie (post-
)production, the persons/actors are free to move and their facial
pose may change over time, as is also the case in all the places
where audio-visual surveillance would be of interest. In such
an application scenario, most V-VAD methods proposed in
the literature would probably fail. Last but not least, most
currently existing methods focus on the accurate detection
of the visually silent intervals in a video sequence, which
in general is not as challenging as the accurate detection of
the visually speaking intervals. This, is due to the fact that
the latter can be easily confused with intervals of laughter,
mastication or other facial activities. The aforementioned diffi-
culty of distinguishing especially between laughter and speech
is highlighted in [7], where a method exploiting both audio
and visual information aiming at an effective discrimination is
presented.

Non-invasive V-VAD, where the persons under investigation
are free to change their orientation and distance from the
capturing camera, and any kind of noise as well as alternating
illumination may be encountered, is within the scope of this
paper. Inspired by relative research in generic human action
recognition in unconstrained environments [8], [9], [10], and
in order to highlight the interconnection between the two
approaches, this unconstrained V-VAD problem will subse-
quently be mentioned as V-VAD in the wild, in accordance
with the term use in [11]. While human action recognition
in the wild has been extensively studied in the last decade
and numerous methods addressing this problem have been
proposed, V-VAD in the unconstrained case has not been
addressed yet. A method oriented at dealing with the problem
of V-VAD in the wild, is proposed in this paper. Its only
prerequisite assumption, is that the faces appearing in the facial
moving region videos being processed can be automatically
detected using a face detection algorithm and tracked for a
number of consecutive frames.

The proposed method is formed by three processing steps.
In the first step, a face detection technique [12] is applied
to a video frame, in order to determine the facial Region of
Interest (ROI). The latter, is subsequently tracked over time



[13], in order for a facial ROI trajectory of the person under
investigation to be created. Such facial ROI trajectories are
noted as facial moving regions hereafter, and their content
is subsequently extracted to separate videos, called facial
video segments in the following. In the second step, local
shape and motion information appearing in spatiotemporal
video locations of interest is exploited for the facial video
segment representation. To this end, two facial video seg-
ment representation approaches are evaluated, a) Histogram
of Oriented Gradient (HOG) and Histogram of Optical Flow
(HOF) descriptors calculated on Space Time Interest Point
(STIP) video locations [8] and b) HOG, HOF and Motion
Boundary Histogram (MBHx, MBHy) descriptors calculated
on the trajectories of the video frame interest points that
are tracked for a number of L consecutive frames [9]. Both
facial video segment descriptors are combined with the Bag
of Words (BoWs) model [14], [15], [16], [17], [18], in order
to determine facial video segment representations.

Finally, facial video segment classification in visually silent
and visually speaking ones is performed, employing a Single
Hidden Layer Feedforward Neural (SLFN) network, trained
by applying the recently proposed kernel Extreme Learning
Machine (KELM) classifier [19], [20]. In experimental set-
ups where non-facial moving regions, i.e., moving regions not
depicting human faces, and thus non-facial video segments
may be encountered, a facial video segment verification step
is introduced before classification. Its aim is to ensure that only
facial video segments are subsequently going to be classified
as visually silent and non-silent, by performing facial video
segment - non facial video segment classification.

The proposed approach is evaluated on a publicly available
V-VAD data set, namely CUAVE [21], on which it is shown
to outperform recently proposed V-VAD methods to a large
extend. In addition, a new V-VAD data set, extracted from
full length movies, has been created in order to evaluate the
performance of the proposed approach on a case of V-VAD
in the wild. Experimental results on the two data sets denote
that the proposed approach can operate reasonably well in the
instances where other V-VAD methods fail.

The contributions of this paper can be summarized to:

o regarding V-VAD as an action recognition problem and
attempting to solve it employing techniques widely used
in the field of human action recognition and

« investigating the V-VAD problem in fully unconstrained
environments.

The remainder of this paper is organized as follows. Section
IT discusses previous work on V-VAD. The proposed V-VAD
approach is described in Section III. The data sets used in
our experiments and the respective experimental results are
presented in Section IV. Finally, conclusions are drawn in
Section V.

II. PREVIOUS WORK

V-VAD methods proposed in the literature can be roughly
divided in model-based and model-free ones. Model-based
methods require a training process, where positive and nega-
tive paradigms are employed for model learning. In model-free

methods, no direct training is performed, thus circumventing
the need for an a-priori knowledge of the data classes at the
decision stage. Moreover, either visual only or audiovisual
data features can be exploited. In the latter case, combination
of the audio and video modalities can be achieved in two
different ways, either by combining the audio and visual
features (feature/early fusion) or by performing A-VAD and
V-VAD independently and fusing the obtained classification
results (decision/late fusion) [22].

Model-free V-VAD methods, usually rely solely on com-
binations of speaker-specific static and dynamic visual data
parameters, like lip contour geometry and motion [23], or
inner lip height and width trajectories [24] that are compared
to appropriate thresholds for decision making. Emphasis is
given on dynamic parameters, due to the fact that identical
lip shapes can be encountered both in silent and non-silent
frames, making static features untrustworthy. In both these
approaches, there is no discrimination between speech and
non-speech acoustic events, which are thus handled as non-
silent sections. Another model-free approach is proposed in
[25], where signal detection algorithms are applied on mouth
region pixel intensities along with their variations, in order to
discriminate between speech and non-speech frames.

Concerning model-based V-VADs, features like lip opening,
rounding and labio-dental touch (a binary feature indicating
whether the lower lip is touching the upper teeth) for lip
configuration followed by motion detection and SVM classi-
fication are proposed in [26], in an attempt to distinguish be-
tween moving and non-moving lips and then between lip mo-
tion originating either from speech or from other face/mouth
activities, e.g., from facial expressions or mastication [23],
[24]. Such a VAD system can constitute the first stage of a
Visual Speech Recognition (VSR) system. The discriminative
power of static and dynamic visual features in V-VAD is
investigated in [27], where the predominance of dynamic ones
is highlighted. The same approach is also adopted in [28],
where facial profile as well as frontal views are used. Though
not providing as much useful information as the frontal ones,
facial profile views are proven to be useful in VAD. A greedy
snake algorithm exploiting rotational template matching, shape
energy constraints and area energy for lip extraction avoiding
common problems resulting from head rotation, low image
resolution and active contour mismatches is introduced in
[29], where adaboost is used for classifier training. Adaboost
is also used in [5] for the V-VAD classifier training, of
a system performing Blind Source Separation (BSS) based
on interference removal, after the extraction of lip region
geometric features. Finally, HMMs are used in [30] to model
the variation of the optical flow vectors from a speaker mouth
region during non-speech periods of mouth activity.

An early-fusion model-based AV-VAD approach is intro-
duced in [31]. 2D discrete cosine transformations (2D-DCTs)
are extracted from the visual signal and a pair of GMMs is
used for classification of the feature vector. V-VAD accuracy is
quite high in the speaker-dependent case. However, it dramat-
ically decreases in the speaker-independent case experiments,
conducted on a simplistic dataset called GRID [32]. Color
information is used in the V-VAD subsystem proposed in [33]



for skin and lip detection, followed by video-based HMMs
aiming to distinguish speech from silence, while lip optical
flow input provided to SVMs is employed in [6] for utilization
of the visual information, subsequently combined with audio
information for multispeaker mid-fusion AV-VAD and Sound
Source Localization (SSL).

III. PROPOSED V-VAD METHOD

The proposed method operates on grayscale facial video
segments. Face detection and tracking [12], [13] techniques
are used to find facial moving regions in a video. After
determining the facial Regions of Interest (ROIs) in each video
sequence, the union R = {URg, k = 1,..., K} of all ROIs
Ry, within this video sequence is found. This new ROI R is
then used for positioning the face in each video frame and is
resized to a fixed size of H x W pixels in order for the so
called facial video segments to be produced. Subsequently, the
proposed V-VAD method is applied. In this Section, each step
of the proposed V-VAD method is described in detail.

A. STIP-based facial video segment representation

Let & be an annotated facial video segment database
containing N facial video segments, which are automati-
cally preprocessed, in order to determine the relevant set
of Space Time Interest Points (STIPs). In this paper, the
Harris3D detector [34], which is a spatiotemporal extension
of the Harris detector [35] is employed, in order to detect
spatiotemporal video locations, where the image intensity
values undergo significant spatiotemporal changes. After STIP
localization, each facial video segment is described in terms
of local shape and motion by a set of HOG/HOF descriptors
(concatenation of Ly normalized HOG and HOF descriptors)
pPij, t=1,...,N, j=1,...,N;, where i refers to the facial
video segment index and j indicates the STIP index detected
in facial video segment ¢. In the conducted experiments, the
publicly available implementation in [36] has been used for
the calculation of HOG/HOF descriptors. An example of STIP

Fig. 1. Examples of computed STIPs on facial video segments, detected at
multiple spatial and temporal scales depicted using different circle scales.

locations on facial video segments is illustrated in Fig. 1, with

the different circle sizes denoting the different spatiotemporal
scales at which STIPs are detected. p;;, ¢ = 1,..., N, j =
1,...,N; are clustered by applying K-Means [37] and the
cluster centers vi, k = 1, ..., K form the so-called codebook,
ie,V = {vi,...,vk}. The descriptors p;;, j = 1,...,N;
subsequently undergo fuzzy quantization based on the scheme
proposed in [10] and V is also used. [; normalization is
applied in order for the BoW-based video representation of
facial video segment i, s; € RE to be determined. s; are
noted as facial motion vectors hereafter.

B. Dense Trajectory-based facial video segment representa-
tion

In Dense Trajectory-based facial video segment descrip-
tion [9], interest points are detected on each frame and
tracked for a number of L consecutive frames. Subsequently,
D = 5 descriptors, i.e., HOG, HOF, MBHx, MBHy and
the (normalized) trajectory coordinates, are calculated along
the trajectory of each frame point of interest. The publicly
available implementation in [9] for the calculation of the Dense
Trajectory-based video description was used in the conducted
experiments. Examples of Dense Trajectory locations on facial
video segments are illustrated in Fig. 2. Interest points detected
in the frame depicted are marked with red dots, while for
interest points also detected in previous frames and tracked
till the illustrated one, the red dots are accompanied by green
lines, marking the point trajectories based on their previous lo-

cations. Let us denotebys;-ij,i =1,...,N,j=1,...,N;,d =

1,...,D the set of descriptors calculated for the N facial
video segments in U. Five codebooks Vg4, d =1,...,D are
d

obtained by applying K'-Means on sj; for the determination
of K prototypes for each descriptor type. The descriptors
sgj, 7 = 1,...,N; are subsequently quantized in a fuzzy
way [10] using V4 in order to determine D BoW-based
representations for facial video segment 4.

Fig. 2. Examples of Dense Trajectories on facial video segments. Red dots
mark interest point positions detected in the current frame, while green lines
stand for trajectories of points detected in previous frames and tracked till the
current.



C. Facial video segment verification

Due to the fact that the proposed method aims to be applica-
ble in the wild, and on real life recordings, it would be rather
inaccurate and optimistic to consider that the face detection
and tracking algorithms [12], [13] applied, perform flawlessly
and, thus, only facial moving regions and subsequently facial
video segments are produced. For this reason, and in order for
a fully automatic approach, not requiring human intervention,
to be proposed, a facial video segment verification step had
to be introduced before the facial video segment classification
as visually silent and visually speaking. In this step, video
segments are being classified based on whether they are indeed
facial video segments or not. Both the STIP and the Dense
Trajectory-based video segment representations are employed
in this step, and thus, when a test video segment is introduced
to the pretrained SVM or SLFN network, the corresponding
descriptors are calculated on the video segment locations
of interest and transformed to feature vectors. The latter
are subsequently fuzzily quantized [10] with the aid of the
codebook vectors, in order to produce the facial motion vector
and introduce it to the trained classifiers. Based on the obtained
responses, the video segment is classified as being a facial
video segment or not, and the video segments identified as
non-facial moving regions are discarded from the data set, thus
not introduced to the second layer of classifiers, performing
V-VAD.

D. SLFN classification

After the calculation of the facial motion vectors s; €
RX, i = 1,...,N obtained using the STIP or the Dense
Trajectory-based facial video segment representation, they are
used to train a SLFN network. Since both face verification
and V-VAD correspond to two-class problems, the network
should consist of K input, L hidden and one output neurons,
as illustrated in Fig. 3. The number L of hidden layer neurons
is, usually, much greater than the number of classes involved
in the classification problem [10], [19], i.e., L > 2.

L

Fig. 3. SLFN network topology for V-VAD.

The network target values ¢;, ¢« = 1,..., N, each corre-
sponding to a facial motion vector s;, are set to t; = 1 or
t; = —1, depending on whether the respective video segment @

is a facial video segment in the facial video verification case or
on whether it depicts a talking or a non-talking human face in
the case of V-VAD, respectively. In ELM-based classification
schemes, the network input weights W, € REXZ and the
hidden layer bias values b € R” are randomly assigned, while
the network output weight w € R” is analytically calculated.
Let us denote by v; and w; the j-th column of W, and
the j-th element of w, respectively. For an activation function
®(+), the output o; of the SLFN network corresponding to the
training facial motion vector s; is calculated by:

L
0; :ij (I)(Vj7bj,Si). (l)
j=1

It has been shown [38], [39] that almost any nonlinear
piecewise continuous activation functions ®(-) can be used
for the calculation of the network hidden layer outputs, e.g.,
the sigmoid, sine, Gaussian, hard-limiting and Radial Basis
Functions (RBF), Fourier series, etc. In our experiments, we
have employed the RBF — x? activation function, which has
been found to outperform other choices for BoW-based action
classification [40].

By storing the network hidden layer outputs corresponding

to the training facial motion vectors s;, ¢ = 1,..., N in a
matrix ®:
O(vy,by,81) ®(vy,b1,sN)
b= ;@
®(vy,br,s1) ®(vp,br,sn)

equation (1) can be expressed in a matrix form as o = ®7w.

In order to increase robustness to noisy data, by allowing
small training errors, the network output weight w can be
obtained by solving for:

N
s _ 1 2 C 2
Minimize: J = §HW||2 + 5 ; €12 3)

Subject to: w' ¢, =t —&, i=1,..,N, )

where &; is the error corresponding to training facial motion

vector s;, ¢; is the i-th column of ® denoting the s; repre-
sentation in the ELM space and c is a parameter denoting the
importance of the training error in the optimization problem.
The optimal value of parameter c is determined by applying a
line search strategy using cross-validation. The network output
weight w is finally obtained by:

1 -1
w:<I><K+CI) t, (%)

where K € RV*N is the ELM kernel matrix, having elements
equal to [K]; ; = ¢, ¢, [20], [41].

By using (5), the network response o; for a test vector x; €
RP is given by:

-1
1
oo=WZL. ¢, =T (@Tq» + CI) ki, (6)

where k; € R is a vector having its elements equal to k; ; =
T
b; @
The RBF — x? similarity metric provides the state-of-the-
art performance for BoW-based video representations [40],



[42]. Therefore, RBF — x? kernel function is used in our

experiments:
K
Ly oo = o) Sj’“)2> ™

K(&.9) exp( 4A L~ sip + sk
where the value A is set equal to the mean y? distance between
the training data s;.

In order to employ the Dense Trajectory-based facial video
segment representation to train the kernel ELM network de-
scribed above, a multi-channel kernel learning approach [43]
is followed, where:

K(i.j) < ZD:< 1 i‘:(sgk_sgk)z)) ®)
i,j) =exp | — — —_— .
’ . S\MD skt s

In most applications where ELM-based classification is
performed, classification decision is made solely based on
the sign of o;. However, due to the fact that high precision
values, i.e., high true positive rate, are mainly of interest here,
a threshold « was introduced in the training phase and fine
tuning was performed in order to identify the threshold value
giving the best classification precision values.

In algorithmic notation, the proposed method could be
summarized as presented in Algorithm 1.

E. Facial video segment classification (test phase)

In the test phase, a test facial video segment is intro-
duced to the SLFN network. When the STIP-based facial
video segment representation is employed, HOG and HOF
descriptors are calculated on STIP video locations, Lo nor-
malized and concatenated, in order to form the corresponding
HOG/HOF feature vectors p;; € RP, j = 1,..., Ny py;
undergo fuzzy quantization by using the codebook vectors
vi € RP, k = 1,..., K determined in the training phase
and L; normalized, in order to produce the facial motion
vector s;. s; is subsequently introduced to the trained kernel
ELM network using (7) and its responses o, are obtained.
Similarly, when the Dense Trajectory-based facial video seg-
ment representation is employed, HOG, HOF, MBHx, MBHy,
and Trajectory descriptors are calculated on the trajectories of
densely-sampled video frame interest points and D = 5 BoW-
based video representations s¢, d = 1,..., D are produced.
s¢ are subsequently introduced to the trained kernel ELM
network using (8) and its responses o; are obtained. Finally,
the test facial video segment is classified to the visually talking
class if o, > «, or to the visually non-talking class if o; < a.

In facial video segment verification testing, feature vectors
consisting solely of HOG descriptors are also used, both
with STIP and with Dense Trajectory-based video segment
representation.

IV. EXPERIMENTS

In this section, experiments conducted in order to evaluate
the performance of the proposed approach on V-VAD are
presented. One publicly available data set, namely CUAVE as
well as a new movie data set containing visual voice activity
samples in the wild, were used to this end. A short description

Algorithm 1 Proposed Visual Voice Activity Detection in the
Wild method pseudo code.

Input: (facial) video segment

Output: visual speech/silence label

1: localize points of interest
2: if description = STIPS then
3:  calculate descriptors HOG, HOF
4: Lo normalize and concatenate HOG/HOF
5. cluster concatenated HOG/HOF to calculate code-
book
fuzzily quantize descriptors
L, normalize BoW representations
else
track points for L frames
10:  calculate D = 5 descriptors HOG, HOF, M BHz,
M BHy, normalized trajectory coordinates
11:  calculate one codebook for each descriptor
12:  fuzzily quantize descriptors
13:  determine D BoW representations for each video seg-
ment
14: end if
15: if not clear Dataset then
16:  use (facial) motion vectors to train classifier
17:  perform facial video segment verification
18:  if facialVideoSegment then

R I

19: return keep
20:  else

21: return discard
22:  end if

23: end if

24: use remaining facial motion vectors to train classifier
25: perform KSVM/KELM classification

26: if output o; > « then

27:  return visual speech

28: else

29:  return visual silence

30: end if

of these data sets is provided in the following subsections.
Experimental results obtained after various preliminary exper-
iments are subsequently listed, followed by the final SVM and
ELM-based classification results, after a brief reminder of the
proposed method.

Video segments depicting, among others, human faces con-
stitute the method input. Human face detection and tracking
is applied to these videos, and the resulting facial ROI tra-
jectories are resized and extracted to separate videos, the so
called facial video segments. Interest point localization as well
as descriptor and codebook calculation follow. The calculated
descriptors subsequently undergo fuzzy quantization and after
getting Ly normalized they form the facial motion vectors, to
be used for video segment classification. Finally, kernel SVM
and ELM based classification is performed and the facial video
segments are annotated as visually speaking or visually silent.

Before performing the final experiments reported in this
paper, some crucial decisions had to be made, concerning the
facial video resolution, the codebook size, the quantization



scheme and the Kernel function (if any) that would be used.
To this end, several preliminary experiments were conducted,
aiming to the determination of the best trade-off between
the time required for the entire method execution and the
obtained results, for various facial video segment resolutions,
codebook sizes, quantization schemes and Kernel functions.
In this way, 195 x 315 pixels was the resolution picked
among 60 x 80,100 x 145,120 x 160,195 x 315,562 x 539
(the latter only with dense trajectory based description) and
K = 2000 among the candidate codebook lengths K =
250, 500, 1000, 2000, 4000. Moreover, the fuzzy quantization
scheme introduced in [10] using m = 10 was found to be
the most efficient in our case, compared to hard quantization
performed with the same scheme by assigning m a greater
value, namely m = 50 and sparse pooling [15], while
RBF — x? activation function was chosen among linear,
RBF and RBF —x? activation functions. The latter selection
is also in accordance with [40], [42] finding that the RBF —?
similarity metric outperforms other alternatives in BoW-based
video representations.

Concerning the optimal parameter values ¢ = 102, =
0.1el used in our method, they have been determined through
5-fold cross-validation on the training set by applying a grid
search strategy using the values ¢ = 10", r = —6,...,6 and
a=0.1e, e =0,...,5. The criterion used for the final value
selection was not classification accuracy, as could probably be
expected, but precision maximization, due to the fact that we
were mainly interested in the visually speaking class precision
metric and the minimization of false acceptance rate.

The classification performance metrics adopted for the
evaluation of the various methods are classification accuracy
(CA), precision (P), F1 measure (F1), miss rate (MR), false
acceptance rate (FAR) and half total error rate (HTER = FAR +
MAR/2). Moreover, it should be clear by now that, in case no
or very slight motion is encountered in a facial video segment,
the adopted video description techniques detect no points of
interest, and as a consequence, calculate no descriptors. Even
though these video segments are omitted during classification,
they are taken into consideration in the calculations of the
aforementioned performance metrics in the evaluation phase,
as we make the assumption that they depict either visually
silent facial video segments or background images which are
considered to belong to the visually silent class, too.

A. CUAVE data set

CUAVE [21] is a speaker-independent data set which can
be used for voice activity detection, lip reading and speaker
identification. It consists of videos of 36 speakers, recorded
both individually and in pairs, uttering isolated and connected
digits while slightly moving or standing still in front of a
simplistic background of solid color. The participants are both
male and female, with different skin complexions, accents
and facial attributes, as can be seen in Fig. 4. The facial
video segments used in our experiments were extracted at a
resolution of 195 x 315 pixels.

Experiments on this data set are usually conducted by
performing multiple training-test rounds (sub-experiments),

omitting a small percentage of the speakers and using 80%
of the remaining for training and the rest 20% for testing, as
suggested in [27], [28] and thus adopted in our experiments.
The performance of the evaluated method is subsequently
measured by reporting the mean classification rate over all
sub-experiments.

8 £

Fig. 4. Sample speakers of the CUAVE data set.

B. Movie data set

The motive for the construction of a data set consisting
of videos depicting human faces extracted from full-length
movies, was the absence of a data set suitable for (audio)-
visual voice activity detection, speech recognition or speaker
identification in the wild (i.e., resembling real-life conditions),
as the vast majority of the currently available public data sets
are recorded under constrained conditions, e.g., with partic-
ipants usually standing still in front of a plain background
uttering digits, letters, or small phrases. Our data set was,
thus, constructed after performing automatic face detection and
tracking [12], [13], in three full-length movies. The obtained
facial moving regions were then cropped and resized to fixed
size facial images of 195 x 315 pixels constituting our facial
video segments. The latter resolution was proven adequate for
this particular problem in some initial exploratory experiments.
In this way, 4194 video sequences depicting facial image
trajectories of 126 actors were extracted in a fully automated
way. Facial video segments of people of different ages, gender
and maybe origin appearing at random poses performing
unconstrained movements and talking normally can be en-
countered in it. Moreover, indoor, as well as outdoor shots
are included, with both stationary and moving complicated
backgrounds.

In order for the proposed method to be evaluated on this
data set, the leave-one-movie-out cross-validation protocol
was applied. Thus, mean classification accuracy results are
reported. It should be noted here that, due to the fact that the
face detection and tracking were fully automated, some video
sequences not depicting facial images also emerged. However,
such video segments should not exist in a data set oriented for
testing V-VAD methods and thus had to be removed from the
data set. This removal can be done either manually or in an
automated way. The automatic approach entails the addition
of another classification step, prior to the V-VAD step. In this
step, the video segments are classified based on the presence or
absence of human faces in them, using the method described in
Section III. Only those classified as facial video segments are
fed to the second layer of classifiers, in order to be classified
as visually speaking or silent. This preliminary classification
step was performed both using all the descriptor histograms



calculated for visual speech/silence classification, and utilizing
only HOG histograms.

C. Preliminary Experimental Evaluation

As already mentioned, several facial video segment reso-
lutions and codebook sizes were considered before the final
selection. Table I summarizes the respective results employing
the STIP based video representation for the movie data set. It

TABLE I
CLASSIFICATION ACCURACIES ALONG WITH THE RESPECTIVE
EXPERIMENT DURATIONS (IN SECONDS) FOR DIFFERENT FACIAL VIDEO
SEGMENT RESOLUTIONS AND CODEBOOK SIZES ON THE MOVIE DATA SET.

MOVIE DS Codebook size
100 | 250 | 500 | 1000 | 2000 | 4000
60 80 68.5% | 68.6% | 68.4% | 684% | 688% | 67.6%
2857.1 | 3005.5 | 3197.1 | 3556.6 | 71949 | 28993
100 145 || 688% | 69.1% | 69.0% | 693% | 69.4% | 68.0%
34192 | 34598 | 40913 | 5057.5 | 80434 | 22117
190 160 || 691% | 68.9% | 68.8% | 689% | 69.6% | 70.0%
4007.8 | 4097.7 | 47032 | 5985.3 | 9329.1 | 24032
195 « 315 || 685% | 689% [ 69.1% | 702% | 70.8% | 67.7%
4916.5 | 5044.1 | 6258.1 | 7405.6 | 11525 | 30667

can be easily observed that for a standard facial video segment
resolution, classification results do not change significantly as
the codebook size increases, contrary to what is the case for
experiment durations. However, it is obvious that the more
codewords are used, the better the obtained description of our
data, till reaching 2000, from which point the descriptions
seem to get worse. Taking this into account, codebook size
K = 2000 was chosen, as it was found to result to the
best classification accuracies for all resolutions, expect for
120 x160. As regards facial video segment resolution, it seems
to increase both classification performance and experiment
duration when it gets higher. This can be attributed to the
fact that more points of interest can be detected in video
frames, apparently resulting to more elaborate descriptions
but also requiring more calculations to be performed. Thus,
due to the fact that for the selected codebook size the best
classification rate is obtained using facial video segments of
195 x 315 pixels, this was the resolution finally selected for
all our experiments.

The next thing that had to be finalized, after facial video
segment resolution and codebook size was the quantization
scheme to be used for compact facial video segment repre-
sentation. To this end, the quantization scheme introduced in
[10] was employed in order to attempt both hard and fuzzy
quantization by selecting appropriate values for parameter m,
as analyzed by the paper authors. Sparse pooling was also
tested, employing the implementation of locality-constrained
linear coding, introduced in [15]. The results obtained by
the three quantization schemes, using the aforementioned
resolution and codebook size, are presented in Table II. Fuzzy
quantization is proven to be the most efficient in our case,
outperforming both sparse pooling and hard quantization, thus
constituting the scheme subsequently employed.

TABLE II
CLASSIFICATION ACCURACIES FOR DIFFERENT QUANTIZATION SCHEMES
ON FACIAL VIDEO SEGMENTS OF 195 X 315 PIXELS USING CODEBOOK
Size K = 2000.

’ Quantization Scheme H Classification Accuracy

hard [10] (m = 50) 69.47%
fuzzy [10] (m = 10) 70.80 %
sparse pooling [15] 68.85%

Last but not least, a Kernel function had to be selected. The
classification accuracies obtained using three different Kernels,
namely Linear, RBF, and RBF-y? are reported in Table III.
As expected, the best results are obtained when employing
RBF — XQ, which has been shown to be the best alternative
when BoW-based action video representations are used.

TABLE 111
CLASSIFICATION ACCURACIES FOR DIFFERENT KERNEL FUNCTIONS ON
FACIAL VIDEO SEGMENTS OF 195 X 315 PIXELS USING CODEBOOK SIZE
K = 2000 AND FUZZY QUANTIZATION.

Kernel Function H Classification Accuracy

Linear 61.83%
RBF 64.88%
RBF — x?2 70.80%

D. Experimental Results

The proposed method has been applied on the CUAVE data
set by using the experimental protocols suggested in [27], [28].
To this end, a preprocessing step was necessary in order to
enable the proposed method, which normally conducts facial
video segment based classification, to produce frame based
results. More specifically, a sliding window of length equal to
7 frames moving with step equal to 1 frame was applied on the
original facial video segments, in order to split them in smaller
parts. Labels were then assigned to the resulting facial video
segments using majority voting on the labels of the individual
frames constituting them. Frame based classification was thus
performed, as in [27], [28]. The sliding window length, was
chosen in such a way that the number of frames used in V-VAD
by the proposed method was equal to the number of frames
used for the calculation of the dynamic features exploited by
methods [27], [28] for the same purpose.

Table IV summarizes the performance obtained for each
experimental setup and each facial video segment description
approach by the proposed method in terms of classification
accuracy (CA) and visually speaking class precision (P). As
can be seen in this Table, satisfactory visual voice activity
detection performance is obtained. In detail, the STIP-based
facial video segment description seems to be more suitable for
this data set than Dense Trajectory-based description (DT),
achieving better classification accuracies by approximately
15% in both experiments. This can be explained, by taking
into account that the combination scheme derived from the
DT facial video segment description method is very compli-
cated, while the data set is quite simplistic, thus leading to
overtraining and poor generalization in testing.



TABLE IV
CLASSIFICATION RATES AND TALKING CLASS PRECISION ON THE CUAVE

DATA SET.

CUAVE DS Experiment [27] Experiment [28]

ca | p ca | b

STIPs KSVM 87.2% | 87.4% 86.7% 88.0%

KELM 87.6% 87.0% | 86.8% | 88.9%

DT KSVM 74.2% 76.7% 71.4% 73.7%

KELM 73.8% 75.7% 70.3% 72.4%

Sample classification results from the CUAVE data set are
presented in Fig. 5. Samples easily classified to the correct
class appear in line (a), more challenging instances also
classified correctly lay in line (b), while frames assigned the
wrong label can be found in line (c).
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Fig. 5. Sample classification results on the CUAVE data set: a. trivial cases,
b. hard cases still correctly classified, c. incorrectly classified frames.
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Comparison results with other state-of-the-art methods eval-
uating their performance on the CUAVE data set, are provided
in Table V. As can be seen, the proposed method outperforms
the classification accuracy of the methods reported in [27], [28]
by 15.9% and 12.7%, respectively, on the two experimental
setups used on the CUAVE data set, thus achieving great gen-
eralization ability on new data. Moreover, in both experiments
the proposed method has significantly lower error rates, while
method [25] seems to be unable to handle the problem posed
by this data set.

The results obtained after applying the proposed method on
the new, fully unconstrained data set without removing non-
facial video segments are presented in Table VI. Satisfactory
performance is achieved by both description methods, with
a half total error rate (HTER) of approximately 30%, that
is comparable to the respective performance obtained by
state-of-the-art in constrained data sets. In addition, the DT
based approach outperforms the STIP-based in all the reported

metrics, contrary to what was the case on the CUAVE data set.
This can be explained by the fact that in our data set, head
movements as well as complex background are encountered.
Thus, the descriptors calculated using the dense trajectories
method seem to be more efficient, enabling good estimation
of face contour and its distinctive motion from that of the
background, resulting in better classification rates than those
obtained using STIP points description.

The problem whose results are reported in Table VI was not
the usual V-VAD one, since a third class of samples was also
present in the data set, consisting basically of noise. In order
to test our method in the real V-VAD problem, we manually
removed all the irrelevant video segments and performed the
experiments again. The results on the “clear” data set are
presented in Table VII. By comparing the reported results with
those in Table VI, a fall in performance metrics rates is noticed
in Table VII, especially in the visual silence class, emanating
from the removal of irrelevant video segments, which were
correctly classified as visually silent cases in the experiment
reported in Table VI.

Mean classification results obtained on the three full-length
movies constituting the constructed data set, detailed in Sec-
tion IV-B, are presented in Table VIII for the two facial video
segment description approaches (Space Time Interest Points
(STIPs)/Dense Trajectories (DT)), the two classifiers (Kernel
Support Vector Machine (KSVM)/Kernel Extreme Learning
Machine (KELM)) and the descriptors (only HOG (HOG)/all
calculated ones (nothing)) adopted. As can be seen, the facial
video segment verification step performs quite well. Very
low miss rates are obtained using STIPs and the face class
precision as well as the the overall accuracy are satisfactory.
Even better results are obtained using DT based description
and representation, reaching 93% precision rate, thus allowing
the use of this step in the construction of the fully automatic
system proposed in this paper, even though the miss rates are
slightly worse (~2 — 4%) than those reported for STIPs.

Table IX summarizes the classification results obtained by
all the classifier pairs and descriptors adopted for the automatic
removal of non-facial video segments from the data set and
the subsequent facial video segments classification as visually
speaking and non-speaking. According to them, our approach
performs very well, even in the wild, as the classification
rates reported are similar to those obtained by state-of-the-art
methods on the several simplistic data sets publicly available.
Moreover, as already mentioned, STIP-based facial video
segment description is proven inadequate for classification
purposes in this case, leading to ~10% lower precision rates
and ~5% higher HTER rates than the DT-based method.

A universal choice of one of the classifier pairs, reported as
the best one, would not be right, though, as depending on the
application, different performance metrics are considered as
the most important. Taking this into account, the combination
of two neural network based classification steps (KELM-
KELM) using DT based facial video segment description and
representation with all the calculated descriptors, both for
facial video segment verification and for classification, can be
regarded as the best alternative in our case. This is in line
with the remark that in our experiments, we mainly focus



TABLE V
COMPARISON RESULTS ON THE CUAVE DATA SET.

CUAVE DS Experiment [27] Experiment [28]

cA | HTER | FAR | MR cA | HTER [ FAR [ MR
Method [25] 52.8% | 47.1% | 40.8% | 533% || 52.6% | 472% | 41.0% | 53.5%
Method [27] 713% | 256% | 318% | 28.7% - - -
Method [28] - - - - 74.1% | 259% | 242% | 27.6%

Proposed method H 87.2% ‘

113% | 14.1% | 85% || 86.8% |

114% | 115% | 113% |

TABLE VI
CLASSIFICATION RATES ON THE FULL MOVIE DATA SET.
MOVIE DS Full data set Visual silence Visual speech
cA [ HtER | P [ FAR [ FI p [ MR [ FI
STIPs 70.8% 377% | 71.8% 8.9% 80.2% 68.6% 66.4% | 44.0%
DT 76.4% | 30.5% | 76.1% | 7.3% | 83.6% | 77.6% | 53.8% | 57.9%
TABLE VII
CLASSIFICATION RATES ON THE "CLEAR” MOVIE DATA SET.
MOVIE DS Full data set Visual silence Visual speech
cA | HtER | P [ FAR | FI P [ MR | FI
STIPs 67.8% | 355% | 68.5% 154% | 75.5% | 67.8% | 55.6% | 52.8%
DT 711% | 31.3% | 69.9% 132% | 772% | 74.8% | 49.4% | 60.3%
TABLE VIII
FACIAL VIDEO SEGMENT VERIFICATION RATES ON THE FULL MOVIE DATA TABLE IX
SET. CLASSIFICATION RATES ON THE AUTOMATICALLY CLEARED MOVIE DATA
SET.
MOVIE DS Il ca | p [ MR] F |
KSVM || 83.6% | 858% | 3.4% | 90.8% MOVIE DS [ ca [mmer | P
STIPs HOG KSVM 84.0% 85.0% | 1.7% | 91.2% KSVM-KSVM 68.5% 37.0% 62.2%
KELM 83.8% | 86.5% | 4.2% 90.9% HOG KSVM-KSVM 70.9% 35.9% 67.5%
HOG KELM 83.8% 86.1% 3.8% 90.8% KSVM-KELM 69.7% 37.8% 68.2%
b | HOG KSVM || 88.1% | 91.5% | 58% | 92.8% KELM-KSVM || 70.1% | 364% | 673%
KELM 1| 89.1% | 93.0% | 63% | 93.3% HOG KELM-KSVM || 70.7% | 35.8% | 67.5%
HOG KELM || 87.7% | 92.1% | 7.0% | 92.5% KELM-KELM || 69.3% | 37.3% | 64.9%
HOG KELM-KELM 69.6% 37.2% 65.8%
KSVM-KSVM 73.0% 29.8% 70.9%
on the minimization of false detection error, and thus, on the HOG KSVM-KSVM || 73.0% | 29.6% | 71.2%
maximization of visually speaking class precision metric (P). KSVM-KELM || 73.1% | 31.0% | 76.5%
Finally, based on the results reported in Table X, our method DT HOG KSVM-KELM || 732% | 307% | 77.5%
is proven to be much more efficient than one of the current KELM-KSVM || 72.5% | 29.7% | 71.1%
state-of-the-art methods for visual voice activity detection, as it HOG KELM-KSVM || 72.6% | 29.8% | 71.0%
outperforms it by 23.8%. More specifically, method [25] which KELM-KELM || 73.2% | 30.3% | 78.8%
was tested only on facial video segments of frontal images, HOG KELM-KELM || 734% | 30.3% | 78.6%
seems to fail in dealing with the unconstrained problem,
while the proposed method achieves satisfactory classification
accuracy. The poor performance of method [25] in this data
set, was to a great extend expected, as its implementation TABLE X

utilizes face proportions in order to perform mouth detection.
This approach is successfully applicable only in frontal facial
images and apparently fails in cases, where face rotation of
more than ~ 30° horizontally and/or ~ 10° vertically are
encountered, which are very frequent in our data set.

To recapitulate, after tested on two completely different

COMPARISON RESULTS ON THE CONSTRUCTED DATA SET.

MOVIEDS || cA | HTER [ FAR | MR |
Method [25] 49.6% | 492% | 64.9% | 33.5%
Proposed method 73.2% | 30.3% 9.3% 51.4%




data sets, both with respect to their nature and to their size,
the proposed method has been proven to be very efficient,
outperforming other state-of-the art methods. However, its
classification accuracy on the simplistic CUAVE data set is
~10% higher than that obtained on the challenging movie
data set. This can be attributed to the different characteristics
of the two data sets, already mentioned, as well as the different
experimental setups and should not be considered as weakness.

V. CONCLUSIONS

In this paper, we proposed a novel method for Visual Voice
Activity Detection in the wild that exploits local shape and
motion information appearing at spatiotemporal locations of
interest for facial video segment description and the BoW
model for facial video segment representation. SVM and
Neural Network-based classification based on the ELM using
the BoW-based facial video segment representations leads to
satisfactory classification performance. Experimental results
on one publicly available data set, denote the effectiveness of
the proposed method, since it outperforms recently proposed
state-of-the-art methods in a user independent experimental
setting. The respective results on the fully unconstrained data
of a new movie data set, especially constructed for dealing
with the V-VAD problem in wild, prove the efficiency of the
proposed method even in the unconstrained problem, in which
state-of-the-art methods fail.
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