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9 ABSTRACT | A typical high-end film production generates

10 several terabytes of data per day, either as footage from

11 multiple cameras or as background information regarding the

12 set (laser scans, spherical captures, etc). This paper presents

13 solutions to improve the integration of the multiple data

14 sources, and understand their quality and content, which are

15 useful both to support creative decisions on-set (or near it) and

16 enhance the postproduction process. The main cinema specific

17 contributions, tested on amultisource production dataset made

18 publicly available for research purposes, are the monitoring

19 and quality assurance of multicamera set-ups, multisource

20 registration and acceleration of 3-D reconstruction, anthropo-

21 centric visual analysis techniques for semantic content annota-

22 tion, and integrated 2-D–3-D web visualization tools. We discuss

23 as well improvements carried out in basic techniques for

24 acceleration, clustering and visualization, which were neces-

25 sary to deal with the very large multisource data, and can be

26 applied to other big data problems in diverse application fields.

27 KEYWORDS | Anthropocentric semantic video analysis; big

28 media data analysis and integration; graph processing accel-

29 eration; multimodal data processing; outdoor 3-D reconstruc-

30 tion; web 3-D visualization

31I . INTRODUCTION

32The amount of data captured onset for film production is

33vastly increasing; currently, several terabytes are generat-

34ed per day for a typical high-end film. Data come from a

35larger variety of capture devices, such as light detection

36and ranging (LIDAR) scanners, spherical cameras, still

37cameras, HD video cameras, 2.7 K/4 K cameras and RGBD

38cameras, as illustrated in Fig. 1. Other types of sensors

39might play a role as well. Generation and storage of digital

40data is considerably cheaper than in the (analog) recent

41past. These data need to be sorted, indexed and processed,

42currently requiring an immense amount of manual effort.

43In fact, the high volume of data generated during a shot

44prevents the immediate assessment of whether footage is

45fit for purpose. The current strategy (of reshooting in case

46of doubt) costs extra time and money on set, and leads to

47potentially redundant data, which also need to be

48processed. Even more data are generated during postpro-

49duction, as the raw input is usually processed multiple

50times, in order to obtain the output desired by the director.

51Extra, or poorly understood raw data, leads to higher

52postproduction costs and times.

53This process, which requires a lot of manual input

54needs to be streamlined. By understanding better the data,

55it is possible to revert the trend of producing and storing

56even more data towards keeping only the suitable data

57instead, and to provide more intelligible content to the

58following stages of the digital cinema production chain.

59This paper presents novel approaches for big media data

60analysis based on the integration of multiple big media data

61sources, which lead to solutions improving their manage-

62ment, and monitoring and understanding the quality of the

63data produced. The solutions support creative on-set or

64near-set decisions, and also facilitate and enhance

65postproduction, taking advantage as well of the semantic
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66 content analysis which are also presented. The structure

67 and key contributions can be summarized as follows.

68 Section II starts by discussing the multiple data

69 sources, which are typical in the production of data for

70 high-end digital movies. It indicates the variety of devices

71 used and data they generate and different types of

72 representative environments (outdoor, indoor, single or

73 multiple actors, etc.). A representative multisource

74 IMPART dataset, approximately 10 TB in uncompressed

75 format, has been generated to test the developed solutions

76 with realistic and challenging material, and has been used

77 in most of the experiments presented in this paper. It has

78 been made public for the wider research community,

79 together with a detailed documentation on the capture and

80 some initial preprocessing, to facilitate its use.

81 Section III presents two key contributions with regards

82 to quality assessment and registration:

83 1) Tools to monitor setups and to enhance quality

84 assurance. The tools enable on-set detection of

85 capture problems, namely: poor coverage, such as

86 out-of-focus configuration, or insufficient detail

87 provided; calibration invalidation, which is de-

88 tected and the true camera parameters can be

89 recovered on set or the calibration repaired in post

90 production; and synchronization loss or frame-drops.
91 2) Multisource data (both 3-D, such as laser scans, and

92 2-D, from multiple and varied cameras) can be

93 automatically registered into a common coordinate

94 system (a ‘‘unified 3-D space,’’ visually represented

95 in Fig. 1). The current paradigm for efficient

96 management of these data requires extensive

97 manual input; our work introduces an automatic

98 process to replace this manual effort, which in turn

99 leads to a more efficient postproduction phase.

100 Section IV presents reformulations of some aspects of 3-D

101 reconstruction from multiple sources introduced in

102 Section III, and the underlying techniques are significantly

103 optimized and accelerated, allowing for much faster

104processing to achieve near real-time. Complementary

105strategies of quality assessment and desktop visualizations

106of 3-D reconstructions are also presented. The reformula-

107tions can be used in other big data contexts, and include:

1081) Sparse 3-D reconstruction from stills is performed

109through a novel fast bundle adjustment (BA)

110solver based on Block Matrices which features fast

111covariance recovery, where the BA task is

112formulated as a nonlinear maximum likelihood

113estimation on a graph of feature point observa-

114tions by the respective cameras. Orders of

115magnitude efficiency gains are achieved.

1162) Accelerated dense 3-D reconstruction from indi-

117vidual spherical stereo scans through reformula-

118tion of the image processing primitives in terms of

119partial functions called recursively for each pixel

120and a tiled cache as another partial function to

121save computation for local filters. Additionally,

1223-D reconstruction from multiple spherical stereo

123pairs was accelerated by a novel alignment

124method, based on SLAM techniques.

125While Sections III and IV deal with approaches related to 3-D

126data, Section V presents algorithms for high-level human-

127centered semantic metadata extraction and description

128through visual single- and multiview information analysis, to

129support fast big visual data ingestion, search and retrieval for

130postproduction, and archival. The presented methods are

131related to (human) activity-based temporal video segmenta-

132tion and clustering, approximate methods for big media

133classification and a fast distributed clustering approach.

134Despite being evaluated on visual big data analysis tasks,

135such as facial images clustering or face recognition,most of the

136underlying techniques, such as distributed trimmed kernel

137K-means clustering or approximate methods for classification

138are designed so as to be fast enough to deal with large scale

139data, and can be very well applicable in other big data areas too.

140Section VI presents interactive web visualization with

141integration of 2-D and 3-D sources and processed large data

142and metadata, for increased user driven quality assessment,

143creative on-set decisions and postproduction planning.

144Traditional big data visualization favors abstract representa-

145tions, but practitioners of cinema and other fields rather

146prefer concrete ones (video and 3-D superimposed, in our

147case, for instance), while web-based visualization allows easy

148integration of modalities with advantage respect to desktop

149solutions. Improvements in progressive visualization of the

150very large (3-D) data are discussed as well.

151Data sources and formats in Section III are largely media/

152cinema-specific, and we show that the applications pre-

153sented in Sections IV–VI are useful for the cinema context.

154Additionally, the techniques in the latter sections required

155acceleration and improvements to deal with the challenges

156posed by cinema applications, and are both big data

157problems specific, and applicable in other areas. For

158instance, the PDE solution strategies, or the optimized

159graph-SLAM processes of Section IV are optimizations

Fig. 1. Sources for multimodal data registration and visualisation.

Blat et al.: Big Data Analysis for Media Production
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160 required by the very large size of data we deal with, which

161 demand specific solutions to manage the memory and speed

162 requirements of computers, and especially laptops which are

163 the preferred on-set platform. The classification and

164 clustering techniques of Section V can be applied to any

165 type of big data where samples are represented in vectorial

166 form. We discuss later in detail these and other examples of

167 widely applicable improved big data techniques, especially in

168 the final section, where we outline the actual validation of

169 the solutions by the cinema industry.

170 II . BIG MEDIA DATA ACQUISITION

171 A. Multiple-Source On-Set Big Data Acquisition
172 In recent digital media production, a variety of 2-D and

173 3-D sensors capture a large number of assets and their

174 geometrical properties (see Fig. 1). The amount of data

175 generated on-set to support digital media production is

176 increasing, as more devices become available and their data

177 resolutions increase. In 2014, for example, the data for a film

178 visual effects produced by Double Negative Visual Effects,

179 one of the biggest European visual effects companies,

180 consisted of several hundred terabytes, in different file

181 formats from various devices as shown in Table 1.

182 Video cameras are the primary source of data in media

183 production: as indicated in Table 1, their share in a typical

184 production scenario far surpasses that of the auxiliary

185 modalities. Multiple cameras have always been considered

186 useful for editing. However, nowadays it is very common

187 to see set-ups with a principal camera to shoot the main

188 action, and a battery of static witness cameras to collect the

189 necessary data for postproduction, in line with the current

190 significance of ‘‘post’’ in determining the final success of a

191 film. If not analog, a principal camera was conventionally a

192 HD device, but 4 to 6 K resolutions are becoming

193 increasingly common, and witness cameras usually HD.

194 Recently, low-cost RGBD cameras such as Kinect1 and

195 Xtion2 simultaneously capturing color and depth informa-

196 tion have become available to support motion analysis in

197 the main action as well as to extract background geometry

198 information. However, they still have limitations in large

199 areas or outdoor scenarios, because of their limited depth

200 range and interference between devices and materials.

201In order to get more accurate static background scene

202information, various passive/active sensors are used.

203Digital stills are the most common source of texture

204information, due to their wide availability and ease of use.

205High dynamic range omnidirectional spherical imaging

206is commonly used to get an aligned environment texture

207map or lighting source detection. An easy way to capture

208the full 3-D space in one shot is to use a catadioptric

209omnidirectional camera using a mirror combined with a

210CCD [1]. However, this is difficult to calibrate and has

211limited resolution. Point Grey developed an omnidirec-

212tional multicamera system, the Ladybug,3 which consists

213of six XGA color CCDs to overcome the resolution

214problem. Spheron4 developed a commercial line-scan

215camera with a fish-eye lens in order to capture the full

216static environment as a high resolution and high dynamic

217range spherical image.

218Active depth sensors using ultrasonic, infrared or laser

219are sometimes used to reconstruct accurate geometry of

220objects or surfaces. LIDAR is one of the most popular

221active ranging techniques measuring the distance by the

222time delay between emission and reflection of a light

223pulse.

224On-set dynamic scene acquisition takes place mainly

225outdoors, and differs from indoor studio shooting with

226controlled uniform lighting condition and background

227geometry (see [2] on the design of indoor studio capture

228systems). On-set capture for media production is more

229challenging, due to moving background, uncontrolled

230illumination and limited system support [3]. It requires

231aligned background scene information as well as dynamic

232actions in the main capture volume, on-set system

233monitoring and assessment tools against unsecured

234capture environments, and accurate composition of

235footage from various capture devices.

236In order to support research into multimodal big data

237processing, we have released a big multimodal database

238acquired in various indoor and outdoor environments,

239available at http://cvssp.org/impart/. The dataset includes

240captured data typical of important issues facing movie

241production, with detailed information, and the

242corresponding 3-D reconstructions of static scenes and

243multiple synchronised video captures for dynamic actions,

244as illustrated in Fig. 2.

Table 1 Examples of Typical Data Generated in Film Making

1Kinect: https://www.microsoft.com/en-us/kinectforwindows/develop/.
2Xtion: https://www.asus.com/us/Multimedia/Xtion PRO LIVE/.

3Pointgrey: http://www.ptgrey.com/.
4Spheron: http://spheron.com.

Blat et al. : Big Data Analysis for Media Production

| Proceedings of the IEEE 3



IE
E
E

P
ro
o
f

245 B. Big Data Analysis Issues in Media Production
246 A key step in the analysis of the data has been the

247 integration of the multiple, large, data sources, as it plays a

248 significant role in understanding the data produced and its

249 quality. The approach taken has been to adopt a ‘‘unified

250 3-D view’’ (see Fig. 1) for the sources, spherical images,

251 stills, LIDAR scans, etc. It is a ‘‘3-D’’ approach, in the

252 sense, for instance, that 3-D model/point-cloud is

253 reconstructed from multiview images, and this allows to

254 register better these images with respect to a ground-truth

255 3-D (in our case, assumed to be the LIDAR data); and the

256 position of the sensors with respect to the reference system

257 provided. Thus, multisource data are not just unified in a

258 folder with place and time tags, but become integrated in

259 the same space. On the other hand, this 3-D reconstruction

260of the background scenarios is in itself a very useful output

261for later postproduction effects.

262This unified 3-D view supports solutions (toolsets) for

263monitoring the quality of the (multi)camera set-ups

264presented in Section III, in the different aspects

265mentioned above, such as coverage, synchronization,

266calibration, etc. The complex approaches to analyze these

267aspects with enough quality and flexibility to be used in the

268highly dynamic environment of on-set shooting are

269discussed in that section, as well as its evaluation with

270examples taken from the IMPART dataset.

271A key requirement is that the solutions work in real-

272time or near real-time, so that fixing the issues, repairing

273the calibration, or setting up the cameras to improve the

274coverage of the scenario, etc., can take place on-set, where

275shooting takes place. Currently, the issues described above

276are detected during revision of dailies, or even during

277postproduction, away from the set; in both cases, the costs

278of shooting again the following day, or fixing during

279postproduction, are very high. To achieve near real-time

280solutions of the very high quality expected in film

281blockbusters shown on cinema screens represents an

282important challenge.

283On one hand, the multiple large data sources pose very

284strong memory and processing demands that have to be

285dealt with; and preferably, not with supercomputers but

286with the more appropriate laptops for the on-set environ-

287ment. Section IV discusses mostly the acceleration and

288optimization of the techniques to make the approaches

289presented in Section III for reconstruction and quality

290monitoring real- or near real-time. This is achieved by

291reformulation of the algorithms, with suitable use of CPU

292and GPU and distribution; resulting in orders of magnitude

293speed improvements in some basic processes used in the

294algorithmsVlargely applicable to other areas.

295An integrated visualization is both a useful outcome and

296a tool for users to assess quality further. Section IV

297discusses laptop-oriented streaming techniques for the very

298large 3-D outcomes. Section VI is web oriented, showing its

299advantage to integrate a new type of semanticV2-D–3-D

300interactive visualizations, which moreover could be easily

301shared and annotated in the on-set environment. The

302additional challenges posed by bandwidth constraints, and

303specific 3-D graphics issues are addressed as well.

304Section V presents action analysis from an anthropo-

305centric perspective, generating metadata, which is useful

306to search and retrieve in a more intelligent way the content

307produced and for integrating semantics in visualizations as

308indicated above. The data to be dealt with is much larger:

309instead of being the result of a (part of a) day’s shooting,

310the solutions should handle the data produced and

311postproduced in a whole production, or several of them.

312The improved optimization and acceleration techniques

313presented with respect to clustering, and using approxi-

314mate methods, were needed to face this challenge

315providing a practically applicable solution.

Fig. 2. Examples of the IMPART public multimodal dataset. (a) Indoor

scene footage; (b) outdoor scene footage.

Blat et al.: Big Data Analysis for Media Production
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316 III . DATA QUALITY AND REGISTRATION

317 First, we discuss a toolset for set-ups, and then, for

318 registration.

319 A. Set-Up Monitoring and Quality Assurance
320 In media production, the conventional quality assur-

321 ance mechanism is the review of the ‘‘dailies’’ (the material

322 shot and produced during the day) at the end of each day’s

323 session. However, this process can easily be overwhelmed

324 by the huge volumes of data that the current media

325 production practices generate, with their use of multiple

326 cameras and an assortment of auxiliary sensors (see

327 Table 1), and the current solution, ‘‘if in doubt, reshoot,’’

328 offers robustness through redundancy, but, as discussed,

329 this leads to additional associated costs in terms of time

330 and money.

331 The IMPART toolset offers on-set decision support and

332 quality assurance capabilities for multicamera set-ups. The

333 specific problems the toolset addresses include the

334 assessment of the coverage of the capture volume,

335 validation of the camera calibration parameters, and

336 through-the-lens synchronisation of the set-up. The

337 individual tools are discussed in the following sections.

338 1) Coverage Evaluation: A camera is said to successfully

339 cover a volume element in the scene if it meets some

340 application-specific criteria, e.g., the size and the location

341 of this volume projection on the image plane. The coverage

342 evaluation tool characterizes the scene coverage offered by

343 a camera configuration with known pose and intrinsic

344 parameters. This is a variant of the sensor placement

345 problem, with its roots in the ‘‘Art Gallery Problem’’ [4],

346 and its applications in surveillance [5] and industrial

347 machine vision [6]. However, the optimal solutions

348 provided by the sensor placement literature imply rigid

349 preplanning and precise camera placement. In media

350 production, on-the-spot decisions and flexibility are

351 important, which makes feedback on an existing config-

352 uration more valuable than setting up an optimal, but

353 inflexible alternative [7].

354 In order to characterise the coverage, a range of 2-D

355 and 3-D world models with different geometric primitives

356 is discussed in [6]. In [7], we consider a 3-D cloud of

357 transparent spheres covering the scene, viewed by pinhole

358 cameras. This permits more realistic camera models [8],

359 and is sufficient to characterise how a configuration covers

360 a specified capture volume (the space where the action

361 takes place). The sphere cloud is then projected through

362 the cameras, to a set of ellipses. A volume element is

363 covered if it satisfies an application-dependent subset of

364 unary and binary criteria listed below.

365 Unary criteria (involving a single camera):

366 • field-of-view: the sphere lies within the viewing

367 frustum of the camera, and its projection lies

368 within the image frame;

369• framing. concerns the positioning of the subject

370matter in the image frame. It is satisfied if the

371projection lies within a specified region of the

372image plane;

373• resolution: this constraint ensures that the volume

374is imaged at sufficient detail, which can be judged

375from the area of the ellipse associated with the

376volume element;

377• depth-of-field. : a scene point is in focus if the

378diameter of the blur circle on the image plane is

379less than the pixel size. This defines a subvolume in

380the viewing frustum, where any scene points

381within satisfies this constraint [9].

382Binary Criteria (involving camera pairs):

383• viewpoint difference: defined as the maximum

384difference between the viewing angles of the

385cameras observing the scene point;

386• relative resolution: concerns the maximum scale

387difference between the two projections of the

388scene point, measured as the ratio of the areas of

389the projection ellipses;

390• joint coverage: a volume element is jointly covered

391if it satisfies the unary coverage criteria for each of

392the cameras separately.

393The usefulness of the tool is demonstrated in a camera

394placement scenario in a set whose 3-D model is depicted in

395Fig. 3 [7]. Fig. 4 AQ1illustrates the layout of the cameras, placed

396on a 180-degree arc surrounding the capture volume, in

397addition to a top-view of a sparse 3-D model built from the

398images acquired by the cameras [10], and the capture

399volume, represented with a synthetic lattice embedded into

400the scene. It also presents the coverage evaluated for each

401scene point. Since the cameras are trained on the capture

402volume, the coverage reaches to 15 cameras within it, but

403drops off to 2 cameras for the background points. Fig. 5

404indicates the change of the coverage during a dolly shot

405with a principal camera. As expected, the coverage is

406proportional to the overlap between the capture volume

Fig. 3. 3-D model of the capture environment, obtained via a color

LIDAR.

Blat et al. : Big Data Analysis for Media Production
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407 and the field-of-view. Finally, Fig. 6 is a vision graph,

408 which, unlike the first two examples, makes use of the

409 binary constraints, and helps to identify any redundant

410 cameras, or any segments, which may benefit from an

411 additional camera.

412 2) Calibration Validation: For a multicamera set-up

413 deployed for postproduction purposes, a very accurate

414 calibration is essential. Such a calibration can be obtained

415 via a dedicated, preliminary shot involving a known object

416 [11]. However, maintaining calibration throughout multi-

417 ple shots poses a real challenge, considering how busy a

418 production set is and the cost of any delay. The calibration

419 validation tool identifies any cameras which are uninten-

420 tionally perturbed, invalidating their calibration. The

421correct calibration parameters can be recovered by

422subsequently registering them to a 3-D model of the scene

423estimated from the rest of the set-up [12]. This strategy is

424preferable to recalibration via, for example, VisualSfM

425[13], [14]: since the perturbations are often minor and

426limited to a small number of cameras, and the computa-

427tional expense of a full structure-from-motion procedure is

428not justified.

429Pairwise calibration validation: The calibration para-

430meters for a camera pair imply a geometric relationship

431between the corresponding image features, which is

432encapsulated by a 3 � 3 matrix (i.e., a fundamental or

433an essential matrix). This relationship can also be

434estimated directly from the image correspondences. The

435calibration validation tool leverages on the observation

436that, the estimated and the implied relationships will be

437consistent only if the calibration parameters are correct.

438Otherwise, at least one of the cameras has invalid

439calibration parameters. However, it is not possible to

440identify which one, or whether both are perturbed at the

441pairwise level.

442Global calibration validation: The pairwise validation

443block issues a verdict of intact or perturbed for each camera

444pair. This leads to a graph, where each node is a camera

445and each edge corresponds to the verdict for the associated

446camera pair. The number of inliers (successfully explained

447image correspondences) are assigned as edge weights. Any

448vertices for which there are too few observations (e.g., less

449than two edges) are labeled as undetermined. For the

450remaining cameras, the algorithm seeks the best combi-

451nation of vertex labels, by exhaustively instantiating all

452possible combinations of the binary tags valid and invalid.
453An intact edge is consistent with a labelling, if the

454associated vertices are valid. A perturbed edge requires at

455least one invalid vertex. A labeling hypothesis is scored by

456summing up the weights of the consistent edges.

457Fig. 7 depicts the calibration validation pipeline. As an

458example, the calibration parameters obtained via [11] for the

459set-up in Fig. 4, when employed in a multiview triangulation

460task [10], yield 4711 3-D points. The calibration verification

461tool recommends the correction of the cameras 4, 8, and 14.

462With the updated parameters, the triangulation algorithm

463returns a 3-D structure with 5512 points.

4643) Multicamera Synchronization: Any postproduction task
465that makes use of a multicamera set-up invariably requires

466synchronisation. This is typically achieved by a hardware

467signal. A through-the-lens synchronisation and frame drop

468detection capability is of value in the event that:

469• the hardware signal is interrupted, for example,

470due to a broken or disconnected cable;

471• a device does not have a hardware synchronisation

472facility (e.g., a Kinect), or cabling is impractical

473(e.g., a principal camera on a moving platform);

474• the recording media drops frames due to, for

475example, a buffer overload.

Fig. 4. Coverage map for the witness cameras. Hotter colors indicate

better coverage. The witness cameras are marked by a numbered

square. The principal cameramoves to right, on a path denoted by the

horizontal line.

Fig. 5. Number of capture volume points covered by the principal

camera, as it moves to right.

Blat et al.: Big Data Analysis for Media Production
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476 The alternative, audio synchronization is sensitive to the

477 background noise, and limited to frame-level synchroni-

478 sation, due to the slow sound propagation speed in the

479 air [15].

480 The multicamera synchronization tool estimates a

481 frame rate and an offset for each camera in the set-up. It

482 also detects the frame drop events, reporting a time

483 window and the number of dropped frames for each event

484 [16]. The tool makes use of the observation that, if two

485 frames are acquired at the same time instant, the

486 corresponding image points on the dynamic scene

487 elements (e.g., actors) satisfy a certain geometric con-

488 straint (epipolar constraint) [17]. This requires a calibrated

489 camera set-up, but enables the use of point features,

490 sidestepping a major challenge: feature trajectories, as

491 used in [18] and [19], are difficult to establish and

492 maintain on deformable objects such as actors. As

493 alternatives, spatio-temporal features [20] and global

494 image similarity metrics [21] do not have this issue, but

495 they are very sensitive to viewpoint and appearance

496 changes [22].

497 The synchronization pipeline, illustrated in Fig. 8, has

498 two distinct stages: relative and absolute synchronization.

499 Relative camera synchronization: In the presence of

500 frame drops, the indices of the corresponding frames for a

501 pair of image sequences lie on a broken line with a fixed

502 slope. The slope corresponds to the relative frame rate,

503 whereas the offset of the first segment is the relative

504 temporal offset. Any frame drop events are manifested as

505 the break points, where the number of lost frames can be

506 estimated from the shift. The relative synchronisation

507 module establishes the index correspondences via the

508 Viterbi algorithm [23], where the similarity of a frame pair

509 is measured by the conformance of the image feature pairs

510to the epipolar constraint. When there are gaps in the

511index correspondences, the time of the frame drop events

512can be reported as windows.

513Absolute synchronisation: The pair-wise synchronisa-

514tion measurements can be represented on a graph, where

515each vertex is a camera, and each edge corresponds to a

516relative synchronisation measurement, weighted by the

517number of supporting frame indices. In this graph, each

518minimum spanning tree offers an absolute synchronisation

519hypothesis, namely a frame rate and a temporal offset for

520each camera. The absolute synchronisation procedure

521samples the solution space by randomly generating

522minimum spanning trees and returns the best hypothesis.

523A hypothesis is scored by summing the weights of the

524edges consistent with it.

525Frame drop fusion: Each pair-wise measurement

526effectively proposes a temporal offset for each frame in

527the associated camera pair. The fusion algorithm scores

528these proposals with the edge weights in the absolute

529synchronisation graph. A frame drop is reported for the

530segments where the strongest offset hypothesis is different

531from the absolute offset estimated for that camera.

532As an example, the tool is tested on a 30-s action

533sequence acquired by the set-up in Fig. 4. The tool

534successfully identifies the ÿ1, 20, and 1-frame offsets in

535the cameras 8, 11, and 15, respectively, along with the

536correct frame rate. A more extensive evaluation in [16]

537reports that the frame drop events can be localised down to

538a 1–3 s temporal window, and the number of lost frames is

539correctly identified.

540B. Multimodal Data Registration
541The multimodal data capture process ends up with

542huge amount of unstructured footage which is hard to

543efficiently search, arrange and manage. Datasets acquired

Fig. 6. Vision graph for the witness cameras. See Fig. 4 for the camera numbers.

Fig. 7. Calibration validation pipeline. Fig. 8. Synchronization pipeline.

Blat et al. : Big Data Analysis for Media Production
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544 by various devices introduced in Section II-A exist in

545 different coordinate systems with different dimensions,

546 formats, densities, characteristics and noise as shown in

547 Table 1. The processing and management of this amount of

548 heterogeneous data consumes considerable resources,

549 most of them intensive manual labor. A key issue to allow

550 efficient data management and visualization is automatic

551 registration of the multisource data into a common

552 coordinate system.

553 There have been a few researches for 2-D–3-D data

554 matching and registration [24]–[26], but they have

555 focused only on registration for a single data modality.

556 2-D–3-D registration between pairs of modalities such as

557 photos to LIDAR [27], [28], spherical images to LIDAR

558 [29], and images to range sensor [30], [31] have also been

559 investigated. In our preliminary researches, 3-D feature

560 descriptors were tested and their performance on

561 multimodal registration in various domains was analyzed

562 [32], [33].

563 Here, we introduce a complete pipeline for multimodal

564 2-D–3-D data registration for media production, based on a

565 unified 3-D space where 2-D and 3-D data are registered as

566 shown in Fig. 1. The LIDAR point cloud and its coordinate

567 system are defined as the reference (target) model space

568 for registration because they provides an accurate 3-D

569 geometry of the scene at real-world scale. If LIDAR scans

570 are not available, any data modality can be used as a target

571 reference.

572 1) 2-D Data Registration via 3-D Reconstruction: 2-D data

573 are registered to the target coordinate via 3-D reconstruc-

574 tion because direct registration of 2-D images to 3-D

575 structure is difficult. We assume that multiple 2-D data are

576 available for the same scene so that 3-D geometric

577 information can be extracted. Relative camera pose

578 information to the reconstructed model is computed

579 during the 3-D reconstruction process. As a result, all

580 original camera poses are automatically registered to the

581 target reference coordinate if the reconstructed model is

582 successfully registered to the target reference model.

583 RGBD cameras provide appearance (color) and respec-

584 tive depth information. 3-D scene geometry and camera

585 poses can be estimated from consecutive RGBD frames

586 using the KinectFusion algorithm [34]. Registration of

587 normal photographs without depth information is more

588 challenging.

589 Shape-from-Motion algorithms such as Bundler [35]

590 followed by PMVS [36] provide dense 3-D scene recon-

591 struction with camera poses from photos. Autodesk also

592 provides an on-line image-based 3-D reconstruction tool

593 with camera pose estimation, RECAP360.5 However, these

594 Shape-from-Motion approaches for digital stills may not be

595 appropriate for on-set media production due to their

596 processing speed and being proprietary. A fast reconstruc-

597tion algorithm from digital stills is proposed later

598in Section IV-A. A spherical image is represented on

599the longitude-latitude coordinate instead of the common

600xÿ y system. Spherical images are captured as vertical

601stereo pairs to allow dense reconstruction of the surround-

602ing scene using stereo matching [37]. This stereo matching

603algorithm is further accelerated in Section IV-C.

604In case of multiple wide-baseline witness video

605cameras, the sparse reconstruction from Section III-A

606can be used for registration. However, it is sometimes

607difficult to extract good geometry of the static background

608if cameras are too sparsely placed (i.e., they have little

609overlap) to find corresponding points between viewpoints.

610In such a case, camera calibration information estimated

611by wand-based extrinsic camera calibration [11] is directly

612registered by aligning the calibration coordinates to the

613origin of the LIDAR sensor.

6142) 3-D Feature Detection: 3-D feature detection identi-

615fies locations of distinct points in terms of shape or

616appearance in an input 3-D structure. Feature detection is

617an important step because its distinctiveness and repeat-

618ability across models directly influences the performance

619of matching and registration. Many feature detection

620methods for 3-D point clouds have been investigated.

621Dutagaci et al. [38] and Tombari et al. [39] provide

622benchmark evaluations of existing 3-D feature detectors.

623However, all detectors which were highly ranked in these

624evaluations do not guarantee such high performance for

625multimodal data, due to their noise, geometric errors and

626distortions in 3-D reconstruction.

627We evaluated various Various 3-D feature detectors,

628resulting in our choice to use the 3-D extension of the

629classic Kanade-Tomasi detector [40], which uses the ratios

630of eigenvalues of surface normal vectors for 3-D edge and

631corner detection. This detector is not too selective but still

632produces a relatively high number of repeatable and

633distinctive 3-D features between cross-modalities in spite

634of geometrical errors induced from incomplete 3-D

635reconstruction.

636Fig. 9 shows feature points detected for the Cathedral

637scene available in the IMPART public multimodal

638database. The Kanade–Tomasi detector and the 3-D SIFT

639detector [41], one of the most popular feature detectors

640using difference-of-Gaussian filter and Hessian eigenvalue

641test, were compared. The SIFT and Kanade–Tomasi detect

642a similar number of feature points but the results of

643Kanade–Tomasi are more distinctive in representing clean

6443-D edges and corners.

6453) 3-D Feature Description and Registration: A feature

646descriptor is a vector representing different distinctive

647characteristics of a specific point in the scene. Recently,

648Guo et al. [42] presented a survey and evaluation of local

6493-D feature descriptors but the test was carried out for a

650single modality. Most 3-D feature descriptors use local5RECAP360: http://recap360.autodesk.com.

Blat et al.: Big Data Analysis for Media Production
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652 suitable only for models with low geometric errors. In

653 our preliminary research for multimodal data registration

654 [33], we verified that a combination of descriptors applied

655 on different domains such as colour and local/global

656 geometry can improve the point matching and registration

657 performance.

658 Among various descriptors introduced in [33] and [42],

659 we use fast point feature histograms (FPFH) [43] in our

660 pipeline because it is fast and shows stable performance

661 with a short description. FPFH is computed by a weighted

662 sum of neighboring point feature histogram values which

663 are calculated by three angles between neighboring points.

664 One FPFH descriptor is represented as a vector with

665 33 bins (11 bins for each angle).

666 The FPFH descriptor is extended to multiple domains to

667 use geometry and color information together. FPFH

668 descriptors in three different domains (local, semiglobal,

669 and color) are calculated for the same input point cloud. The

670 Local FPFH is calculated with neighboring points in the same

671 way as in the original FPFH descriptor. The semiglobal FPFH

672 is calculated only with detected feature points in the larger

673 volume radius, which represents the distribution of feature

674 points. The color FPFH is calculated with the same

675 neighbours of the Local FPFH, but it uses CIE color

676 components instead of surface normal components. The

677 result is represented as a 2-D vector with 33 � 3 bins.

678 Once the 3-D descriptor sets are computed, all datasets

679 are registered to the target (LIDAR) point cloud by

680descriptor matching. There may be many outliers in

681descriptor matching because of low distinctiveness and

682repeatability of detected features. RANSAC is a common

683method to find an optimal solution when unknown outliers

684exist. SAC-IA [43] is a RANSAC-based initial alignment

685algorithm which eliminates outliers and estimate a 3-D

686rigid transform matrix between source and target models.

687We modify this SAC-IA algorithm to adaptively adjust the

688contribution of description domains in matching according

689to the distinctiveness of the descriptor. The matching cost

690between two points p and q in the RANSAC process is

691defined as a weighted sum of individual domain descriptor

692matchings of the form

Dðp; qÞ¼�LDLðp; qÞþ�GDGðp; qÞþ�CDCðp; qÞ (1)

693where Dð�Þ denotes the distance between two descriptors,

694and subscripts L, G, and C represent local, semiglobal, and

695color domains, respectively. The weighting factor � is

696computed by the ratio of the second to the first nearest

697neighbor distances. The initial alignment resulted from the

698modified SAC-IA is refined over the whole point cloud

699using the iterative closest point (ICP) algorithm [44].

700Fig. 10 illustrates the original datasets and registration

701results. In Fig. 10(a) the original 3-D point clouds

702generated from different sources exist in different

703coordinates which are automatically registered into a

704single unified coordinate system through the proposed

705registration pipeline. The original 2-D footage is visualized

706on the target LIDAR reference in Fig. 10(b). We can

707observe that all 2-D footage including photographs and HD

708videos are registered to the target coordinate with correct

709location and orientation.

710This enables the automated registration of multimodal

711data sources allows web-based visual inspection for

712completeness and supporting creative decisions in pro-

713duction, as discussed in Section VI.

714IV. ACCELERATION AND QUALITY
715ASSESSMENT OF BIG 3-D
716RECONSTRUCTION

717To support various special effects, principal camera match-

718moving, and rendering animated characters, among others,

7193-D reconstruction is often employed in digital cinema

720production. In Section II, we described a wide variety of

721available input sensors for 3-D reconstruction is available.

722Two basic modalities of the 3-D reconstruction are

723commonly used, static and dynamic. The static one is

724typically used for the reconstruction of the movie set or for

725the natural environments to complement digital matte

726paintings. The variety of input sensors can be used, and a

727plethora of algorithms exist for this purpose. On the other

728hand, dynamic 3-D reconstruction, on the other hand, is

Fig. 9. 3-D Feature detection results (Left: LIDAR; Middle: reconstruc-

tion from Pphotos; Right: reconstruction from spherical imaging).

(a) Point cloud; (b) 3-D SIFT detector; (c) 3-D Kanade–Tomasi detector.

Blat et al. : Big Data Analysis for Media Production
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729 typically being used for the actors and it can be obtained by

730 a multiview camera setup and the visual hull algorithm

731 [45] or one of its variants [46]. In this section, we focus

732 mainly on the static 3-D reconstruction.

733 Sparse 3-D reconstruction can be obtained from still

734 images using the bundle adjustment algorithm [47]. In this

735 context, the term sparse refers to the relative density of the

7363-D point cloud obtained. A dense reconstruction can be

737obtained by an additional postprocessing pass, e.g., by the

738PMVS [36] or CMVS [48] algorithms. Unlike the sparse

739reconstruction, the dense reconstruction is not particularly

740interesting from the acceleration and quality assessment

741points of view, as it seldom fails and it usually gives

742satisfactory results if it is given a successful sparse

743reconstruction to start with.

744A. 3-D Reconstruction From Stills
745Several open-source and commercial software packages

746are available for 3-D scene reconstruction from unstruc-

747tured set of photographs of the scene: Bundler [35],

748VisualSFM [13], PhotoSynth,6 PhotoScan,7 to name just a

749few. Most of the existing software packages are based on

750bundle adjustment (BA) [35] to obtain a refined structure

751of the environment from captured images.

752However, usage of such algorithms in digital cinema

753production suffers from several drawbacks. A main one is

754their execution time; the reconstruction using the

755available software takes far too long to be performed on-

756set; therefore, it is typically performed later, on a render

757farm. This can lead to problems if it turns out that the

758capture was insufficient, requiring the repetition of the

759scene capture. Another problem is the use of cloud

760computing by several of the available solutions (Micro-

761soft’s Photosynth, Autodesk 123-D,8 and RECAP3609).

762When processed in a Cloud, the original data are

763transferred outside the VFX facility or even outside of

764the respective country, which is always an issue with

765copyright-protected or otherwise sensitive content.

766In this work, we propose a novel fast BA solver based

767on Block Matrices [49] which features fast covariance

768recovery [50] and hence enables online error visualization

769and correction. We formulate the Bundle Adjustment task

770as a nonlinear maximum likelihood estimation on a graph

771of feature point observations by the respective cameras,

772similar to [47].

773As discussed in the previous section, the 3-D recon-

774struction starts by calculating the initial poses of the

775cameras and the 3-D points in the environment. They are

776obtained by considering pair-wise image matching. In

777general, every 3-D point is visible in more than two images

778and the contributions of all the measurements need to be

779considered for a better estimation of the 3-D structure.

780Bundle adjustment starts from the initial estimates of

781the camera and 3-D point poses and iteratively refines the

782solution. Conceptually, this is done by minimizing the

783reprojection errors. In our work we formulate the BA as

784a nonlinear optimization on graphs, where the vertices

785are the variables to be estimated, namely camera poses and

7863-D points in the environment, and the edges are the

6https://photosynth.net/
7http://www.agisoft.com/
8http://www.123dapp.com/catch
9https://recap.autodesk.com/

Fig. 10. Multimodal data registration results. (a) Point cloud

registration [Top: cathedral set in Fig. 9(a); Middle: indoor set in

Fig. 2(a); Bottom: outdoor set in Fig. 2(b)]. (b) Visualization of

registered 2-D footage in the unified 3-D space.

Blat et al.: Big Data Analysis for Media Production
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787 measurements. In order to obtain the optimal configura-

788 tion of the graph, we perform a maximum likelihood

789 estimation (MLE) of the set of variables Q ¼ ½�1 . . . �n�,
790 usually containing the 3-D points in the environment

791 p ¼ ½p1 . . . pnp� and camera parameters c ¼ ½c1 . . . cnc�
792 (position, and in the case of uncalibrated cameras, the

793 intrinsic parameters), given the set of observations

794 z ¼ ½z1 . . . zm�

Q� ¼ argmax
Q

PðQ j zÞ

¼ argmax
Q

ÿ logðPðQ j zÞf g: (2)

795 Each observation zk is the 3-D point projection onto the

796 image plane, ẑk ¼ Prkðci; pjÞ, where Prð�Þ is the projection

797 function of a 3-D point, pj, onto the camera, ci. Each

798 observation is assumed to have zero-mean Gaussian noise

799 with the covariance Sk and wemeasure the reprojection error

Pðzk j ci; pjÞ / exp ÿ
1

2
zk ÿ Prkðci; pjÞ













2

Sk

� �

(3)

800 where zk is the actual value in pixels of the projected 3-D

801 point. Finding the MLE from (2) is done by solving the

802 following nonlinear least squares problem:

Q� ¼ argmax
Q

1

2

X

m

k¼1

zk ÿ Prkðci; pjÞ












2

Sk

( )

: (4)

803 Iterative methods such as Gauss–Newton (GN) or

804 Levenberg–Marquard (LM) are used to find the solution

805 of the NLS in (4). An iterative solver starts with an initial

806 point Q0 and, at each step, computes a correction D towards

807 the solution. For small kDk, Taylor series expansion leads

808 to linear approximation in the neighborhood of Q0

~eðQ0 þ DÞ � eðQ0Þ þ JD; (5)

809 where e ¼ ½e1; . . . ; em�
>

is the set of all nonlinear

810 reprojection errors between the observed and reprojected

811 3-D points, ekðci; pj; zkÞ ¼ zk ÿ Prkðci; pjÞ, with ½ci; pj� � Q

812 and J is the Jacobian matrix containing the derivative of the

813 components of e.

814 Thus, at each ith iteration, a linear least squares

815 problem needs to be solved

D� ¼ argmax
D

1

2
kA Dÿ bk2 (6)

816where the A ¼ 2ÿ>n2JðQiÞ is the system matrix,

817b ¼ 2ÿ>n2eðQiÞ the right hand side (r.h.s.) vector and

818D ¼ ðQÿ QiÞ the correction to be calculated [51]. The

819minimum is attained where the first derivative vanishes

A> A D ¼ A>b or LD ¼ H (7)

820with L ¼ A>A, the square symmetric system matrix and

821H ¼ A>b, the right hand side vector.

822The solution to the linear system can be obtained either

823by sparse matrix factorization followed by backsubstitution

824or by linear iterative methods. After computing D, the new

825linearization point becomes Qiþ1 ¼ Qi � D.

826In BA applications, the initial solution �0 can be

827relatively far from the optimal one; therefore, LM is

828preferred over the GN methods. LM is based on efficient

829damping strategies which allow convergence even from

830poor initial solutions. For this reason, LM solves a slightly

831modified variant of (7), which involves a damping factor �

ðL þ ��DÞD ¼ H or HD ¼ H (8)

832where �D can be either the identity matrix, �D ¼ I, or the
833diagonal of the matrix L, �D ¼ diagðLÞ.
834The remaining part of the section discusses important

835aspects that must be understood in order to compute

836efficiently solutions of the BA problem from linear system

837properties to nonlinear solvers.

838Indeed, to solve the linear system in (8) efficiently, some

839particulars of the BAproblem can be considered. For example,

840by grouping the elements of the system matrix corresponding

841to the camera poses and the 3-D points separately, one can

842solve for camera poses first and refine the 3-D points in a

843second step. This is a common practice in solving 3-D

844reconstruction problems, where the camera poses are linked

845only through the points and the algebraic decomposition of

846the system matrix is called Schur Complement. For this

847purpose, the system matrix is split in four blocks

C U
U> P

� �

�
c

p

� �

¼
Hc

Hp

� �

: (9)

848Usually, the number of cameras is much lower than that of

849observed points and P occupies a relatively large portion of

850the matrix.

851It results in diagonal C and P matrices, that can be

852easily inverted. Following that P is invertible, the Schur

853complement of the block P is C ÿ UPÿ1U>, and it is used to

854solve for the camera poses first (this is sometimes referred

855to as the reduced camera system). Points are then obtained

856by solving the remaining system.

Blat et al. : Big Data Analysis for Media Production
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857 To obtain fast solutions of the BA problem, sparse block

858 matrices are employed. The derivatives in L are grouped

859 into blocks, whose size corresponds to the number of

860 degrees of freedom (DOF) of the corresponding variables:

861 three DOF for the 3-D points and 12 DOF for the cameras

862 (6 for description of the pose and a further 6 for the

863 intrinsic camera parameters). We can say that the problem

864 has a natural sparse block structure; therefore, for the

865 representation and solving of (8) or (9), it is preferable to

866 use sparse block matrix representation and linear algebra

867 packages rather than elementwise sparse representation

868 (such as, e.g., compressed sparse row (CSR) or compres-

869 sepoint cloud sparse column (CSC) [52]). A detailed

870 description of the block matrix data structure for fast

871 nonlinear solving can be found in [53], while [54] shows

872 how this data structure highly benefits real-time solving.

873 Note that most of the existing packages do not fully

874 take advantage of this block structure, and despite some of

875 them use an intermediate sparse block matrix formats,

876 they all convert to element-wise sparse matrix before

877 solving the associated linear system. Using sparse block

878 matrices is the main novelty of our approach.

879 To obtain even higher performance, it is possible to

880 take advantage of parallel architectures, such as GPUs. The

881 most time consuming operations in the solving process (9)

882 on a CPU are 1) matrix multiplication in UPÿ1, further

883 referred to as general matrix multiplication GEMM1,

884 2) the second matrix multiplication in UPÿ1U>, further

885 referred to as GEMM2, and 3) decomposing the system in

886 C ÿ UPÿ1U>, further referred to as reduced camera system

887 solve (RCS).

888 As already mentioned above, the size of the RCS is

889 much smaller than the original system since the number of

890 cameras is much smaller than the number of observed 3-D

891 points. On the other hand, the corresponding matrix is also

892 less sparse, and it is usual to solve it by means of a dense

893 solver. On a GPU, this is easily parallelized and state of the

894 art implementations are available, e.g., in CULA10 or

895 cuSOLVER11 packages. The speedup of dense matrix

896decomposition on a GPU, compared to the CPU version,

897is nearly two orders of magnitude (see the upper half of

898Table 2), which is deemed sufficient in production

899environments.

900On the other hand, the speedup of the sparse GEMM

901kernel is not as good, as can be seen in the lower half of

902Table 2, specifically the rows with cuSPARSE results.

903The consumer GPU is somewhat slower than the CPU

904implementation and the high-end GPU is only marginally

905faster. This stems from the fact that the CPU implemen-

906tation is taking advantage of the block structure [53],

907while the GPU implementation is working at the level of

908sparse matrix elements. To improve this, we implemen-

909ted a custom sparse matrix multiplication kernel on

910GPU [55] and further modified it to work with block

911matrices. Although it is only a proof of concept, the

912implementation already outperforms the CPU by about a

913factor of 2.

914B. Quality Assurance in 3-D Reconstruction From
915Stills
916Once the 3-D reconstruction has been calculated, it is

917possible to visualize it. Thanks to the above-mentioned

918optimizations, it is possible to reconstruct large scale

919scenes on a high-end laptop in a matter of tens of minutes,

920and thus, it is possible to inspect the reconstruction on-set.

921However, some of the shortcomings might not be

922immediately apparent, especially if the scene geometry is

923complex. Fortunately, by defining the underlying optimi-

924zation problem as maximum likelihood estimation (MLE),

925we have information theoretic error metrics at our

926disposal.

927The usual metric in statistics and information theory is

928covariance (resp. marginal covariance). However, recov-

929ering the covariance matrix S involves inverting the

930system matrix L, and while L is sparse in BA, S would be

931completely dense. This is not only problematic because of

932the computational cost, but also because of the storage

933requirements. The matrices routinely encountered in BA

934are hundreds of thousand elements square, which

935corresponds to roughly 74.5 GB of memory which is not

936available nowadays even in high-end laptops. Fortunately,

10Available at http://www.culatools.com/.
11Part of CUDA 7 and higher, http://developer.nvidia.com/cuda-zone.

Table 2 Bundle Adjustment Solving Time Breakdown; Intel Core i5 is Mid-Range Quad Core CPU, NVIDIA GTX 680 is Low-End Consumer GPU and NVIDIA

K40 is High-End Scientific GPU

Blat et al.: Big Data Analysis for Media Production
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937 not all of the elements of the covariance matrix are needed

938 in order to display the 3-D reconstruction precision. In

939 [56], it was shown how specific elements from the

940 covariance matrix can be efficiently calculated from

941 R ¼ cholðLÞ by applying the recursive formula

S ii ¼
1

Rii

1

Rii
ÿ

X

n

k¼iþ1;Rik 6¼0

RikSki

" #

(10)

S ij ¼
1

Rii
ÿ

X

j

k¼iþ1;Rik 6¼0

RikSkj ÿ
X

n

k¼jþ1;Rik 6¼0

RikS jk

2

4

3

5: (11)

942 In case R is sparse, the above formulas can be used to

943 compute the elements of S at the positions of nonzero

944 elements in R very efficiently [57]. To compute multiple

945 elements of the covariance matrix, such as the whole block

946 diagonal, these formulas become inefficient unless all the

947 intermediate results are stored. Our implementation

948 performs the calculation of (11) in blockwise manner,

949 same as the linear solving, yielding considerable gains in

950 computation speed.

951 In order to visualize the 3-D reconstruction quality, the

952 block diagonal of the covariance matrix, which corre-

953 sponds to the covariances of the individual cameras and

954 3-D points, is calculated. Cholesky decomposition of the

955 individual diagonal blocks is performed, yielding a matrix

956 with the coordinate basis of an ellipsoid enveloping the

957 uncertainty of each respective variable. If the scale of the

958 reconstruction matches the physical scale, it would be

959 possible to calculate the precision of each 3-D point

960 estimate, e.g., in inches, for instance. For displaying a false

961 color point cloud such as the one in Fig. 11, the squared

962 norm of the matrix is taken instead and the resulting value

963is used to look up a false color in a suitable palette.

964Visualization of marginal covariances was not previously

965attempted, as the cost of the algorithms required to

966compute them using conventional algorithms was prohib-

967itive [50].

968C. Dense Reconstruction From Spherical Stereo
969Images
970Furthermore, we accelerate the dense 3-D reconstruc-

971tion from spherical stereo scans, originally described in

972[37]. The spherical stereo consists of two spherical images

973unwrapped into latitude-longitude format, captured with

974vertical displacement and the result of the reconstruction

975is a spherical depth map of the same size as the images.

976The corresponding columns in the two images capture the

977same portion of the scene from a different viewpoint and

978they are sufficient to calculate one column of the dense

979depth map. The method of [37] consists of dense disparity

980estimation by constrained block matching followed by

981regularization by a PDE. The former one is computation-

982ally bound while the latter is memory bound. To accelerate

983block matching, parallelization is employed: each column

984can be treated separately.

985The PDE in the original version of the algorithm is

986implemented as a series of image processing primitives,

987each reading and writing the results to a separate image.

988This is highly inefficient with respect to the memory

989traffic and usage of cache as the images are too large to

990fit in it; so by the time the next operation starts reading

991the image, the data must be fetched from RAM. To

992optimize this, the operations are formulated as partial

993functions and chained together in such a way that query

994to a result pixel value recursively calls the operations and

995performs all the computation for that single pixel at once.

996This significantly improves locality of references, as the

997input image is now read from and written to RAM only

998once, the rest of traffic being facilitated by cache and

999CPU registers.

1000However, the implementation of local filters required

1001for partial derivative calculation causes repeated compu-

1002tation of the overlapping source pixels. In some cases, the

1003repeated computation is faster than storing the interme-

1004diate result in memory. However in our case, increased

1005throughput was gained by implementing a transparent

1006tiled cache as another partial function. This way, a small

1007patch of the intermediate image is computed once and

1008then the local filter can read from the tile, thus saving

1009computation.

1010Fig. 12 shows a plot of relative speedup of the entire

1011processing pipeline based on the number of cores (this was

1012measured on 16-core Xeon platform). We can see nearly

1013linear scaling up to 8 cores and then sublinear scaling to

101416 cores, where both CPUs of this NUMA system become

1015utilized and some extra communication overhead ensues.

1016The entire processing time was reduced from over 14 min

1017to less than 1.5 min, or by a factor of 11.3.

Fig. 11. Color-coded 3-D reconstruction Quality Assurance of the

Surrey Cathedral. Orange colors correspond to low covariance, blue

colors correspond to high covariance. There should be additional

capture to the blueparts, in order to reduce covariance of the solution.

The white pyramids are the camera poses.
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1018 To enable reconstruction of larger areas than a single

1019 spherical stereo scan can cover, an algorithm for 3-D

1020 reconstruction from multiple spherical images was devel-

1021 oped [58]. It is based on combined RGB and depth interest

1022 point matching, and consists of spherical image feature

1023 extraction, matching, initial estimation and optimization

1024 based on graph-SLAM process, which can be calculated

1025 using the same accelerated algorithms as the BA in the

1026 previous subsection.

1027 Multiple experiments have been performed in order to

1028 evaluate the performance of the proposed 3-D reconstruc-

1029 tion from multiple spherical images. To analyze the

1030 accuracy of the proposed technique, ground truth was

1031 measured on the IMPART datasets. The precision and time

1032 of the reconstruction was compared to that of the ICP

1033 algorithm. Both ICP and SLAM have similar performance

1034 in terms of accuracy, but the main advantage of the SLAM

1035 approach is in the processing time: it is almost three orders

1036 of magnitude faster than the ICP algorithm, for all the

1037 tested datasets.

1038 D. 3-D Reconstruction Visualisation
1039 While our web-based on-set visualization is presented

1040 in Section VI, we have also implemented an offline

1041 visualization solution based on a subset of OpenGL 4 and

1042 OpenGL ES 2.0, for testing purposes. In the basic display

1043 mode, it shows the reconstructed point cloud, either with

1044 colors where available (see Fig. 13), or just in red

1045 otherwise. It can also display graph edges, for coverage

1046 and debugging purposes. It supports camera or 3-D point

1047 selection, by clicking on a specific camera, only the edges

1048 of that camera are displayed. Edges of multiple cameras

1049 can be displayed as well, by holding ctrl or shift while

1050 making the selection.

1051 To allow viewing of very large scenes, a streaming

1052 mechanism was implemented. The data is split into several

1053 blocks which individually fit in the GPU memory, while

1054each block contains a set of 3-D point positions: their

1055corresponding colors, and a portion of the edges of the

1056graph, referring to these points. Each block is then sent for

1057rendering separately and then deleted from GPU memory.

1058This allows displaying 3-D scene of any size while only

1059sacrificing the rendering speed.

1060V. SEMANTIC MOVIE CONTENT
1061ANALYSIS

1062The huge amounts of multimedia data which arise during

1063shooting have to be managed, stored and integrated in

1064appropriate ways for subsequent processing, postproduc-

1065tion and footage archiving. Cinema production is demand-

1066ing not only on-set but afterwards too. Important

1067requirements include fast, efficient ways of searching,

1068browsing and analyzing footage, towards automatic

1069generation of semantic metadata. Video summarization

1070and fast content analysis algorithms for big media data are

1071some of the techniques needed to meet these needs.

1072Film content analysis research efforts originally

1073focused on exploiting text-based approaches. Thus, film

1074audio description scripts and screenplays constituted the

1075basis of most of the methods developed, up until the

1076previous decade. On the other hand, analysis of low-level

1077visual features was widespread for other types of content

1078like sports and surveillance CCTV footage, while several

1079attempts had also been made to exploit higher level

1080semantic visual features. However, semantic film content

1081analysis by exploiting visual features or combining them

1082with audio ones is gradually becoming prevalent, bridging

1083the semantic gap that existed when only text-based

1084approaches were employed [59].

1085In film production, semantic content analysis of big

1086media data is mainly used in the ingestion, postproduction

Fig. 12. Performance scaling of accelerateddense reconstruction from

spherical stereo images.

Fig. 13. GraphViewer displaying a LIDAR scan of the Plaza Scene in the

IMPART dataset.

Blat et al.: Big Data Analysis for Media Production

14 Proceedings of the IEEE |



IE
E
E

P
ro
o
f

1087 and footage archiving stages of the pipeline (see Fig. 14),

1088 by adding human-related or other semantic annotations to

1089 content, thus enabling novel functionalities for fast

1090 browsing and preview of footage, as well as retrieval of

1091 the most relevant streams out of the entire available

1092 footage.

1093 Technologies that have significant impact in this

1094 workflow include temporal video segmentation exploiting

1095 semantic information, video segment clustering towards

1096 video summarization and batch processing, face detection/

1097 recognition/clustering and visual analysis based on

1098 production-related specific activities, as discussed in the

1099 following paragraphs.

1100 One approach for performing temporal video segmen-

1101 tation is to segment the stream according to the depicted

1102 human activities. This can be accomplished by applying

1103 recursively activity-based temporal video segmentation

1104 techniques in order to detect changes in the depicted

1105 activity and split content accordingly. Activity change

1106 detection can be achieved by employing activity related

1107 video descriptions and measuring their dispersion on

1108 overlapping video segments, as described in Section V-A.

1109 Fast browsing within takes, dailies previewing and

1110 batch processing of similar takes constitute real needs in

1111 film production. These needs can be successfully catered

1112 for with clustering techniques, forming clusters of similar

1113 takes based on some type of semantic information (e.g.,

1114 the displayed activity). In the technique briefly described

1115 in Section V-A, descriptors widely used in human action

1116 recognition are employed for the description and subse-

1117 quent clustering of the activity segments created using the

1118 temporal video segmentation method mentioned above. In

1119 the multiview video case, the additional information is also

1120 exploited and view-independent action representation is

1121 achieved.

1122 In general, once video segments, frames or frame

1123 regions have been represented by appropriate feature

1124 vectors, one can apply clustering or classification upon

1125 them. Many clustering or classification algorithms cannot

1126 deal with big data without proper adaptation. These

1127 algorithms often involve the construction of a similarity

1128 matrix of all the available training vectors. A novel kernel

1129 matrix trimming algorithm, which aims to both increase

1130 the performance of baseline kernel k-means clustering

1131 [60] and reduce the number of nonzero kernel matrix

1132elements, thus accelerating the iterations of kernel

1133k-means and requiring less memory, is presented in

1134Section V-B and is an example of a fast and scalable

1135technique for big media data analysis. A distributed

1136implementation of this algorithm, that utilizes the Map-

1137Reduce programming model and allows the fast processing

1138crucial for the movie industry, is also presented in the same

1139section. These approaches have been applied and evaluated

1140in the task of facial images clustering in large scale datasets.

1141Big visual data classification problems, such as face or

1142human activity recognition often appear in movie produc-

1143tion and postproduction. A simple approach to deal with

1144the vast amount of training data is to model each class of

1145the population separately, by employing an ensemble of

1146one-class classifiers. However the training data for each

1147separate class can still be huge. Approximate approaches

1148can be used to overcome this problem. A novel approx-

1149imate solution for least squares one-class support vector

1150machines is presented in Section V-C. The performance of

1151the approach is experimentally evaluated on face recogni-

1152tion in a large facial images dataset.

1153The approaches presented can also be applied to big

1154media data found in other application domains such as

1155large media archives, surveillance etc. In addition, the

1156clustering and classification techniques can be also applied

1157to all sorts of big data where individual samples can be

1158represented in vector form.

1159A. Activity-Based Temporal Video Segmentation and
1160Clustering
1161Understanding/analyzing human activities in video is

1162vital in many applications related to media production and

1163postproduction, such as video summarization, highlight

1164extraction, event detection or content-based annotation

1165[61]. This problem has been primarily approached by

1166applying action/activity recognition techniques on video

1167data from one [62] or multiple [63] cameras. One of the

1168disadvantages of action analysis within a recognition

1169setting is that the set of all possible human actions should

1170be a priori defined and an adequate number of (labeled)

1171action videos should be available for the training of the

1172involved classifiers. In several application scenarios, e.g.,

1173in movie production/post-production and content-based

1174video retrieval, the objective is to temporally delineate the

1175different action patterns and perhaps cluster them into sets

1176of similar actions, rather than to perform a strict

1177characterization (i.e., recognition) of the observed actions.

1178Indeed, temporal video segmentation into meaningful

1179segments, as well as video segment clustering can be

1180important steps in the production and postproduction

1181processing chain, since they allow automatic semantic

1182annotation of the video segments for fast footage ingestion,

1183archiving and retrieval, all being instrumental due to the

1184huge volumes of data.

1185Three methodologies have been widely used [64] for

1186temporal action segmentation, namely the sliding window,Fig. 14. Semantic content analysis in cinema production.
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1187 boundary detection and grammar concatenation ones. The

1188 sliding window approach (e.g., in [65]) divides a motion

1189 sequence into multiple (usually overlapping) video seg-

1190 ments. The success of this approach strongly depends on

1191 the discrimination ability of the employed action video

1192 representations. Boundary detection methods [66] general-

1193 ly search for discontinuities in observed human action

1194 videos. Boundaries usually imply a basic action taxonomy,

1195 without depending on explicit class definitions. The use of

1196 grammars in temporal action segmentation originates from

1197 speech recognition. The mainstream approach is to model

1198 state transitions between action states using hidden

1199 Markov models (HMM) along with some method for

1200 action feature generation, such as dynamic system

1201 representations [67], geometrical property encoding

1202 [68], curvature scale space, centroid distance function

1203 [69], etc. Moreover, two models of increasing popularity

1204 are change-point detection [70], [71] and switching linear

1205 dynamical systems (SLDS) [72].

1206 In the following, we will summarize a novel semantic

1207 temporal video segmentation approach based on human

1208 activity information and the Fisher discriminant analysis.

1209 The approach goes beyond the standard shot boundary

1210 (shot cut) detection applied on video data, employs a state-

1211 of-the-art video representation and can be applied both to

1212 single-view and multiview video data. The derived

1213 temporal video segments can then be clustered into

1214 clusters. Each such cluster contains video segments

1215 depicting similar human activities and can be semantically

1216 annotated according to these activities. Moreover, face

1217 detection and face recognition can be performed within

1218 each segment extracting additional actor identity-based

1219 annotation of the footage.

1220 For action representation within the proposed method

1221 we have employed the Dense Trajectories-based action

1222 video description [73] combined with the bag of words

1223 (BoW) model, since it has been shown to provide state-of-

1224 the-art performance in the related task of human action

1225 recognition. In Dense Trajectories video description, each

1226 video is described by using a set of five descriptors

1227 calculated along the trajectory of interest points that are

1228 tracked for a number of L consecutive video frames.

1229 More specifically, in order to perform temporal

1230 segmentation of an action video possibly depicting several

1231 consecutive actions, we employ the Dense Trajectories

1232 description, in order to calculate descriptors dv
i ,

1233 i ¼ 1; . . . ; Pd, (Pd: number of interest points detected in

1234 the video) v ¼ 1; . . . ; V ðV ¼ 5Þ on the trajectories of

1235 densely-sampled video frame interest points of the entire

1236 action video sequence. We then apply k-means clustering

1237 on dv
i , in order to calculate a set of descriptor prototypes

1238 (codebook). By using this codebook, which is exclusively

1239 derived from the video under consideration, and the video

1240 frame indices corresponding to each trajectory, we create

1241 BoW-based representations of M (overlapping) video

1242 segments for each descriptor, denoted by bv
i ,

1243i ¼ 1; . . . ;M, v ¼ 1; . . . ; V. Subsequently, we concatenate

1244the five BoW vectors bv
i , v ¼ 1; . . . ; V, in order to fuse

1245the information appearing in each trajectory, i.e., bi ¼

1246½b1 T
i ; . . . ;b5 T

i �
T
. Overlapping video segments consisting of

1247Tv video frames (e.g., Tv ¼ 20) having overlap of Tv ÿ 1

1248video frames are then created. Let us denote by N the

1249number of frames in a video split into M video segments

1250and S be the set of the bj, j ¼ 1; . . . ;M BoW-based

1251representations of the resulting video segments. Through

1252the temporal relationship of the video segments, we create

1253two sets of video segment representations Si, i ¼ 1, 2, each

1254consisting of Mi, i ¼ 1, 2 vectors, where M1 þM2 ¼ M.

1255By employing bj, j ¼ 1; . . . ;M and the corresponding

1256set labels cj, the within-set and total variance can be

1257respectively measured by

sw ¼
X

2

i¼1

X

j;cj¼i

ðbj ÿ miÞ
Tðbj ÿ miÞ (12)

sT ¼
X

M

j¼1

ðbj ÿ mÞTðbj ÿ mÞ (13)

1258where

mi ¼
1

Mi

X

j;Cj¼i

bj; m ¼
1

M

X

M

j¼1

bj: (14)

1259By combining sw; sT , we obtain the Fisher criterion
1260J ¼ sw=sT [74]. Since bj represent the video segments in

1261the video to be segmented, the minimization of J leads to
1262the maximization of the compactness of the two video

1263segment sets S1;S2. The optimal temporal segmentation

1264of the video is performed by finding the minimum of JðhÞ,
1265h ¼ 1; . . . ;H, where H denotes the number of possible

1266bisections of S, as described above. To this end, we employ

1267a line search strategy for the determination of the best

1268temporal segmentation position hmð1 � hm � HÞ. The

1269above-described process is illustrated in Fig. 15.

1270In order to treat a long sequence, we extend our

1271method of line search strategy over the two resulting video

1272segments in a recursive way, by computing the Fisher

1273criterion on each video segment. The procedure stops

1274when a minimum video segment length has been reached.

1275The method can be also applied in the case where

1276action instances are depicted in multiple synchronized

1277videos, each captured from a different viewpoint. Indeed,

1278if temporal segmentation in the different views has been

1279adequately accurate, one can employ a majority voting over

1280all camera segmentation timelines (namely the sequences

1281of video frame labels, where each label denotes the video

Blat et al.: Big Data Analysis for Media Production
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1283 segmentation timeline for the multiview video.

1284 Once one or more videos have been temporally

1285 segmented into NI segments using the procedure outlined

1286 above, video segment clustering can be performed in order

1287 to group them into K clusters containing similar actions.

1288 For this, we apply clustering on the BoW-based video

1289 representations xv
i , i ¼ 1; . . . ;NI by employing kernel

1290 k-means algorithm. In order to combine the different

1291 action properties described in different BoW-based repre-

1292 sentations xv
i , we employ the RBF-�2 kernel, where

1293 different descriptor types are combined in a multichannel

1294 approach [75]. If by the end of this procedure one manually

1295 sets labels (e.g., walk, run, jump) in each cluster (in the

1296 case where the derived clusters are fairly homogeneous),

1297 each action video can be assigned the corresponding action

1298 cluster label. For clustering multiview videos, one can

1299 exploit the circular shift invariance property of the discrete

1300 Fourier transform (DFT) coefficients [76] in order to

1301 obtain a view-independent action representation.

1302 B. Distributed Trimmed Kernel K-Means Clustering
1303 The objective of data clustering is to divide a given

1304 group of unlabeled data samples in subgroups (clusters), so
1305 that data samples belonging to the same cluster are similar

1306 to each other and dissimilar to samples belonging to any

1307 other cluster. Clustering has many applications in different

1308 scientific fields. Despite the fact that there has been an

1309 extremely rich bibliography on this subject for years [77], it

1310 is still an active research field.

1311One of the earliest clustering methods is the k-Means

1312algorithm [78] that is still popular, despite its age. Its main

1313drawback is that the surfaces separating the clusters can

1314only be hyperplanes. Thus, if the clusters are not linearly

1315separable, the standard k-Means algorithm will not be able

1316to give good results. In order to overcome this limitation,

1317the classical algorithm has been extended into the kernel

1318k-Means [60]. The basic idea behind kernel approaches is to

1319project the data into a higher, or even infinite dimensional

1320space. It is possible for a linear separator in that space to

1321have a nonlinear projection back in the original space, thus

1322solving the nonlinear separability issue. The kernel trick
1323[79] allows us to circumvent the actual projection to the

1324higher dimensional space. The trick involves using a kernel
1325function to implicitly calculate the dot products of vectors in

1326the kernel space using the feature space vectors.

1327A convenient way to have quick, repeated access to

1328the dot products without calculating the kernel function

1329every time, is to calculate the function once for every

1330possible combination of data samples. The results can be

1331stored in a n� n matrix K called the kernel matrix, where
1332Kij ¼ �ðxi;xjÞ.
1333Kernel k-Means provides a popular starting point for

1334many state of the art clustering schemes [80]–[83]. A

1335recent survey on kernel clustering methods can be found

1336in [84].

1337Distributed computing can provide the means to

1338handle problems on very large datasets, often encountered

1339in media production, that would otherwise be almost

1340impossible to solve [85]. Provided that a task can be split

Fig. 15. Determination of the temporal segmentation point.
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1341 into many independent subtasks, then it can theoretically

1342 be performed in a reasonable amount of time, regardless of

1343 the data size, given enough processing units.

1344 Distributed versions of clustering algorithms related to

1345 kernel k-Means, like classic k-Means [86] and k-Medians

1346 [87] have already been proposed. However, to the best of

1347 our knowledge, a distributed approach to kernel k-Means

1348 has not been proposed yet. Such an approach that also

1349 involves kernel matrix trimming is summarized below. Full

1350 details and experimental evaluation are provided in [88].

1351 The approach follows the MapReduce programming

1352 model [89], which is a high level framework for distributed

1353 processing on a computing cluster. The implementation

1354 uses Apache Spark [90], a cluster computing framework,

1355 which is similar to and compatible with Hadoop [91]. The

1356 computing cluster can include a wide variety of hardware

1357 from high-end, multiprocessor computers with large

1358 amounts of RAM, to average recent PCs. The focus of

1359 the proposed implementation is to avoid the need to store

1360 n2 kernel matrix entries into the distributed memory at the

1361 same time, if possible. In order to achieve this goal, we

1362 employ a novel kernel matrix trimming algorithm, which

1363 enables us to significantly reduce the number of nonzero

1364 entries in the kernel matrix, while also increasing

1365 clustering performance. The proposed distributed cluster-

1366 ing scheme is divided into three major parts: kernel matrix

1367 computation, kernel matrix trimming algorithm and,

1368 finally, kernel k-Means itself. The experimental evaluation

1369 of the proposed approach was performed on the facial

1370 image clustering task, which is important in movie content

1371 analysis and description, as it allows us to search for actor

1372 face appearances in video content.

1373 In more detail, we consider the kernel matrix entries to

1374 express data sample facial image similarity. These entries

1375 have large/small values within the same cluster/between

1376 different clusters, respectively. We aim to eliminate (trim

1377 out) small Kij entries, while retaining as many large Kij

1378 entries as possible. In the presented algorithm, it is

1379 possible to retain a different number of entries Kij for

1380 different data samples.

1381 In general, the proposed kernel matrix trimming

1382 algorithm attempts to determine the cardinality of the

1383 cluster that a data sample belongs to, through a voting

1384 system. Each data sample casts votes on the various

1385 candidate cluster cardinalities for itself. The votes for each

1386 cluster cardinality j are summed up for every sample. Each

1387 cardinality is then assigned a score by using a suitability

1388 function that measures how close the number of votes for j
1389 is to the nearest integer nonzero product of j. The winning
1390 cardinality is the one with the highest score. Every data

1391 sample that voted for the winning cardinality value is

1392 determined to belong to a cluster of that cardinality

1393 When there are no more votes, every data sample has

1394 received an estimate of the cardinality of the cluster it

1395 belongs to. The trimming of the kernel matrix K entries is

1396 performed in a row-wisemanner. Suppose that the estimated

1397cluster cardinality for data sample ai iswi. We zero (trim out)

1398every entryKij in the ith row ofKwhose value is less than the

1399with largest value of the row. The resulting matrix K̂may no

1400longer be symmetric, thus the final trimmed similarity

1401matrix is obtained as K� ¼ maxðK̂; K̂TÞ.
1402For the distributed implementation of the above

1403mentioned clustering algorithm theMapReduce distributed
1404computing programming model [92], whose implementa-

1405tions include Hadoop and Spark, has been utilized.

1406MapReduce simplifies the coding of distributed programs

1407and was specifically developed to allow easy processing of

1408very big datasets on computing clusters. A master node in

1409the MapReduce framework automatically splits the dataset

1410up into smaller data sample collections and distributes

1411them to the workers, each processing the assigned data

1412independently.

1413As the name implies, there are two major components

1414to this programming model. With the Map command,

1415every worker applies a user defined function to each data

1416sample. Each worker can then return the results to the

1417master node. Additionally, with the Reduce command, a

1418worker applies a commutative and associative operation to

1419collect the data elements, or the results of a previously

1420mapped function, into a single result. As the operation is

1421commutative and associative, the results for each worker

1422are independent from those of other workers and they can

1423also be combined in the same way on the master node.

1424All three parts of the proposed trimmed kernel

1425K-means algorithm, namely the kernel matrix computa-

1426tion, its trimming and the actual kernel K-means have been

1427cast in a MapReduce framework. For example, the

1428computation of the kernel matrix proceeds as follows.

1429Assuming there are n data samples, each of which has d
1430features, we read the data samples into n d-dimensional

1431data vectors, which are distributed to the cluster worker

1432nodes. Then we iterate through every data vector and map

1433the kernel function of the current vector with every other

1434vector. This provides us with a single row of the kernel

1435matrix, which we can then write to the disk. After n
1436iterations, the computation is complete. This step requires

1437OðndÞ distributed memory and Oðn2dÞ operations [88].
1438The performance of the proposed trimmed kernel

1439k-means approach and its distributed implementation have

1440been judged on a number of experiments. The first

1441experiment involved the MNIST handwritten digit dataset.

1442In this experiment we used the Normalized Mutual
1443Information (NMI) metric [93] to measure the similarity

1444between the clustering results and the ground truth while

1445the reduction in the size of the kernel matrix has been

1446measured with the ratio nz=n2 of the nonzero elements of

1447the kernel matrix after trimming to the number of elements

1448of the full matrix. In this experiment, the proposed

1449trimmed kernel k-means approach utilizing an RBF kernel

1450provided the best clustering performance in terms of NMI

1451(0.5687), compared to 0.4936 obtained by kernel k-means

1452while retaining only about 4% of the full kernel matrix
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1453 elements. By comparing the proposed approach to approx-

1454 imate kernel k-Means [94] on the same dataset it was found

1455 that the latter needs about 7% of the full kernel matrix,

1456 in order to match the full kernel matrix performance

1457 (0.4941), while our approach achieves better performance

1458 (0.5687) with about the same kernel matrix size.

1459 Tests were also conducted in order to check the effect of

1460 the number of processing/computing nodes in a distributed

1461 processing environment to the processing time of the

1462 proposed distributed implementation of the clustering

1463 algorithm. The plot of computation time with respect to

1464 number of computing nodes is expected to ideally have the

1465 form of the rectangular hyperbola fðxÞ ¼ 1=x. Experiments

1466 to verify this were conducted on the Youtube Faces dataset

1467 [95] that certainly qualifies as big data since it consists of

1468 local binary patterns (LBP) descriptors [96] for 621126

1469 faces of various celebrities extracted from Youtube videos.

1470 Since it was not practical to run the kernel matrix

1471 computation in its entirety for various numbers of cores,

1472 as it would take about 150 days for a single core to finish the

1473 task, we measured the time required by the computing

1474 cluster to calculate 50 rows of the kernel matrix. The

1475 computing cluster consisted each time of a different

1476 number of Virtual Machines (VMs) as workers, each VM

1477 having two cores and four Gigabytes of memory. The

1478 resulting acceleration curve can be seen in Fig. 16 and

1479 indeed reasonably follows the predicted rectangular

1480 hyperbola. In total, the algorithm (kernel matrix compu-

1481 tation and trimming, kernel k-means itself) for the entire

1482 dataset required about 14.21 days on 12 cores compared to

1483 the 150 days on a single core mentioned above.

1484 C. Approximate Methods for Big Media Data
1485 Classification
1486 Large scale visual data classification problems, includ-

1487 ing face recognition, activity recognition and video shot-

1488 type characterization, commonly appear in a movie

1489production and postproduction stage. For such problems,

1490the state-of-the art approach is to use classification

1491methods that produce nonlinear decision functions by

1492employing a nonlinear piece-wise mapping function to

1493map the data from the input space to a feature space of

1494higher dimensionality. In order to express data similarity

1495in the feature space, one can employ the kernel trick [79],

1496where similarity is expressed with the kernel matrix

1497K 2 RN�N, N being the number of the available training

1498data. The derived solutions for state-of-the-art methods,

1499such as Kernel Principal Component Analysis [97], Kernel

1500Ridge Regression [98], regularized neural networks [99],

1501least-squares support vector machines [100], or random-

1502ized neural networks (also referred to as extreme learning

1503machines [101]), involve the eigen-decomposition or the

1504inversion of K . Thus, in classification problems involving

1505big visual data, where N is very large, the application of

1506such approaches can be prohibitive, since the theoretical

1507computational complexity and memory requirements are

1508of order OðN3Þ and OðN2Þ, respectively. As the number of

1509the available training data increases with the number of

1510the classes to be modeled, one simple approach to the issue

1511above could be to try to model each class separately, by

1512employing an ensemble of one-class classifiers, each

1513modeling only one class. It has been shown that such an

1514approach can achieve very good performance in large-scale

1515multiclass biomedical data classification problems [102].

1516Furthermore, one-class classification methods show good

1517performance when only the class of interest needs to be

1518modeled and discriminated from the rest of the world.

1519Moreover one-class approaches have been used in visual

1520data classification problems, such as video surveillance and

1521video summarization [103]. State-of-the-art one-class

1522classification methods, such as the one-class support

1523vector machines (OC-SVM) [104], the support vector

1524data description [105] and least squares one-class support

1525vector machine (LS-OC-SVM) [106], achieve significantly

Fig. 16. Seconds to compute 50 rows of the kernel matrix with respect to number of cores.
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1526 better performance in their kernel version over their linear

1527 alternatives. Two up-to-date relevant reviews can be found

1528 in [107], [108].

1529 However, in the big data case, even the number of

1530 training data for each separate class can be enormous. In

1531 order to overcome such restrictions of kernel methods,

1532 kernel matrix approximation approaches have been

1533 proposed [109]–[111], based on the Nystrom method. In

1534 this line of work, a rank n approximation of the kernel

1535 matrix K 2 <N�N, can be obtained by random (column)

1536 sampling as K � ~KBy ~KT , where ~K 2 RN�n contains the n
1537 sampled columns and B 2 Rn�n is the kernel matrix of the

1538 training data corresponding to the n sampled columns.

1539 Thus, only a reduced number of data similarities need to be

1540 calculated and stored, leading to lower computational and

1541 memory demands. Although matrix approximation meth-

1542 ods can be used in every kernel based learning method

1543 with decent results, this may not always be the best

1544 possible approximation option.

1545 In support vector machines, the decision hyperplane

1546 can be expressed as a linear combination of the support

1547 vectors [104], which are expected to be fewer than the

1548 training data. Therefore, a method that approximates the

1549 extreme points (that are more likely to be the support

1550 vectors) has been proposed in [112]. This can lead to

1551 decreased memory requirements and reduced computa-

1552 tional complexity, without sacrificing classification per-

1553 formance. Other approximation methods include the fast

1554 determination of a k-nearest neighbor (kNN) graph,

1555 using k-dimensional trees or local sensitive hashing

1556 [113], [114].

1557 Towards this end, a novel approximate solution for

1558 least squares one-class support vector machines has been

1559 introduced. In order to be effectively approximated, the

1560 solution is restricted to be a linear combination of a subset

1561 of the training data in the feature space, by employing a

1562 randomization approach. Moreover, in order to model the

1563 geometric class data information in the optimization

1564 process, specific regularizers based on the data similarity

1565 graphs can be included and can be implemented without

1566 increasing the computational complexity and memory

1567 requirements dramatically. The proposed one-class classi-

1568 fier is designed to be employed in large scale visual data

1569 classification problems, where each class can be modeled

1570 independently to be distinguished from the rest of the

1571 world.

1572 Let us denote by % 2 <jF j�N a matrix that contains all

1573 training data representations in the feature space, such

1574 that each row of % contains �ðxiÞ 2 F . Also let

1575 K ¼ %T%;K 2 <N�N be the corresponding kernel matrix

1576 that contains the training data similarities in the feature

1577 space F . In the case where many training data exist, N is

1578 huge, so that employing the kernel version of OC-SVM

1579 may be computationally impossible. In order to obtain a

1580 OC-SVM specific approximate solution, we consider to

1581 obtain an approximate solution for the hyperplane w.

1582Based on the Representer Theory [115], the separation

1583hyperplane w can be expressed as a linear combination of

1584the training data, by employing a reconstruction vector

1585a 2 <N, such that w ¼ %a. In order to obtain an

1586approximate version of kernel OC-SVM, we restrict w to

1587be a linear combination of fewer ðnÞ training data, such

1588that n � N, where n is the number of sampled elements,

1589obtained, e.g., by random sampling. Thus, the approximate

1590version of w can be expressed as follows:

~w ¼ ~%a (15)

1591where ~% 2 <jF j�n contains the sampled data representa-

1592tions in F . By using (15), the approximate kernel OC-SVM

1593(AOC-SVM) optimization problem is formulated as

1594follows:

Minimize
1

2
a
T ~%

T ~%aÿ �þ
1

�N

X

N

i¼1

�i (16)

Subject to a
T ~%

T
�ðxiÞ � �ÿ �i (17)

�i � 0: (18)

1595The above optimization problem can be solved by finding

1596the saddle points of the corresponding Lagrangian which

1597leads to a quadratic programming optimization problem.

1598By substituting the Hinge loss in (16)–(18) with the

1599squared loss, we formulate the approximate one-class

1600least-squares SVM (AOC-LS-SVM) objective which leads

1601to a linear system of equations instead of a quadratic

1602programming problem and can be easily solved. The

1603extension to two-class or multiclass approximate optimi-

1604zation objectives is straightforward.

1605Experiments have been conducted in order to evaluate

1606the performance of the proposed variants of LS-OC-SVM

1607classifier and compare them to other state-of-the art

1608classification methods, as well as approximation methods.

1609More specifically, we compared the approximate method

1610with the OC-SVM classifier [104], its approximate version

1611using the Nystrom method (AOC-SVM) [104], [110], the

1612standard LS-OC-SVM [106], its Nystrom approximate

1613variant (NY-LS-OC-SVM) [106], [116] and another

1614approximate LS-OC-SVM version (ALS-OC-SVM). Three

1615variants of the LS-OC-SVM classifier using geometric

1616information were included in the conducted experiments,

1617namely the ones that employ the total class scatter (GE-LS-

1618OC-SVM-T), the within class scatter with respect to

1619subclass information (GE-LS-OC-SVM-W), and the kNN
1620type graph (GE-LS-OC-SVM-KNN). We evaluated the

1621performance of the classifiers in terms of classification

1622performance and training time. For classification perfor-

1623mance, we have employed the g-mean metric [117], which

Blat et al.: Big Data Analysis for Media Production
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1624 is geometric mean of the accuracy for data samples

1625 belonging to the modeled class (positives) and outliers

1626 (negatives). In one such experiment we used the YouTube

1627 Faces dataset [118] already mentioned in Section V-B.

1628 In this experiment we have employed a test protocol

1629 similar to the ‘‘restricted’’ protocol proposed in [118]. The

1630 classification performance and training times in seconds

1631 for this experiment are shown in Table 3. As it can be seen,

1632 the approximate GE-LS-OC-SVM has superior perfor-

1633 mance over the standard OC-SVM and LS-OC-SVM in all

1634 its variants. By setting the percentage of the used training

1635 samples p � 0:05, it can be seen that all tested approx-

1636 imate algorithms can match or improve the performance of

1637 OC-SVM and LS-OC-SVM. Moreover, even for values of

1638 p ¼ 0:05, 0.10, we can obtain state-of-the-art classification

1639 performance with a significant time gain for all GE-LS-OC-

1640 SVM variants.

1641 Experiments were also conducted on activity recog-

1642 nition and shot type characterization datasets, since these

1643 problems are relevant to movie production, and again

1644 verified the superiority of the approximate methods

1645 over the competition in large scale media annotation

1646 experiments.

1647 VI. INTEGRATED WEB VISUALIZATION

1648 As we have argued in Section III, the ‘‘unified 3-D space

1649 paradigm’’ represented in Fig. 1 enables a more efficient

1650 management of multiple source data, and is the basis of

1651 better quality monitoring and assessment of data captured

1652 on-set. Furthermore, the optimization and acceleration

1653 discussed in Section IV allows for real- or near real-time

1654 support for creative decisions, likely leading to important

1655 cost savings both in production and in postproduction.

1656 In this section we add a further innovative tool, the

1657 integrated hybrid web visualization of different data

1658 sources and modalities. Indeed, the ability to register

1659 multiple data sources to a reference (LIDAR) system and

1660to position the sensors generating the data discussed in

1661Section III allows visual representation of the results of the

1662‘‘unified 3-D space.’’ Our technique represents, within an

1663interactive 3-D graphics environment, the different

1664datasets and modalitiesVand even makes use of the

1665metadata generated, such as, for instance, those discussed

1666in Sections IV and V. This visual integrated tool provides

1667support for human assessment of the quality issues, as

1668users can understand better the whole picture, instead of

1669the more traditional visualizations of each modality

1670separately, which come from using different processing

1671algorithms, and which tie the visualizations to the results

1672of different software for each modality.

1673The visualization paradigm proposed is novel as well:

1674The actual shooting environment is simulated, combining

1675the LIDAR reference point cloud, with 3-D reconstruction

1676from other sources, the actual simulation of those data

1677sources themselves at the actual positions of the sensors;

1678and using the metadata to filter as well some of the

1679contentVsome human actions, for instance. Traditional

1680data visualizations are abstract, leading mostly to dynamic

1681graphics (and symbolic pictograms in the less abstract

1682cases). Our paradigm supports a very concrete visualiza-

1683tion, that of the actual sources and content. This is aligned

1684with the current cinema professional practices, which

1685needs to understand the actual content to assess some

1686aspects of quality. This hybrid visualization is inspired by

1687[119], which showed efficiency gains, but our paradigm

1688proposes a much higher stage of integration.

1689Integrating the visualizations in a web environment

1690can easily lead to on-set collaboration and annotation,

1691which would be another advantage. But, on the other

1692hand, we discuss and show below that the web environ-

1693ment is better to support multiple modalities integration

1694than desktop based environments. On the other hand, the

1695interactive very large 3-D graphics visualization poses a

1696number of technical challenges, whose solution is dis-

1697cussed below as well.

Table 3 Classification Performance and Training Times in the YouTube Faces Dataset
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1698 A. Web-Based Visualization
1699 The advent of cloud technology has changed modern

1700 digital workflows considerably. Remote and collaborative

1701 workflows and web-based tools are now becoming

1702 common in the workplace, with users increasingly

1703 accessing applications from anywhere, and on any

1704 platform, to share and collaborate. This potentially

1705 includes both those professionals present on-set (a large

1706 crew with different roles, generating different modalities

1707 of data and metadata) and those working remotely, who

1708 have roles in the production and postproduction processes,

1709 visual effects, etc. There is a strong drive for any on-set

1710 visualization app to be web-based, as this requires no

1711 external software to be installed and, by its very nature, is

1712 suited for remote data access, for supporting collaboration.

1713 Nevertheless, supporting these requirements in the digital

1714 production world presents a series of difficulties:

1715 a) the sheer volume of data (whether raw image

1716 data, processed 3-D data, or metadata) which is

1717 created is not very compatible with the concept of

1718 distributed visualizationn via the web (and

1719 particularly the mobile web), due to bandwidth

1720 constraints;

1721 b) the wider access permitted by cloud and web-

1722 based tools means that there is a wider range of

1723 hardware devices capable of accessing it (from

1724 high powered desktop machines to mobile

1725 phones), a fact that any visualization must take

1726 into account;

1727 c) the same wider access also poses open questions

1728 for data security, a critical issue in the world of

1729 cinema production.

1730 Points (a) and (b) above affect directly a key

1731 consideration for all web-based applications: the speed of

1732 interaction, which is a key ingredient. The expectation of

1733 the user when opening a web page is very different to the

1734 traditional application experience (whether desktop or

1735 mobile). There is no explicit application startup or data

1736 processing information relayed to the user (the typical

1737 ‘‘startup splash screen’’ ubiquitous to many applications);

1738 once the user visits a url, their expectations are for an

1739 instantaneous response, yet one with an inconsistent or

1740 partial presentation. The classic case is that of a web-page

1741 loading and displaying text first, while any associated

1742 images appear later as and when they are loaded. Another

1743 example is that of streaming video, users no longer expect

1744 to download the entire file before beginning to watch it.

1745 In parallel, combinations of 3-D and other modalities

1746 on the web have recently appeared, as exemplified by

1747 Jankowski et al. [119], [120], who presented an interface

1748 combining hypertext and simple 3-D graphics and showed

1749 that the performance with this so called ‘‘dual-mode’’

1750 interface was better than for single modalities (even taking

1751 into account switches). Inspired by this paradigm, the

1752 visualisation work presented below goes beyond a simple

1753 dual-mode interface, in the sense that it is a truly hybrid

1754interactive visualization, tightly integrating video, static

1755image, hypertext and real-time 3-D graphics. In spite of the

1756difficulties for creating such a web-based visualization (as

1757pointed out above), the modern web browser is in fact a

1758propitious context for creating a hybrid application, which

1759combines several modalities. Apart from the ability to

1760rapidly create attractive and adaptive user interface layouts

1761(using CSS), it has a well established and stable system for

1762downloading and streaming 2-D images and video data

1763and, with the release of WebGL in 2011, a standard manner

1764of creating hardware accelerated real-time 3-D graphics

1765applications. Furthermore, the browser context en-

1766courages the parallel use of 2-D and 3-D contexts (in

1767combination with audio and video streams), in order to

1768create hybrid web applications which present data from

1769dozens of potential sources.

1770The main goal of our visualization research is to make

1771best use of these advantages, while overcoming the

1772difficulties described above.

1773B. Progressive Visualization of 3-D Data
1774The release of the WebGL standard in 2011 has meant a

1775qualitative change in web-based 3-D graphics. Now

1776supported by all major desktop and mobile browsers, the

1777WebGL API allows the browser to access hardware

1778accelerated graphics without requiring 3rd party plugins,

1779such as Unity3-D or Adobe Flash. WebGL can be

1780programmed imperatively directly via the browser using

1781Javascript, although several more declarative methods of

1782programming Web-based 3-D have gained popularity in

1783research [121], [122]. Web-based 3-D applications share

1784many of the advantages common to all web-based

1785technology, namely platform independence, no reliance

1786on 3rd party software, and ease of distribution and

1787maintenance. Using WebGL also allows a seamless

1788integration of 2-D and 3-D, which facilitates the creation

1789of powerful and innovative interfaces [119], [123], which

1790would be more difficult to create with nonbrowser-based

1791software. However, the difficulties inherent to many

1792client-server based technologies, such as those relating to

1793bandwidth and synchronisation, are particularly present in

1794all web 3-D applications, due to the typically large file size

1795of the assets used. For more information on the current

1796state of the art in web-based 3-D graphics, we refer the

1797reader to a recent comprehensive survey [124].

1798As explained in previous sections, the 3-D data

1799generated by movie production is represented in both

1800point cloud or reconconstructed 3-D mesh format.

1801Visualizationn of such big 3-D data over the web presents

1802several difficulties. The challenges relating to bandwidth,

1803as described above, are quite clear; yet merely applying

1804one of several well-understood mesh compression algo-

1805rithms [125] is not necessarily the best course of action.

1806The lack of computing power available to the browser

1807context, due to the (semi)-interpreted nature of the

1808javascript client-side API; and the restrictions of the
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1809 WebGL API itself, which has neither the power nor the

1810 flexibility of its OpenGL desktop brother, mean that the

1811 decompression time for several mesh compression algo-

1812 rithms can actually create a greater time bottleneck than

1813 the one due to available communication bandwidth [126].

1814 This situation is best explained by Chun [127], whose

1815 ‘‘WebGL loader’’ has become a popular method to load

1816 large 3-D meshes over the web; it relies does on a custom

1817 file format which encodes a mesh using the UTF-8 string

1818 format to represent binary data that are compressed using

1819 a standard gzip algorithm. This approach takes advantage

1820 of decompression methods inherently available to all

1821 browsers (thanks to HTML standards) yet is limited, from

1822 a big data perspective, due to restrictions in the UTF-8 data

1823 format, which requires the mesh to be broken down into

1824 various smaller chunks. Behr et al. [128] adopted a

1825 different approach to the transmission of binary data,

1826 storing them in the pixels of lossless portable network

1827 graphics (PNG) format images. This also has the advantage

1828 of fast decompression and a further one of pushing much

1829 of the mesh reconstruction work to the GPU. Lavoue et al.
1830 [129] present a method for progressive mesh rendering,

1831 decimating the mesh using vertex collapse mechanisms

1832 and reconstructing on the fly. This method allows

1833 progressive reconstruction of the mesh in the browser

1834 client, which is a desirable user experience, as it provides

1835 an ‘‘instant’’ low-resolution view, before being refined

1836 stepwise.

1837 A common problem facing all of these mesh transfer

1838 and visualization techniques stems from the WebGL

1839 standard, which permits only a 16-bit buffer. While

1840 extensions do exist to enable a 32-bit index buffer, they

1841 are not as widely supported as WebGL itself, particularly in

1842 mobile hardware, and cannot be relied upon to be present

1843 in each client’s browser. Due to the fact that an index

1844 buffer is an essential requirement for any efficient transfer

1845 of mesh data, from a big data perspective, the restriction to

1846 a mere 65536 vertices is problematic, as it necessitates

1847 splitting the mesh into several smaller meshes.

1848 As a result, for the visualization of the unified 3-D

1849 space presented in this paper, we chose to use coloured

1850 pointclouds almost exclusively. This avoids some issues

1851 regarding meshes, as indicated above, and also is

1852 somewhat logical, given hat the raw data is provided in

1853 (sometimes rather sparse) pointcloud format.

1854 In order to visualize the point cloud correctly, we use a

1855 progressive transfer mechanism based on our previous

1856 work [130], [131]. To begin with, the point data is linearly

1857 normalized to its axis aligned bounding box, to 16-bit

1858 precision. Using a 30m set size for example, this provides a

1859 precision of less than half a centimeter, which we consider

1860 to be adequate for visualization. In practice, an even lower

1861 resolution could be used, but the 16-bit normalization

1862 provides a useful structure with which to manipulate data

1863 quickly using Javascript Typed Arrays in the client

1864 application. Color data can also be normalized, if required,

1865though in the work presented in this paper we use standard

186624-bit RGB color. In an offline process, we add the entire

1867set of points to a memory efficient octree. The color of

1868each node of the tree is calculated as an average of the

1869colour of all the nodes below it. The tree is then saved

1870breadth first as a series of binary files, which are stored on

1871a web-server. The point cloud is now ready for transmis-

1872sion to the browser client.

1873When the user arrives at the relevant URL, the browser

1874starts downloading, sequentially, the list of files which

1875contain the breadth-first description of each point cloud.

1876After each file is downloaded, it draws the octree to the

1877scene, with each node in the tree represented by a GL

1878POINT, whose size is that of the width of the octree node.

1879Point widths are kept constant with respect to the distance

1880to the camera by multiplying the desired size by the height

1881of the near projection plane, in homogenous coordinates.

1882As more data is downloaded, the point cloud is updated.

1883However, this is not simply a case of drawing higher-

1884resolution data over the (previously drawn) lower resolu-

1885tion data, as the lower resolution data will occlude any

1886higher resolution points. To deal with this issue, the

1887‘‘level’’ of the octree is tracked, and lower-resolution data

1888are periodically removed from the draw-buffer.

1889Display times for a typical 2.5 million point dataset,

1890over a clamped 8 megabyte/second internet connection,

1891are 1 second for the initial low-resolution view, 10 seconds

1892for 50% completion, and under 20 seconds for the full

1893dataset. Such results are difficult to compare directly with

1894other approaches as there has been little or no other

1895research published on progressive point cloud visualization

1896via the web. Yet the combined download and processing

1897times for our approach improve on the results of the

1898similar, yet different, challenge of progressive 3-D mesh

1899visualization via the web [129].

1900Fig. 17 shows a visual representation of the progressive

1901rendering effect, with four different pointclouds being

1902downloaded simultaneously. While LIDAR data usually

1903provides the highest resolution representation of the set,

1904multiple 2-D data sources such as spheron data, static

1905image data, and RGBD data are also used to create 3-D

1906point clouds, as discussed in Section III, and are visualized

1907also.

1908C. Hybrid 3-D, Video, and Image Rendering
1909As mentioned above, one of the advantages of using a

1910browser context for visualizing multimodal data is that the

1911HTML5 standard allows relatively straightforward combi-

1912nation of 2-D and 3-D data sources, permitting us to view

1913image or streaming video data on surfaces within the 3-D

1914scene.

1915The results of the work presented in Section III include

1916data obtained via feature matching and registration

1917algorithms, which are used in order to back-calculate the

1918real position in the scene of the sensor used to record the

1919data. These positions are then registered to the LIDAR data
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1920 which is taken as the ground truth reference for the scene.

1921 The result is a set of matrices representing the position

1922 (and, for video camera footage, the orientation) of each

1923 sensor in the scene. On a static image level, this permit us

1924 to place a single textured plane (showing the source image

1925 for the sensor) located in the 3-D scene precisely where

1926 the sensor was when it took its image (see Fig. 10).

1927 For video data, a hidden HTML5 video element is

1928 created for each video in the scene, and added to the

1929 browser document object model (DOM), the standard

1930 system for managing the HTML elements of the page. The

1931 fact that the element is hidden ensures that it does not

1932 affect the 3-D visualization. However, the WebGL API can

1933 read the HTMLVideoElement in the DOM, and extract the

1934 pixels of the current frame into texture data, which can be

1935 used within the 3-D scene. Similar to the static image case

1936 presented above, a simple plane mesh is created, using the

1937 position and orientation of each witness video camera in

1938 the scene as the model matrix. Then, every draw frame, the

1939 DOM video elements pipe their texture information as

1940 WebGL textures, which are displayed on the plane meshes.

1941 The result is the video data being rendered in real-time on

1942 meshes within the 3-D scene with the actual position and

1943 orientation of the camera, providing a tight 2-D/3-D

1944integration. To control the playback of the video and to

1945ensure that at most one video is playing at a time (avoiding

1946needless bandwidth and rendering power use), the

1947application features a timeline interface created as a 2-D

1948Canvas and added to the DOM separately. This element

1949allows the user to select a camera, which then moves the

19503-D camera to a position immediately behind the plane

1951mesh displaying the selected camera. Play/pause/stop

1952controls exist for video playback, and scrubbing allows

1953the user to skip forward and backwards (by setting the time

1954of the HTML5 video element via javascript). Fig. 10 shows

1955a screenshot of the timeline interface and the mesh planes

1956featuring the video frames, illustrating the enhanced

1957naturalness of the visualisation.

1958D. Metadata Visualization: Actions, Saliency,
1959Coverage
1960As described in Section V, actors and human actions in

1961multiview footage can be recognized through the use of

1962visual data analysis techniques especially accelerated to

1963deal with big media data on set. Furthermore, the camera

1964which is most salient with respect to an action can

1965be recognised. Saliency could be used, for instance, to

1966decide which take should be included when editing in

Fig. 17. Four screenshots of progressive rendering of the same scene (increasing time/resolution: left-to-right, top-to-bottom), constructed from

LIDAR, spheron, static images and RGBD camera data.
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1967 postproduction; metadata are useful to solve more intelli-

1968 gent queries. The metadata resulting from the processing is

1969 provided as an XML file and associated description with:

1970 1) identification of one or more actors in a scene;

1971 2) identification of actions carried out by the actors;

1972 3) separation of the footage into timed segments;

1973 4) saliency of the camera;

1974 5) any additional metadata which has been added

1975 manually.

1976 This information can then be overlayed on the timeline

1977 discussed above. Other metadata related to quality is the

1978 estimation of camera coverage as described in Section III.

1979 The result of this analysis is a collection of points in 3-D

1980 space with associated values representing the number of

1981 cameras that can accurately see that point. Fig. 18 shows

1982 how this sparse point cloud can be overlaid onto the set

1983 context, allowing users rapid feedback with regards to the

1984 coverage of a given configuration of cameras.

1985 VII. DISCUSSION AND PERSPECTIVES

1986 The generation of ever more digital data, which come from

1987 different sources and in different formats, is increasing.

1988 The case dealt with in this paper is the high-end movie

1989 industry, where currently 6 TB per on-set shooting day are

1990 average, and the variety of sensors used, data formats that

1991 result, and different reference systems, have been

1992 indicated. Poor understanding of the data in this industry

1993 (and others) leads to generate even more data (‘‘in doubt,

1994 reshoot’’) with the associated costs of production and

1995 processing.

1996 A first issue addressed was to make the multisource

1997 large data more intelligible through its integration into a

1998 unified 3-D space; from spherical, multiple stills, etc.,

1999 different 3-D datasets are reconstructed, registered, and

2000 the sensors positions provided with respect to a ground

2001 truth reference (LIDAR in our case). Several aspects are

2002 improved with respect the current state-of-the-art in 3-D

2003 reconstruction.

2004Secondly, toolsets based on the previous approach to

2005monitor quality of the data and of the set-ups have been

2006provided and their success evaluated, testing them with

2007part of the IMPART dataset. These toolsets are intended to

2008support on-set or near-set decisions, to recalibrate, or

2009change set-up to improve coverage, or reshoot in case of

2010out-of-focus or frame drops. Some remedial action could

2011also be taken in postproduction, and the methods

2012introduced support better postproduction strategies as

2013well. The real-time or near real-time requirement has been

2014mainly met through reformulation of the approaches in

2015terms of techniques of widespread use in big data

2016problems, where important gains in some optimization

2017and acceleration techniques have been achieved.

2018To allow more efficient management of the data, and

2019better use further along the digital cinema production

2020chain, for example, in postproduction, semantic analysis of

2021multiview video led to the generation of metadata from an

2022anthropocentric perspective. Novel concrete integrated

2023visualization of different datasets, which takes advantage

2024of the integration of multiple data sources and is based

2025upon enhanced streaming techniques, can support further

2026user driven quality assessment.

2027These contributions are rather digital cinema applica-

2028tion specific. Most of the research advances presented in

2029this paper have been already tested on film related

2030material, some of it from actual productions, some of it

2031from the IMPART research dataset mentioned previously.

2032As a measure of their actual applicability, we should

2033mention that most of the tools have been integrated in the

2034software used by a major film industry player (Double

2035Negative Visual Effects) to organize and process the vast

2036amount of data captured. The automatic strategies

2037presented in this paper do not always work for all on-set

2038cases, but in the large number of cases where they do work,

2039there is a substantial amount of savings in human

2040noncreative labour by creative professionals.

2041On the other hand, the presented novel approaches

2042which advance the state of the art (e.g., of integrating

2043multisource data into a unified spaceVin this case, a 3-D

2044one with common reference coordinates; of semantic

2045temporal segmentation of videos, and of tight integrated

2046visualization), could be applied in other big data areas,

2047besides film production and postproduction. Moreover,

2048the acceleration strategies (including novel numerical

2049implementations for very basic processes), the distributed

2050trimmed clustering technique, the proposed approximate

2051Least Squares One-Class SVM classification approach, and

2052the 3-D visualization (web or desktop), are novel

2053approaches which are applicable to quite different types

2054of big data problems, e.g., any types of data with a vectorial

2055representation in the case of clustering and classification

2056approaches. It is worth mentioning that the visualization of

2057quality/errors through marginal covariances was not

2058previously attempted because of the cost of the existing

2059algorithms was prohibitive. The extensive testing of

Fig. 18. Camera coverage point cloud superimposed on the LIDAR set

data. Bright yellow points are seen by more cameras, dark red points

are seen by fewer.
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2060 acceleration strategies in CPU and GPU for the very large

2061 scale problems (with which we were dealing) should be

2062 useful as well to orient further research and development.

2063 Research perspectives do exist in the different areas

2064 considered, such as more challenging 3-D reconstruction

2065 and quality monitoring problems, further acceleration of

2066 processes, derivation of approximate, distributed or

2067 incremental versions of other clustering and classification

2068 algorithms, and augmented reality as a further tighter

2069 integrated visualization strategy.

2070 In general, the area of big media (or multimedia)

2071 data processing and analysis is a very demanding but also

2072promising new field, that already attracts the interest

2073and research efforts of scientists and engineers in the

2074area [132], as verified by the establishment of at least

2075one conference series dealing with this topic (IEEE

2076International Conference on Multimedia Big Data).

2077Challenges and topics in the multimedia big data field

2078include, among others [133], ultra-high efficiency com-

2079pression, coding and transmission, content analysis,

2080mining, interaction, visualization and semantic retrieval,

2081deep learning and cloud computing for multimedia big

2082data, high-efficiency storage, multimedia big data

2083systems etc. h

REFERENCES

[1] S. Nayar, ‘‘Catadioptric Omnidirectional
Camera,’’ in Proc. CVPR, 1997, pp. 482–488.

[2] J. Starck, A. Maki, S. Nobuhara, A. Hilton,
and T. Matsuyama, ‘‘The Multiple-Camera
3-D Production Studio,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 19, no. 6,
pp. 856–869, Jun. 2009.

[3] H. Kim, J.-Y. Guillemaut, T. Takai, M. Sarim,
and A. Hilton, ‘‘Outdoor Dynamic 3-D Scene
Reconstruction,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 11, pp. 1611–1622,
Nov. 2012.
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[73] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu,
‘‘Dense trajectories and motion boundary
descriptors for action recognition,’’ Int. J.
Comput. Vis., vol. 103, no. 1, pp. 60–79, 2013.

[74] R. A. Fisher, ‘‘The use of multiple
measurements in taxonomic problems,’’ Ann.
Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[75] J. Zhang, M. Marszaaek, S. Lazebnik, and
C. Schmid, ‘‘Local features and kernels for
classification of texture and object
categories: A comprehensive study,’’ Int. J.
Comput. Vis., vol. 73, no. 2, pp. 213–238,
2007.

[76] A. Iosifidis, A. Tefas, N. Nikolaidis, and
I. Pitas, ‘‘Multi-view human movement
recognition based on fuzzy distances and
linear discriminant analysis,’’ Comput. Vis.
Image Understand., vol. 116, no. 3,
pp. 347–360, 2012.

[77] A. K. Jain, M. N. Murty, and P. J. Flynn,
‘‘Data clustering: A review,’’ ACM Comput.
Surv., vol. 31, no. 3, pp. 264–323, Sept. 1999.

[78] J. B. MacQueen, ‘‘Some methods for
classification and analysis of multivariate

observations,’’ in Proc. 5th Berkeley Symp.
Math. Statist. Probability, 1967, pp. 281–297.

[79] V. Vapnik, Statistical Learning Theory.
New York, NY, USA: Wiley, 1998.

[80] S. Yu, L.-C. Tranchevent, X. Liu, W. Glanzel,
J. A. Suykens, B. D. Moor, and Y. Moreau,
‘‘Optimized data fusion for kernel k-means
clustering,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 5, pp. 1031–1039,
May 2012.

[81] F. Zhou, F. De la Torre Frade, and
J. K. Hodgins, ‘‘Hierarchical aligned cluster
analysis for temporal clustering of human
motion,’’ IEEE Trans. Pattern Anal. Mach.
Intell. (PAMI), vol. 35, no. 3, pp. 582–596,
Mar. 2013.

[82] H. Jia, Y. Ming Cheung, and J. Liu,
‘‘Cooperative and penalized competitive
learning with application to kernel-based
clustering,’’ Pattern Recognit., 2014.

[83] M. R. Ferreira and F. de A. T. de Carvalho,
‘‘Kernel-based hard clustering methods in
the feature space with automatic variable
weighting,’’ Pattern Recognit., 2014.

[84] M. Filippone, F. Camastra, F. Masulli, and
S. Rovetta, ‘‘A survey of kernel and spectral
methods for clustering,’’ Pattern Recognit.,
vol. 41, no. 1, pp. 176–190, 2008.

[85] D. Agrawal, S. Das, and A. El Abbadi, ‘‘Big
data and cloud computing: Current state
and future opportunities,’’ in Proc. 14th Int.
Conf. Extending Database Technol., ser.
EDBT/ICDT ’11, 2011, pp. 530–533.

[86] L. M. Rodrigues, L. E. Zárate, C. N. Nobre,
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