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Abstract

Spectral graph clustering has become very popular in recent years, due to the simplic-
ity of its implementation as well as the performance of the method, in comparison with
other popular ones. In this article, we propose a novel spectral graph clustering method
that makes use of genetic algorithms, in order to optimise the structure of a graph
and achieve better clustering results. We focus on evolving the constructed similarity
graphs, by applying a fitness function (also called objective function), based on some of
the most commonly used clustering criteria. The construction of the initial population
is based on nearest neighbour graphs, some variants of them and some arbitrary ones,
represented as matrices. Each one of these matrices is transformed properly in order to
form a chromosome and be used in the evolutionary process. The algorithm’s perfor-
mance greatly depends on the way that the initial population is created, as suggested
by the various techniques that have been examined for the purposes of this article. The
most important advantage of the proposed method is its generic nature, as it can be
applied to several problems, that can be modeled as graphs, including clustering, di-
mensionality reduction and classification problems. Experiments have been conducted
on a traditional dances dataset and on other various multidimensional datasets, using
evaluation methods based on both internal and external clustering criteria, in order to
examine the performance of the proposed algorithm, providing promising results.
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1. Introduction

Clustering is an unsupervised learning process that aims at discovering the natural
grouping of a set of data, such that similar samples are placed in the same group,
while dissimilar samples are placed into different ones. The problem of clustering is a
very challenging problem due to the assumption that no labels are attached to the data.5

Clustering has been used in a wide variety of applications, including bioinformatics [1],
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[2], data mining [3], image analysis [4], information retrieval [5], [6], etc. A detailed
survey on clustering applications can be found in [7] and a more recent study in [8].
In [9] the authors attempt to briefly review a few core concepts of unsupervised and
semi-supervised clustering.10

Spectral graph clustering [10] refers to a class of graph techniques, that rely on eige-
nanalysis of the Laplacian matrix of a similarity graph, aiming to divide graph nodes
in disjoint groups (or clusters). In spectral clustering, as in all clustering techniques,
nodes that originate from the same cluster should have high similarity values, whereas
nodes from different clusters should have low similarity values. Spectral analysis can15

be applied to a variety of practical problems, including face clustering [11] [12], speech
analysis [13, 14] and dimensionality reduction [15], and, as a result, spectral clustering
algorithms have received increasing interest. More clustering applications of spectral
graph clustering are reviewed in [16].

In the last years, evolutionary-based approaches have been extensively applied to20

clustering problems due to their ability to adapt to very different problems with only
few changes [17]. In [18] the authors proposed a genetic algorithm in order to search
for the cluster centers by minimising a clustering metric, while in [19] authors aim to
find the optimal partition of the data, using a genetic algorithm, without searching all
possible partitions. In another, more recent work [20] the authors propose a new group-25

ing genetic algorithm applied to clustering, emphasising to the proposed encoding and
different modifications of crossover and mutation operators. A more detailed survey of
evolutionary algorithms for clustering is presented in [21].

Evolutionary algorithms are probabilistic algorithms, which might not guarantee
the optimal solution, but are likely to return a good one, in a reasonable period of time.30

The most important advantage of evolutionary algorithms is that they do not require
any auxiliary knowledge, but only a fitness function. This makes them good candidates
for optimising different kinds of criteria. Moreover, other advantages of evolutionary
algorithms are the simplicity of the method, their adaptability and the fact that they
can cope with multi-modal functions.They are also particularly well suited for difficult35

problems, where little is known about the underlying search space.
In the proposed approach, spectral graph clustering has been employed and applied

on evolving similarity graphs, which have been transformed in such a way so as to play
the role of the chromosomes in the genetic algorithm [22]. The initial population, for
the needs of the genetic algorithm, is constructed with the aid of k-nearest neighbour40

graphs, represented as matrices, which are, then, transformed to one-dimensional bi-
nary strings and undergo genetic operators. The evolutionary algorithm is performed
based on the value of the employed fitness function, that uses some of the most common
clustering criteria. In the proposed method, we make use of spectral graph clustering
in order to find logical grouping of the dataset.45

The remainder of this paper is structured as follows. In section 2, we state the
problem that we are dealing with in detail, as well as some of the general aspects that
concern the proposed algorithm. We also discuss the way that the similarity graph is
created and some spectral clustering issues. In Section 3, the proposed evolutionary
algorithm is presented in detail. In Section 4, experimental results of the algorithm are50

presented and described. Finally, in Section 5, conclusions are drawn and future work
is discussed.
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2. Problem statement

Clustering is the process of partitioning a usually large dataset into groups (or clusters),
according to a similarity (or dissimilarity) measure. It is an unsupervised learning55

process that no labels are provided and, also, no information of the number of clusters
is given. The aim of any clustering algorithm is to place in the same cluster samples
that have a small distance from each other, whereas samples that are placed in different
clusters are at a large distance from each other. If we assume that we have a dataset X ,
defined as X = x1,x2,x3, ..., which consists of all the data that we want to place into60

clusters, then we define a clustering of X in m clusters C1, ...,Cm, in such a way that the
following conditions apply:

• Ci 6= /0 , i = 1, ...m

• ∪m
i=0Ci = X

• Ci∩C j = /0, i, j = 1, ...,m, i 6= j65

Clustering is usually not a trivial task, as the only information we have about the data,
is the data itself. In order to obtain some information about the structure of the data,
we usually construct similarity matrices.

2.1. Similarity Functions and Similarity Graphs

Similarities between data samples can be represented as a similarity graph G =70

(V,E), where V , E represent vertices (or nodes) and edges of the graph, respectively.
Assuming that each vertex vi represents a single data sample, then two nodes vi, v j are
connected if the similarity si, j between them is positive or larger than a threshold, and
the edge is weighted by si, j. Thus, the problem of clustering can be reformulated as
finding a partition of the graph such that the weights within a cluster have high values,75

whereas weights between different clusters have low values. In an ideal situation, all
data that belong to the same cluster should be placed in a compact group, which lie
away from other compact groups.

Before constructing a similarity graph, we need to define a similarity function on
the data. This means that we should take under consideration that points which are80

“similar” in the dataset should also be similar after applying the similarity function.
The most common similarity function S is the Gaussian similarity function (heat ker-
nel) [23]. Heat kernel between two graph nodes is defined as:

[S]i, j = h(vi,v j) = exp

(
−
∥∥vi−v j

∥∥2

σ2

)
, (1)

where σ is a parameter that defines the width of the neighbourhood. The value of σ

plays an important role to the performance of the algorithm, thus, there are several,85

arbitrary, rules concerning its value. One of them is to choose σ using variants of the
data diameter, for example the exact or multiples of the diameter.

The purpose of a similarity graph is to connect data points that belong to local
neighbourhoods, in a way that each point corresponds to a node in the graph. Local
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neighbourhoods can be expressed in many different ways, leading to many types of90

similarity graphs (e.g. k-nearest neighbour graphs, ε-neighbourhood graphs, fully con-
nected graphs) and node connections. In general, experience shows that constructing a
similarity graph is not a trivial task [24], and little is known on the effect of the vari-
ous constructions. Moreover, it affects, significantly, the performance of the algorithm;
different choices of the similarity graph lead to entirely different results.95

One of the most common choices when constructing a similarity graph [24], is k-
nearest neighbour graphs (to be called k-nn graphs) because of their simplicity as well
as their sparsity. The aim of a k-nn graph A is to connect node vi with node v j if v j
is among the k nearest neighbours of vi, which results in a directed graph [24]. In
the proposed method, an undirected graph was used, obtained by simply ignoring the100

directions of the edges, meaning that we connect vi and v j if vi is among the k-nearest
neighbours of v j or if v j is among the k-nearest neighbours of vi (symmetric k-nearest
neighbour graph).

It is well known that spectral clustering is very sensitive to the choice of the simi-
larity graph that is used for constructing the Laplacian [24]. Indeed, selecting a fixed k105

parameter for the k-nn graph is very difficult and different values lead to dramatically
different clusterings.

Indeed, the standard approach so far was to deal only with k-nn graphs and the
optimisation of the parameter k was dealt with trial and error or cross-validation ap-
proaches. However, there is no justification of the use of k-nn graphs when someone110

wants to optimise a generic clusterability criterion. In the most generic case any arbi-
trary graph could be the fittest solution to the specific optimisation problem. Moreover,
when we consider distributions that are not unimodal or they are mixtures of distribu-
tions with different density from region to region, it is not reasonable to consider that a
single parameter k can work appropriately for the entire data space.115

A second approach, which also restricts the solutions is to consider a threshold for
building the neighbourhoods (ε-ball neighbourhood). However, in that case the prob-
lem still remains that the solution is sub-optimal and considers that a single parameter
ε will fit to the entire dataset.

Optimising the clustering results over the graph structure is not a trivial task, since120

the clustering criteria are not differentiable with respect to the graph structure. Thus,
we propose in this paper to use evolutionary algorithms in order to optimise specific
clustering criteria, that are considered as fitness functions, with respect to the underly-
ing graph, which is transformed to a chromosome solution.

The proposed approach is by far the most generic one since it allows for any ar-125

bitrary graph to become the fittest given that the initial population and the genetic
transformations are appropriately designed. To this end, we use the intuitively good
solutions of the k-nn graphs in the initial population and also random graphs that will
give us the diversity in the population.

2.2. Spectral Graph Clustering130

Spectral graph clustering [10], refers to a class of graph techniques, which rely
on the eigenanalysis of a matrix, in order to partition graph nodes in disjoint clusters
and is commonly used, in recent years, in many clustering applications [16]. As in all
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clustering techniques, in spectral graph clustering nodes that belong to the same cluster
should have high similarity values, whereas nodes from different clusters should have135

low similarity values. Before proceeding to spectral clustering algorithm, it is crucial
to define the Laplacian matrix.

Let D be a diagonal N×N matrix having the sum dii =∑ j Wi, j on its main diagonal.
Then, the generalised eigenvalue problem is defined as:

(D−W)v = λDv, (2)

where W is the adjacency matrix, and v, λ are the eigenvectors and eigenvalues respec-140

tively.
Although many variations of graph Laplacians exist [24], we focus on the nor-

malised graph Laplacian L [25], which is a symmetric matrix, and can be defined as:

L = D−1/2LD−1/2 (3)

= D−1/2(D−W)D−1/2 (4)

= I−D−1/2WD−1/2 (5)

where W is the adjacency matrix, with wi, j = w j,i ≥ 0, D is the degree matrix and I
is the identity matrix. The smallest eigenvalue of L is 0, which corresponds to the
eigenvector D−1/21. The L matrix is always positive semi-definite and has n non-
negative real-valued eigenvalues λ1 ≤ ... ≤ λn. The computational cost of spectral145

clustering algorithms is quite low when matrices are sparse. Luckily, we make use of
k-nn graphs which are in fact sparse.

In the proposed method, we perform eigenanalysis on L matrix, where W is defined
as:

W = S�A, (6)

where S represents the full similarity matrix obtained using (1) and A represents an150

undirected k-nn matrix, which is a sparse matrix. The � operator performs element-
wise multiplication. This process results in a sparse matrix W, only containing non-
zero elements in places where A matrix contains non-zero elements. An example of
the � operator is illustrated in Figure 1. Eigenvalues are always ordered increasingly,
respecting multiplicities, and the first k eigenvectors correspond to the k smallest eigen-155

values. Once the eigenanalysis has been performed and the new representation of the
data has been obtained, the k-means algorithm is used in order to attach a cluster to
every data sample.

3. The proposed evolutionary technique for clustering

In order to partition a dataset into clusters, spectral graph clustering has been applied160

on evolving k-nn similarity graphs. In more detail, we evolve a number of k-nn similar-
ity graphs with the aid of a genetic algorithm, in order to optimise the structure of the
graph, by optimising a clustering criterion. In this paper, clustering criteria were em-
ployed as fitness functions. Moreover, k-nn similarity graphs are transformed properly
into chromosome solutions, in order to be used in the genetic algorithm.165
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S

1 0.1 0.4 0.6 0.8 0.7 0.7 0.3
0.1 1 0.5 0.8 0.1 0.4 0.6 0.7
0.4 0.5 1 0.6 0.9 0.5 0.2 0.5
0.6 0.8 0.6 1 0.6 0.9 0.1 0.2
0.8 0.1 0.9 0.6 1 0.2 0.2 0.7
0.7 0.4 0.5 0.9 0.2 1 0.8 0.4
0.7 0.6 0.2 0.1 0.2 0.8 1 0.7
0.3 0.7 0.5 0.2 0.7 0.4 0.7 1


�

A

1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1
0 0 1 1 1 0 0 0
0 1 1 1 0 1 0 0
1 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1


=

W

1 0 0 0 0.8 0 0 0
0 1 0 0.8 0 0 0 0.7
0 0 1 0.6 0.9 0 0 0
0 0.8 0.6 1 0 0.9 0 0

0.8 0 0.9 0 1 0 0 0.7
0 0 0 0.9 0 1 0.8 0
0 0 0 0 0 0.8 1 0.7
0 0.7 0 0 0.7 0 0.7 1


Figure 1: An example of � operator which performs element-wise multiplication.

Let J be a clustering criterion that depends on the similarity graph W. However,
the optimisation problem is not convex and, moreover, the fitness function is not dif-
ferentiable with respect to W. Since S is considered constant after selecting a specific
similarity function and through the definition of W in (6), the optimisation problem is
defined as:170

optimise
A

J(A), (7)

where Ai, j ∈ 0,1 is a k-nn graph.

3.1. Construction of Initial Population

In order to create the initial population, we do not make use of the full similarity
matrix S, mainly for time and space efficiency reasons. Instead, we use the sparse
matrices that originate from k-nn graphs, resulting in an initial population that consists175

of matrices with binary elements. The decision of employing of the k-nn graphs, for the
construction of the initial population, was based on the observation that their structure
was already good (also they are sparse graphs). The aim of the proposed algorithm is
to find a new structure of these k-nn graphs, so as to obtain better clustering results.
Also, efforts to use only random sparse matrices, as initial population, have been made180

in order to gain completely different structures of the graphs, which only led to worse
results, thus, not presented here.

In this method, a Gaussian function has been employed as a similarity measure, in
order to obtain the similarity matrix S, which is calculated pairwise for all the data in
a database of our choice, using (1). Our experiments showed that the value of σ has185

a decisive role to the performance of the algorithm. In the proposed method, we have
used multiples of the data diameter.

The process of construction the initial population begins with the calculation of k-
nearest neighbour matrices A, with k = 3, ...,8, which constitute the backbone of the
initial population. Next step is to enrich the population with nearly k-nearest neighbour190

matrices. In order to achieve that, we alter the k-nearest neighbour matrices that have
already been calculated, by converting a small proportion of 0’s, from A matrices, to
1’s and vice versa. In more detail, in order to choose which elements of the matrix are
going to be inverted, we first select randomly, with probability of 1%, T elements to
be inverted from ones to zeros, and then, using the exact same number of elements we195

invert randomly T zeros to ones.
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This process guarantees that the proportion of 1’s and 0’s will remain the same in
the new matrix, thus the new chromosomes will have almost equal number of zeros and
ones. It is important not to alter the k-nn graphs completely, so as to keep all the good
properties. Finally, a small proportion of completely random matrices are added to the200

set of matrices, in order to increase the population diversity, in which the number of
1’s are equal to the number of 1’s that a 5-nn graph would have. Approximately 10%
of the initial population is comprised of random graphs.

From the various experiments conducted, we have concluded that the selection of
the parameter k of the nearest neighbour graphs is crucial to the clustering results, as205

illustrated in Figure 2. Figure 2a presents a dataset that consists of two classes with
each one having a different colour. Figures 2b and 2c represent the clustering results
when a 3 and a 5-nearest neighbour graph were used, respectively. We should highlight
the difference between the clustering results, especially when the elements are close to
both classes.210

Before proceeding to the proposed algorithm, we must define the way that the k-nn
matrices, and variants of these matrices, in the initial population are transformed into
chromosomes, thus, we need to define how a square matrix, like a similarity described
earlier, becomes a one-dimensional vector. As the k-nn graphs A are constructed in
such a way to be symmetrical, we may only keep the elements of the upper triangular215

matrix, with no loss of information. Then, the remaining elements are accessed in rows
sequentially, forming the one-dimensional vector. The procedure of reforming a square
matrix in order to obtain the one dimensional chromosome is illustrated in Figure 3.

3.2. Optimisation of the Solutions
The novelty of the proposed algorithm is based on the way that we select to opti-220

mise the solutions of the problem, by optimising a clustering criterion J, as previously
defined in (7). Since clustering criteria are not differentiable we make use of genetic
algorithms in order to optimise them. Before focusing on how this is achieved, we need
to define clustering criteria.

Clustering criteria are divided into two main categories, internal and external crite-225

ria. The calculation of internal criteria implies that we have no prior knowledge about
the data and we can only rely on quantities and features inherent to the dataset, whereas
calculation of external criteria implies that we have some knowledge about the dataset
in advance. More specifically, in order to use an external criterion, we should already
have a representation of human reference clustering, called ground truth. Usually, in230

real problems, we do not have any prior information about the dataset, thus it is diffi-
cult to use external criteria in such problems. Nevertheless, external criteria are more
representative of the cluster structures.

In the literature, many different criteria have been proposed [26], [27], that can
be used in order to measure the fitness of the clusters produced by clustering algo-235

rithms. Some of the most widely used internal criteria are Calinski-Harabasz index
[28], Davies-Bouldin index [29] and Dunn’s index [30], whereas some external criteria
are F-measure [31], purity [32], normalised mutual information [33] and a measure
based on hungarian algorithm [34]. All the aforementioned criteria have been used in
the proposed algorithm, some of them both for optimisation and evaluating the perfor-240

mance of the algorithm and some only for evaluation. Starting with internal criteria:
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(a) Real classes
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(b) 3-nearest neighbour graph
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(c) 5-nearest neighbour graph

Figure 2: The effect of k-nearest neighbour graphs in clustering. In 2a the two classes of the
dataset are presented.

• Calinski-Harabasz index [28] can be defined as:

CH =
trace{SB}
trace{SW}

× N− k
k−1

, (8)

where N is the number of the elements in the dataset examined (that is if a dataset
consists of 100 images, then N = 100), k is the number of the disjoint clusters
after the partition, SB and SW are the between-cluster scatter and within-cluster245
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

1 1 0 0 1 0 0 0
1 1 0 0 1 0 0 1
0 0 1 1 0 0 0 0
0 0 1 1 0 1 0 0
1 1 0 0 1 0 0 1
0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1


→



1 0 0 1 0 0 0
0 0 1 0 0 1

1 0 0 0 0
0 1 0 0

0 0 1
1 0

1


→

[
1001000001001100000100001101

]
Figure 3: The way a k-nn graph A is transformed into a, one-dimensional vector, chromosome.

scatter matrices respectively:

SB =
k

∑
i=1

Ni (mi−m)(mi−m)T , (9)

and

SW =
k

∑
i=1

Ni

∑
p=1

(xi(p)−mi)(xi(p)−mi)
T (10)

where Ni is the number of objects assigned to the i-th cluster, xi(p) is the p-th
element assigned to the i-th cluster, mi is the vector of element means within the
i-th cluster, and m is the vector of overall element means. Generally, we expect250

compact and well separated clusters to have high values of trace{SB} and low
values of trace{SW}. Therefore, the better the data clustering the higher the
value of the ratio between trace{SW} and trace{SB}.

• Davies-Bouldin index [29] is a criterion also based on within and between cluster
similarities and is defined as:255

DB =
1
k

k

∑
i=1

maxi6= j
di +d j

di, j
, (11)

where k denotes the number of the disjoint clusters after the partition, i, j are
cluster labels, di is the average within-group distance for the i-th cluster and
di, j is the inter-group distance between clusters i and j. If the Euclidean norm
is used, then di, di, j take the form of equation (9) and (10), respectively. The
smaller the value of DB index, the better the partition.260

• Another internal clustering criterion is Dunn’s index [30], which is based on
separability and compactness of the clusters, and can be defined as:

D = minp,q∈{1,...,k},p 6=q

{
dp,q

maxi∈{1,...,k}δi

}
, (12)
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where δi is the diameter of the i-th cluster and dp,q is the set distance between p
and q clusters. The diameter δi of a cluster i is defined as the maximum distance
between a pair of elements within that cluster. The set distance dp,q can be de-265

fined as the minimum distance between a pair of elements between two different
clusters p and q. Large values of D imply a better partition of the data.

In the bibliography, there are also many variations of all the aforementioned criteria
[26], which are based on different definitions of distance, diameter etc.

External criteria assume that we, somehow, have a representation of the human270

reference clustering.

• F-measure is a widely used external criterion that makes use of precision and
recall measures [31]. Precision, is defined as the ratio of correct instances to
the total number of elements that actually belong to the cluster, whereas recall
is defined as the ratio of the correct elements to the total number of instances275

that the algorithm returned to belong in the cluster. Then, precision of a cluster
j with respect to cluster i can be defined as:

prec(i, j) =

∣∣C j ∩C∗i
∣∣∣∣C j

∣∣ , (13)

while the recall of a cluster j with respect to cluster i is defined as:

rec(i, j) =

∣∣C j ∩C∗i
∣∣

|C∗i |
. (14)

where C =C1, ...,Cn is a clustering of a set and C∗=C∗1 , ...,C
∗
m is a representation

of human reference clustering of the same set (i.e. ground truth). Then, F-280

measure is defined as:

F(i, j) = 2× prec(i, j)× rec(i, j)
prec(i, j)+ rec(i, j)

, (15)

while the overall F-measure is given by:

F =
m

∑
i=1

|C∗i |
|S|
× max

j=1,...,n
F(i, j). (16)

where |S| is the cardinality of the elements in the set and |C∗i | is the cardinality
of the elements in the human reference clustering set.

Generally, a large precision value implies that most of the elements in the set285

were correctly clustered, but we might not have derived all the elements that
belong to this cluster. On the other hand, a large recall value implies that we have
found almost all elements that belong to a cluster, but we might also have a lot
of elements that do not belong to this cluster. It must be noted that, F-measure,
punishes more clusters that contain samples from different ground truth classes,290

than splitting a ground truth class into two clusters which, nevertheless, contains
samples of only one ground truth cluster. In order to have better partitioning
results, we need to maximise the F-measure.
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• Another external criterion that is commonly used is purity [32], which can be
defined as:295

Pur =
k

∑
i=1

ni

n

(
1
ni

max j(n
j
i )

)
, (17)

where ni is the size of the cluster i, k is the number of clusters, n is the total
number of elements in the dataset, and (n j

i ) is the number of elements in cluster
i with the label j. Higher values of Pur, imply better clustering results.

• Normalised mutual information [33] is also used as an external criterion for eval-
uating clustering algorithms, and is defined as:300

NMI(X ;Y ) =
H(X)+H(Y )

H(X ,Y )
. (18)

where H(X), H(Y ) denote the entropy of X and Y probability distributions re-
spectively and H(X ,Y ) is the entropy:

H(X) =−∑ p(x) log p(x), (19)

H(X ,Y ) =−∑ p(x,y) log p(x,y), (20)

where p(x) is the marginal probability of X and p(x,y) is the joint probability of
X and Y . Generally, the higher the NMI value in (18), the better the partition.305

• Another external criterion is the hungarian measure Hun [34]. The aim of this
measure is to match every cluster, which the algorithm returned, to the best pos-
sible class, as it was defined by ground truth. In more detail, if we suppose to
have k clusters to which we want to assign l classes, on a one-to-one basis, and
we also know the cost of assigning a given cluster to a given class, then we want310

to know the optimal assignment, the one that minimises the total cost. The hun-
garian method is an algorithm that finds an optimal assignment for a given cost
matrix C. The higher the Hun value the better the clustering result.

As the value of such criteria cannot be optimised, without the use of derivatives, we
have employed evolutionary techniques in order to solve this problem. The optimisa-315

tion is performed by altering the chromosomes or, else, by altering the k-nn similarity
matrices A as in (2).

3.3. The Genetic Cycle

As we have already defined how the initial population is formed and how the chro-
mosome evaluation is performed, we may now define the details of the genetic algo-320

rithm. Some of the main operators are single-point crossover, multi-point crossover
and mutation operators which are illustrated in Figure 4. In a single-point crossover
operator a random crossover point is selected, in a corresponding place in both the
chromosome-parents. The offsprings are produced by mutually exchanging the sub-
sequences of the chromosome-parents, in the crossover point. The multi-point crossover325
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Figure 4: a) Single-point crossover operator. b) Multi-point crossover operator. c) Mutation
operator. We have emphasised the element of the chromosome that is mutated (marked with a
red border).

operator is the general case, where multiple crossover points are chosen and are mu-
tually being exchanged, sequentially. Mutation operator is the random alternation that
happens in one or more points of the bit string. In all 4 a), b), c) the chromosome-
parents are presented on the left, while the chromosome-children are presented on the
right.330

Evolutionary algorithms solve problems based on operators inspired from biology.
The first step of the genetic algorithm is to select the chromosomes which will undergo
the crossover operator. For this purpose, a roulette wheel method has been employed
[35], where a probability is associated with each chromosome, based on the value of
the fitness function: the higher the value, the higher the probability to be selected. The335

probability pi of the i-th chromosome to be selected, if fi is its fitness value, is defined
as:

pi =
fi

ΣN
j=1 f j

. (21)

This technique is based on the notion that the fittest chromosomes are more likely to
produce fitter offsprings when combined, than if some less fitter were combined. The
number of the offspring-chromosomes, that is chosen to undergo crossover operator,340

is usually the same as the parents-chromosomes in the population. Nevertheless, it is
very usual a chromosome with a high fitness value to be chosen for crossover more
than once and, also, a chromosome with a low fitness value not to be chosen at all.

Next, we combine the selected chromosomes, some of which, it is reasonable to
expect that they will produce chromosomes with a higher fitness value. The crossover345

rate defines if chromosomes will finally undergo crossover operator. The crossover
rate takes values between 0 and 1 but, usually, a value closer to 1 is used; in our
experiments we have used a value of 0.7. In the proposed algorithm, a single crossover
point is randomly selected for every set of chromosomes and the sub-sequences that
are formed are exchanged respectively.350

Then, we randomly choose a proportion of the chromosomes to undergo mutation,
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that is the random change of some elements of a chromosome. This proportion is
based on the mutation rate, which was set to 0.4 in all of our experiments, that takes
values from 0 to 1, as the crossover rate did. In more detail, for every chromosome,
a random number r between 0 and 1 is generated; if r is larger than the mutation355

rate, then this chromosome will undergo mutation, else it will remain unchanged. A
small value of the mutation rate is usually preferable. Moreover, in order to guarantee
that the newly produced chromosomes will not have been altered too much, after the
mutation, mutation is performed by converting a number of 0’s to 1’s and vice versa.
More precisely, we first select randomly, with probability of 1%, T elements to be360

inverted from ones to zeros, and then, using the exact same number of elements we
invert randomly T zeros to ones.

After the application of genetic operators to the chromosomes, the new generation
has been formed. In order to perform spectral clustering (Section 2.2), we need to
reconstruct the k-nearest neighbour matrix A, which will consist of binary digits, from365

the one-dimensional vector chromosome. Then we apply the similarity matrix S on
A using the � operator, in order to obtain the W as illustrated in Figure 1. Spectral
clustering [25] may now be performed on L as in (5).

The next step is to calculate the fitness values of all the newly produced chro-
mosomes, and place them along with the parent-chromosomes. Then, elitism is per-370

formed: we sort all chromosomes, with the fittest being on the top, and we keep only
those chromosomes with the highest fitness value, so as the number of the chromo-
somes kept to remain unchanged after every generation.

The proposed algorithm terminates when a maximum of 50 generations has been
reached, or when the optimised criterion has not been altered for 5 consecutive gener-375

ations.
To the best of our knowledge this is the first paper that tries to optimise the generic

graph structure in spectral clustering. Indeed, the proposed approach is very promis-
ing since it gives a generic solution to several machine learning algorithms that use
the data structure in terms of their adjacency matrices as regularizers. The application380

of the proposed approach to supervised learning is straightforward and it will lead to
novel classifiers with improved performance. Laplacian least squares, Laplacian sup-
port vector machines, graph embedding, etc. are some of the examples of algorithms
that can benefit from the proposed approach.

3.4. Semi-supervised Learning385

Traditionally, learning has been approached either in an unsupervised manner, for
example clustering, where all the data are unlabeled, or in a supervised manner, for
example classification and regression, where all the data are labeled. Generally, it
is time consuming, and thus expensive, to collect labeled data, while unlabeled ones
are easier to gather. The aim of semi-supervised learning is to combin labeled and390

unlabeled data in such a way in order to change the learning behavior, and design
algorithms that take advantage of such a combination [36].

It is natural for many practical problems to consider that we only possess a pro-
portion of labels in a dataset. Then, the problem of clustering can be transformed into
how this small proportion of labels can be used in order to obtain a better clustering of395
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the data. Semi-supervised learning [37], in machine learning, is a class of techniques
which uses both labeled and unlabeled data, usually a small set of the former and a
large set of the latter, in order to obtain clusters. Thus, both labeled and unlabeled data
are used in the learning process.

Semi-supervised learning has been widely used during the recent years in cluster-400

ing. It has been applied on many practical problems, including image classification
[38], person identification [39] and large scale text applications [40].

Following the notion of semi-supervised learning, we assume that our data follow
a specific probability distribution P. Then, according to this definition, we can redefine
each data sample, to which has been attached a label, as a pair of (x,y), where x rep-405

resents the data sample and y represents the labels, and which are created based on the
probability P. Moreover, the data with no labels are represented as x, which are created
based on the marginal probability Px of P. Semi-supervised learning is based on the
fact that this marginal probability Px can be used in order to better learn any function
(e.g. in clustering or classification). In this paper, we aim to learn how to produce410

chromosomes that improve clustering after every generation, by optimising a cluster-
ing criterion. In other words, the clustering criterion plays the role of the function being
oprimised.

Usually, we need to make some assumptions about the underlying structure of the
dataset distribution. Often, semi-superised algorithms make use at least one of the415

following assumptions [41]:

• Smoothness assumption. This assumption is based on the notion that two points,
close to each other, in a high density area, is probable to share the same label.

• Cluster assumption. It is based on the notion that, generally, data tend to create
distinct clusters, and those that are in the same cluster have also a high probability420

to share the same label.

• Manifold assumption. This hypothesis is based on the notion that the data are of
low dimensionality. With this assumption, we aim to avoid the problem of very
high data dimensionality.

• Low density separation. We usually assume that the boundaries of a cluster are425

selected to be in low density areas.

In this paper, semi-supervised learning has been used in clustering, in order to
optimise an external criterion. In more detail, in terms of the proposed algorithm, for
some of the experiments presented we have assumed that we possess a small proportion
of labels l of the dataset, which are selected randomly once and, then, the same labeled430

data are used in every genetic cycle. The proportion of labels that we have used in our
experiments ranged between 5% and 20% of the total labels of each dataset. Then,
using only these l labels, we have computed the fitness value f of the population, by
using one of the external criteria. The evaluation of the algorithm is performed using
only the rest of the criteria (and not the one being optimised), which are also being435

calculated during every experiment. The overall value of a criterion is the value of
an external criterion calculated as if we possessed the labels for the whole dataset.
Thus, this technique uses both labeled and unlabeled data in order to obtain clusters.
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Table 1: Datasets used.

Dataset duration Classes Size of # of
or source dataset features

Movie 1 02 : 06 : 21 21 1,222 152×152
Movie 2 01 : 44 : 31 41 1,435 150×150
Libras UCI 15 360 90

Movement
Iris UCI 3 150 4

MNIST [13] 10 100 784
folk dances [42] 5 1012 1000

Essentially, only a small proportion of labels was used in this method for obtaining the
fitness values of chromosomes, while the rest of the procedure remained unchanged.440

4. Experiments

In order to evaluate the proposed algorithm, we have conducted several experiments
using 6 different multidimensional datasets and exploiting several input parameters.
All of the datasets presented have several dimensions noted as # of features in Table 1.
Although we own the ground truth for all of the datasets, it is only used to calculate445

external criteria and extract conclusions about the performance of the algorithm when
used with internal criteria and semi-supervised clustering. The characteristics of the
datasets used, are described in Table 1.

A more detailed description regarding the datasets is presented here. Datasets
“Movie 1” and “Movie 2” consist mainly of facial images originate from movies, de-450

tected using a face detector. The face detector that has been used is the Viola-Jones
variant included in the openCV library In the experiments, the images were scaled, in
order to have the same size, considering all the detected facial images of the movie clip
and using a mean bounding box, from all bounding boxes that the face detector pro-
vided. A problem that might arise is that of anisotropic scaling: the images returned by455

the detector might have different height and width, which is problematic when scaling
towards a mean bounding box, thus we calculate the bigger dimension of the bounding
box and then we take the square box that equals this dimension centered to the original
bounding box center. Datasets “Libras Movement” and “Iris” originate from UCI [43]
and consist of 360 and 150 elements, respectively. The dataset “MNIST handwritten460

dataset” [13] consists of a subset of 1000 images of the original dataset. The images
represent handwritten digits from 0 to 9, and the choice of which samples to keep was
a random selection of 100 samples per digit. In order to reduce the size of the dataset
to 100 dimensions, Principal Component Analysis (PCA) was used. Lastly, the ini-
tial “Folk dances” dataset consists of videos of 5 different traditional dances: Lotzia,465

Capetan Loukas, Ramna, Stankena and Zablitsena with 180, 220, 220 201 and 192
videos respectively [42], from which histograms were extracted according to [44]. An
example of the dataset is illustrated in Figure 5.

The goal of the algorithm is to obtain good clustering results, that satisfy two dif-
ferent requirements. The first is to manage to optimise the given internal clustering470

15



Figure 5: An example of Ramna dance, from the ”Folk dances” dataset.

criterion, while the second is to manage to also induce optimisation to the rest of the
internal and external clustering criteria. In an ideal experiment, all the criteria that are
calculated in order to check the algorithms performance should also be optimised.

The size of the populations remained unchanged for all the experiments conducted
and was set to 200 chromosomes. Every experiment was executed 3 times, thus the475

results presented here are the average of these runs. We should highlight here that,
in every experiment, only one clustering criterion c is being optimised. The values of
the rest of the criteria are also calculated during every experiment only for evaluation
reasons. In other words, the values of the rest of the criteria are not their best values as
if they were being optimised themselves. Instead, their values depend on the clustering480

obtained by optimising the criterion J. Moreover, the optimisation of a single criterion
does not necessarily mean that the rest of the criteria will also be improved, especially
when the way in which the criteria are calculated differs a lot.

In order to better assess the performance of the proposed approach we have con-
ducted several comparisons against several other spectral clustering algorithms by analy-485

sing the behavior of the standard spectral clustering using different options to create the
similarity matrix either using k-nn neighbourhoods or using ε-ball neighbourhoods. In
the following Section we highlight the comparison of the proposed approach against
different k-nn graphs and we also compare against ε-ball neighbourhood graphs.

4.1. Comparison with k-nn graph490

The comparison here concerns the performance of the proposed algorithm com-
pared to k-nn graphs as initial population. In Figure 6, results from “Movie 2” are
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Table 2: Libras Movement. Optimising F−measure % criterion (internal criteria).

σ labels% C
CH DB Dunn

best 5nn best 5nn best 5nn
0.89 10 14 161.47 131.35 0.67 0.76 0.10 0.07
1.33 20 15 167.21 110.02 0.61 0.79 0.08 0.04
2.66 20 14 141.89 101.17 0.69 0.70 0.05 0.08
5.32 10 14 127.39 110.85 0.70 0.75 0.12 0.07

illustrated, with “Purity %” being the optimised criterion and assuming that we pos-
sess 20% of the total labels. Axes x, y represent the number of clusters and the value
of each criterion, respectively. The “best” line, in the Figure 6a represents the values495

of this criterion after its optimisation, whereas in the rest figures of the criteria repre-
sents the value of the respective criterion (i.e. Purity, Hungarian, etc.) according to
the best results of the optimised criterion (here, the “Purity%” criterion). The “5knn”
and “8knn” lines represent the values of the criterion if clustering had been performed
using the 5 and 8-nearest neighbour graph, respectively. The comparison with the re-500

sults of the 5 and 8-nearest neighbour graphs is made as a baseline for our method,
since, especially the 5-nearest neighbour graph, they are a common choice for data
representation.

When optimising “Purity %” criterion, the rest of the external criteria are also im-
proving. Moreover, optimisation of “Purity %” seems to improve the clustering when505

the number of clusters was set equal to the number of classes, according to internal
criteria. Notice that, the way the internal criterion “Davies-Bouldin” is defined, low
values mean better clustering has been performed. In Figure 7 the results of dataset
“Libras Movement” are presented (according to Figure 6) where the criterion being
optimised is “F−measure %”. When optimising “F−measure %” criterion, the rest510

of the external criteria are also improving. In this example we can also notice that the
optimisation of “F−measure %” improves the clustering when the number of clusters
was set equal to the number of classes, according to internal criteria.

As the number of clusters is not a known parameter in clustering problems, we
have experimented with different values of the number of clusters, in order to inspect515

the performance of the algorithm. In the presented figures we have set the lowest and
highest number of clusters in such a way so as to illustrate the results of a wide range
of clusters.

In Tables presented here, we have attempted to summarise some of the results of
the datasets. The results of the proposed method are represented under the label “best”,520

while “5nn” represent the results of the clustering if the 5-nn graph would have been
employed to the data. Tables 2, 3, 4, 5, 6 represent the results of the algorithm, when
“F−measure %” external criterion was being optimised. In more detail, in Tables 2
and 4 the intenal criteria are presented, while in Tables 3 and 5 the external ones. For
Tables 7, 8 and 9 the criteria being optimised are highlighted in every sub-table (from525

top to bottom “Calinski-Harabasz”, “F−measure %”, “Purity %”). The σ parameter is
the heat kernel parameter as in (1), C is the number of clusters, and “labels %” is the
percentage of the labels we assumed to possess (only for external criteria).
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Figure 6: Results for dataset “Movie 2”. In every plot axis x, y represent the number of clusters
and the value of each criterion respectively. The parameter of heart kernel was set to σ = 75.

Table 3: Libras Movement. Optimising F−measure % criterion (external criteria).

σ labels% C
Hungarian NMI F-measure % Purity F−measure

best 5nn best 5nn best 5nn best 5nn best 5nn
0.89 10 14 48.06 45.93 0.64 0.63 0.68 0.64 0.50 0.48 0.51 0.49
1.33 20 15 45.93 45.83 0.63 0.62 0.59 0.57 0.50 0.48 0.50 0.48
2.66 20 14 47.41 42.96 0.62 0.61 0.58 0.55 0.50 0.46 0.51 0.48
5.32 10 14 45.28 44.72 0.63 0.61 0.69 0.66 0.48 0.47 0.51 0.49

Table 4: Iris. Optimising F-measure % criterion, σ=3.83 (internal criteria).

σ labels% C
CH DB Dunn

best 5nn best 5nn best 5nn
3.83 5 3 140.68 134.05 0.67 0.74 0.23 0.13
3.83 10 3 161.40 82.17 0.49 0.89 0.16 0.04
3.83 All 3 359.03 162.73 0.60 0.53 0.28 0.07
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Figure 7: Results for dataset “Libras Movement”. In every plot axis x, y represent the number
of clusters and the value of each criterion respectively. The parameter of heat kernel was set to
σ = 5.

Table 5: Iris. Optimising F-measure % criterion, σ=3.83 (external criteria).

σ labels% C
Hungarian NMI F-measure % Purity F−measure

best 5nn best 5nn best 5nn best 5nn best 5nn
3.83 5 3 74.67 70.67 0.59 0.59 0.83 0.78 0.76 0.74 0.77 0.75
3.83 10 3 65.56 58.22 0.48 0.33 0.80 0.71 0.68 0.60 0.69 0.62
3.83 All 3 85.11 69.78 0.69 0.49 - - 0.85 0.72 0.85 0.72

Table 6: Mnist handwritten digits. Optimising F-measure % criterion, σ=5.

σ labels% C
CH DB Hungarian F-measure % Purity F−measure

best 5nn best 5nn best 5nn best 5nn best 5nn best 5nn
5 10 9 486.71 478.16 0.84 0.77 68.87 62.17 0.79 0.71 0.72 0.66 0.68 0.63
5 10 10 340.36 345.17 0.78 0.86 70.92 62.25 0.76 0.65 0.73 0.67 0.72 0.65
5 10 11 350.05 370.72 0.77 0.76 67.51 60.04 0.76 0.63 0.70 0.65 0.72 0.66
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Table 7: Folk dances dataset. Optimising Calinski-Harabasz criterion.

σ labels% C
Calinski-Harabasz Davies-Bouldin NMI Purity

best 5nn best 5nn best 5nn best 5nn
0.45 5 77.803 40.665 2.116 3.317 0.32 0.255 0.468 0.434
0.9 5 71.026 38.309 2.745 3.252 0.281 0.271 0.441 0.434
1.8 5 74.923 43.649 2.292 3.013 0.312 0.291 0.469 0.463

Table 8: Movie 1. Top to bottom optimising Calinski-Harabasz, F-measure %, Purity % criteria.

σ C
Calinski-Harabasz Davies-Bouldin Hungarian Purity

best 5nn best 5nn best 5nn best 5nn
5000 21 161.239 121.659 1.165 1.162 20.922 20.758 0.468 0.475

15000 21 161.011 123.922 1.208 1.103 21.495 21.167 0.462 0.477
20000 21 149.195 121.413 1.169 1.072 21.113 20.404 0.459 0.475

σ labels % C
Hungarian F-measure % Purity F−measure total

best 5nn best 5nn best 5nn best 5nn
20000 10 22 21.17 19.42 0.31 0.29 0.48 0.46 0.24 0.22
10000 20 22 21.79 19.99 0.29 0.26 0.47 0.48 0.23 0.23
15000 20 22 20.51 20.51 0.28 0.26 0.47 0.48 0.24 0.23
20000 20 22 20.73 19.37 0.29 0.27 0.49 0.47 0.24 0.23

σ labels % C
Hungarian Purity % Purity F−measure

best 5nn best 5nn best 5nn best 5nn
5000 20 21 20.786 19.858 0.493 0.485 0.487 0.479 0.232 0.226

10000 20 20 21.877 21.304 0.504 0.493 0.483 0.473 0.245 0.240
15000 20 20 21.086 20.949 0.503 0.497 0.477 0.472 0.241 0.240

4.2. Comparison with ε-neighbourhood graph

This structure of graphs is created by connecting each node to all other nodes which530

have distance di j smaller than a threshold ε. Initial population was created using ε-
neighbourhood graphs, in a similar way as the construction of the initial population
using k-nn graphs. In fact, the value of ε was set as the mean value of the k-nn graph
values. In more detail, the mean values of k-nn graph values (with k = 3, ..,8) were used
as the ε value of a ε-ball neighbourhood graph. These six new graphs constitute the535

backbone of the initial population and they will be referred as 3−8-ball neighbourhood
graphs although 3,4, ..,8 values do not refer to the ε value, for brevity. The rest of the
procedure, in order to enrich the initial population, was exactly the same as described
in Section 3.1.

In Tables 10 and 11 comparative results of the different approaches used to create540

the initial population are illustrated. In Table 10 the results of the F-measure optimised
criterion are presented, where “k-nn graph” and “ε-ball neighbourhood graph” refer to
the graph that has been used for the construction of the initial population, while“best”
refers the results of the proposed algorithm. Moreover, “5nn” represents the results of
the algorithm if clustering had been performed using the 5-nearest neighbour graph and545

“5-ball” represents the results of the algorithm if clustering had been performed using
the 5-ball neighbour graph. Lastly, “bestInitial” refers to the results if the clustering
would have been performed on the best initial population among the k-nn graphs (k =
3, ...,8) and the best initial population among the ε-neighbourhood graphs (3− 8-ball
graphs), respectively.550
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Table 9: Movie 2. Top to bottom optimising Calinski-Harabasz, F-measure %, Purity % criteria.

σ C
Calinski-Harabasz Davies-Bouldin Hungarian Purity

best 5nn best 5nn best 5nn best 5nn
25 40 81.917 70.737 1.240 1.204 15.889 15.447 0.400 0.398
50 41 76.269 69.302 1.144 1.257 16.353 15.819 0.410 0.408
75 41 78.449 66.245 1.226 1.200 16.121 15.981 0.401 0.402

150 40 82.090 66.393 1.183 1.248 16.167 15.772 0.403 0.391

σ labels % C
Hungarian F−measure % Purity F−measure total

best 5nn best 5nn best 5nn best 5nn
50 10 40 16.19 15.77 0.33 0.32 0.41 0.39 0.17 0.17
25 20 41 15.96 15.42 0.26 0.24 0.40 0.40 0.17 0.17
50 20 41 16.26 15.96 0.25 0.23 0.41 0.41 0.17 0.17
75 20 41 16.33 16.28 0.25 0.25 0.40 0.40 0.17 0.17

σ labels % C
Hungarian Purity % Purity F−measure

best 5nn best 5nn best 5nn best 5nn
50 20 41 32.733 32.706 0.404 0.404 0.380 0.378 0.458 0.461
75 20 41 10.229 10.120 0.451 0.430 0.401 0.394 0.109 0.108

150 20 41 17.267 16.667 0.515 0.497 0.455 0.440 0.181 0.178

Table 10: Libras Movement. Optimising F−measure 20% criterion using k-nn and ε-ball neigh-
bourhood graphs

best 5nn bestInitial
k-nn graph 0.6667 0.5991 0.6046

best 5-ball bestInitial
ε-ball neighbourhood graph 0.5602 0.4815 0.4907

In Table 11 we keep the same notation as before, and present the results of the rest
criteria when the F-measure criterion is being optimised. Again, we need to emphasise
that the values in this table are not the best values of each criterion, but the values that
each criterion takes according to the optimised criterion. We have also emphasised
(bold words) the different methods used to evaluate the algorithm.555

From Tables 10 and 11 we observe that the proposed approach is able to improve
also the performance of the ε-neighbourhood populations for several internal and ex-
ternal criteria. It is also obvious that the results of the proposed algorithm, using the
k-nn graphs, are superior to the results of the method that uses the ε-ball neighbour-
hood graphs. This superiority is not only evident to the optimising criterion, but also560

to the rest of the criteria presented in Table 10.

5. Conclusion

We have presented a novel algorithm that makes use of evolutionary algorithms in
order to achieve good clustering results, with the aid of nearest neighbour graphs. It
is important to remark that the algorithm is general and can be used to manipulate a565

wide variety of different problems, such as clustering and dimensionality reduction.
The technique of using nearest neighbour graphs as initial population appears to yield
satisfactory results, in terms of both internal and external criteria.
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Table 11: Libras Movement. Rest of the criteria, optimising F−measure 20% criterion using
k-nn and ε-ball neighbourhood graphs

total F-measure Hungarian Purity Calinski-Harabasz Davies-Boulding
k-nn graph best 0.5314 48.52 0.5231 95.88 0.7818
k-nn graph 5knn 0.48.75 46.48 0.4946 84.38 0.9231

k-nn graph bestInitial 0.4838 45.93 0.4815 92.84 0.8682
ε-ball neighbourhood graph best 0.3458 32.78 0.3444 102.3 0.8729

ε-ball neighbourhood graph ε-ball 0.3073 27.87 0.3056 85.92 1.085
ε-ball neighbourhood graph bestInitial 0.3577 32.04 0.3417 68.01 0.9481

In the future, we aim to improve the proposed evolutionary algorithm, by opti-
mising even different criteria, or even use multiple of them in order to decide which570

chromosome is best. We shall also focus our efforts on creating an even better initial
population, for example by including more than only random variations of the nearest
neighbour graphs. Indeed, the authors are working towards incorporating the proposed
evolutionary based graph optimisation approach to classification and dimensionality
reduction.575
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