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Abstract

Subspace learning techniques have been extensively used for dimensionality reduction (DR) in many pattern

classification problem domains. Recently, methods like Subclass Discriminant Analysis (SDA) and Clustering-

based Discriminant Analysis (CDA), which use subclass information for the discrimination between the data

classes, have attracted much attention. In parallel, important work has been accomplished on Graph Embedding

(GE), which is a general framework unifying several subspace learning techniques. In this paper, GE has

been extended in order to integrate subclass discriminant information resulting to the novel Subclass Graph

Embedding (SGE) framework, which is the main contribution of our work. It is proven that SGE encapsulates

a diversity of both supervised and unsupervised unimodal methods like Locality Preserving Projections (LPP),

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The theoretical link of SDA and

CDA methods with SGE is also established. Along these lines, it is shown that SGE comprises a generalization

of the typical GE framework including subclass DR methods. Moreover, it allows for an easy utilization of

kernels for confronting non-linearly separable data. Employing SGE, in this paper a novel DR algorithm, which

uses subclass discriminant information, called Subclass Marginal Fisher Analysis (SMFA) has been proposed.

Through a series of experiments on various real-world datasets, it is shown that SMFA outperforms in most

of the cases the state-of-the-art demonstrating the efficacy and power of SGE as a platform to develop new

methods.
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1. Introduction

Dimensionality reduction (DR) is an important process for achieving efficient pattern classification. In recent

years, a variety of subspace learning algorithms for DR has been developed. Locality Preserving Projections

(LPP) [1, 2] and Principal Component Analysis (PCA) [3] are two of the most popular unsupervised linear DR

algorithms with a wide range of applications. Besides, supervised methods like Linear Discriminant Analysis5

(LDA) [4] have shown superior performance in many classification problems, since through the DR process
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they aim at achieving data class discrimination. Usually though, there is a case where many data clusters appear

inside the same class imposing the need to integrate this information in the DR approach. Along these lines,

techniques such as Clustering Discriminant Analysis (CDA) [5] and Subclass Discriminant Analysis (SDA)

[6] have been proposed. Both of them utilize a specific objective criterion that incorporates the data subclass10

information in an attempt to discriminate subclasses that belong to different classes, while they put no constraints

to subclasses within the same class.

In parallel to the development of subspace learning techniques, a lot of work has been carried out in the

graph theoretic approach to DR. Towards this direction, Graph Embedding (GE) has been built as a generalized

framework, which unifies several existing DR methods and furthermore allows for developing novel algorithms.15

In [2, 7] the connection of LPP, PCA and LDA with the GE framework has been illustrated and in [7], employ-

ing GE, the authors propose Marginal Fisher Analysis (MFA). In addition, the ISOMAP [8], Locally Linear

Embedding (LLE) [9] and Laplacian Eigenmaps (LE) [10] algorithms have also been interpreted within the GE

framework [7].

Despite the intense activity around GE, no extension of GE has been proposed, in order to integrate sub-20

class information. In this paper, this extension is proposed, leading to the novel Subclass Graph Embedding

(SGE) framework, which is the main contribution of our work. It is also shown that a variety of unimodal DR

algorithms are encapsulated within SGE. Particularly, it is proven that SGE constitutes a generalized framework

that includes the classical GE. Finally, the kernelization of SGE is also presented. SGE attempts to optimize

an intrinsic and a penalty criterion by preserving the subclass structure and simultaneously the local data ge-25

ometry. This results to the corresponding intrinsic and penalty graph matrices both having a subclass block

form. The local geometry may be modeled by any similarity or distance measure, while subclass structure may

be extracted by any clustering algorithm. Choosing the appropriate subclass number per class or the similarity

measure and its parameters, SGE becomes one of the well-known aforementioned algorithms.

In this paper, based on the SGE framework, a novel Subclass Marginal Fisher Analysis (SMFA) algorithm30

for supervised dimensionality reduction has been proposed. The new method exploits subclass information of

the data and models the margins among classes using neighbourhood information among the samples. This

combination provides SMFA with the ability to overcome the shortcomings stemming from the distribution

constraints of the data leading to improved classification performance. Through an experimental comparison, it

is shown that our method outperforms a number of state-of-the-art dimensionality reduction methods in terms35

of classification accuracy. The superiority of SMFA proves that SGE constitutes a platform for developing novel

powerful DR methods.

The remainder of this paper is organized as follows. A literature review of related work is presented in

Section 2. The well-known subspace learning algorithms LPP, PCA, LDA, CDA and SDA are presented in

Section 3 in order to pave the way for their connection with SGE. The GE framework is described in Section 4,40

while the novel SGE framework along with its kernelization is presented in Section 5. The connection between
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the SGE framework and the several subspace learning techniques, along with the details and the meaning of

this connection is given in Section 6. The proposed SMFA method, based on SGE, is presented in Section 7. A

comparison of the aforementioned methods on real-world datasets is presented in Section 8. Finally, conclusions

are drawn in Section 9. Detailed derivation of the proposed approach is given in Appendices A and B.45

2. Related Work

Although LDA proves to be an efficient method in many classification problems, it encounters some funda-

mental limitations. For instance, it suffers from the small sample size problem, which occurs when the number

of the training samples is smaller than the data dimensionality. In this case, LDA fails to optimize its objective

criterion, due to the singularity of the involved matrices. A solution to this problem has been provided in [11],50

where the authors propose the use of the pseudo-inverse of a matrix, in order to overcome matrix singularity.

Another approach is the utilization of PCA as a preprocessing step to reduce data dimensionality and then, the

application of LDA, resulting to the combined PCA + LDA method [4]. As has been clearly stated in [12], an

additional problem appears, when some of the smallest eigenvalues of the within matrix correspond to noisy

features of the data. A factorization that prunes the noisy bases of the within matrix and a correlation-based55

criterion have been proposed in [12] for solving these problems. In an indirect way to deal with the singularity

problem, another method (2D-LDA), where the data are represented as matrices has been proposed in [13]. For

overcoming the small sample size problem, regularization techniques have been also employed [14, 15].

Another strong limitation is that LDA postulates that the data class samples have multivariate Gaussian dis-

tribution, common covariance matrix and different means, for achieving the optimal discrimination in Bayesian60

terms [16]. In real problems though, the class data might not be normally distributed. Many extensions of

LDA have been proposed in the literature for circumventing these limitations [17, 18, 19, 20]. Amongst the

most effective methods towards this end is Marginal Fisher Analysis [7] designed based on the Graph Em-

bedding framework. MFA uses adjacency information among the data samples and achieves to overcome the

above-mentioned distribution limitations.65

As already mentioned in the Introduction, CDA and SDA have been proposed for exploiting the potential

subclass structure of the data. Along the same lines, a Mixture Subclass Discriminant Analysis (MSDA) method

that modifies the objective function of SDA has been proposed in [21]. Moreover, the link between MSDA

and the Gaussian mixture model has been accomplished using the Expectation-Maximization framework. In

the same work, MSDA has further been extended in several ways so that the subclass separation problem is70

solved and nonlinearly separable subclass structure has been tackled using the kernel trick. In [22], a Multiple-

Exemplar Discriminant Analysis (MEDA) method is presented. The classes are represented by some exemplar

vectors. Using these exemplars, an objective criterion is constructed. In this vein, the subclass means can be

used as exemplars, hence exploiting the subclass structure of the data.
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Subspace learning and clustering have been treated together into an iterative process in [23]. Intra-cluster75

similarity and inter-cluster separability are enhanced using initial cluster estimation in the subspace-learning

step. Then, affinity propagation is adopted for clustering the reduced data providing an updated clustering

estimation. In [24], the authors combine global with local geometric structures using a regularization technique.

The singularity problem is tackled by imposing penalty on parameters and the optimal parameter is chosen

based on a model selection approach.80

For conducting nonlinear DR, the application of the kernel trick to the linear approaches has been proposed

[25]. The main idea is to firstly map the data from the initial space to a high-dimensional Hilbert space, where

they might be linearly separable and then use a linear subspace method. This approach results to the kernelized

versions of the linear techniques, that have already been developed: Kernel Principal Component Analysis

(KPCA) [26], Kernel Discriminant Analysis (KDA) [27], Kernel Clustering Discriminant Analysis (KCDA)85

[28], Kernel Subclass Discriminant Analysis (KSDA) [29], etc.

A graph-based supervised DR method has been proposed in [30] for circumventing the problem of non-

Gaussian distributed data. The importance degrees of the same-class and not-same-class vertices are encoded by

the intrinsic and extrinsic graphs, respectively, based on a strictly monotonically decreasing function. Moreover,

the kernel extension of the proposed approach is also presented. In [31], instead of predefining the neighbor90

parameters of the intrinsic and extrinsic graph matrices, the neighbor parameter selection is adaptively per-

formed based on the different local manifold structure of different samples, enhancing in this way the intra-class

similarity and inter-class separability.

A methodology that converts a set of graphs into a vector space has been presented in [32]. A novel prototype

selection method from a class-labeled set of graphs is proposed. A dissimilarity metric between a pair of95

graphs is established and the dissimilarities of a graph from a set of prototypes are calculated providing an

n-dimensional feature vector. Several deterministic algorithms are used to select the prototypes with the most

discriminative power [32]. The flexibility of GE has been also combined with the generalization ability of

the support vector machine classifier resulting to improved classification performance. In [33], the authors

propose the substitution of the support vector machine kernel with sub-space or sub-manifold kernels, that are100

constructed based on the GE framework.

From the above review, it looks as though the several limitations stemming from the data distributions or the

singularity of the involved matrices have been successfully addressed by dedicated methods. However, there

is still enough space for improvement as the new methods introduce new limitations. For instance, subclass-

based methods postulate that the data subclasses have Gaussian distributions, hence translating the problem105

from classes to subclasses. Moreover, although some of the above-mentioned techniques manage to deal with

such limitations and optimally model the distributions of the training data, the generalization ability to the test

data still remains an open challenge.
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3. Subspace Learning Techniques

In this section, we provide some useful notation along with the mathematical formulation of the subspace110

learning techniques LPP, PCA, LDA, CDA and SDA, in order to allow their connection with the SGE frame-

work. A brief description of these methods has been already given in the introduction. In the following analysis,

we consider that each data sample denoted by x is an m-dimensional real vector, i.e., x ∈ Rm. We also denote

by y ∈ Rm′ its projection y = VT x to a new m′-dimensional space using a projection matrix V ∈ Rm×m′ .

In an attempt to preserve the local data geometry after the projection to the space of reduced dimensionality,115

LPP solves the following minimization problem:

min tr{
∑
qp

(
yq − yp

)
S qp

(
yq − yp

)T
} , (1)

where tr{·} denotes the matrix trace, yq is the projection of xq and S qp is a value that expresses the similarity

between xq and xp. The values S qp, for every pair of vectors (q, p), construct the affinity matrix S.

There are many possible ways for defining the affinity matrix [34]. One way is to use the Gaussian similarity

function defined as:120

S qp = S (xq, xp) = exp
(
−

d2(xq, xp)
σ2

)
, (2)

where d(xq, xp) is a distance metric (e.g., Euclidean) and σ2 is a parameter (variance) that determines the

distance scale.

PCA is a statistical learning technique that seeks the directions, where the projected data scatter is maxi-

mized [35, 36]. Strictly speaking, it attempts to project the vector x to the values yi = vT
i x, looking for those

projection vectors vi that maximize the scatter of yi. This maximization problem is resolved by performing eige-125

nanalysis on the covariance matrix of the mean centered data E[(x − µ) (x − µ)T ], where µ is the mean vector

of the data samples. The transformation matrix V consists of those orthonormal eigenvectors that correspond to

the m′ largest eigenvalues, where m′ � m.

LDA, CDA and SDA attempt to minimize a Fisher-Rao’s criterion [37]:

J(v) =
vT SWv
vT SBv

, (3)

where SW is called the within and SB the between scatter matrix. These matrices are symmetric and positive130

semi-definite. The minimization of the ratio (3) leads to the following generalized eigenvalue decomposition

problem to find the optimal discriminant projection eigenvectors:

SWv = λSBv . (4)
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The eigenvalues λi of the above eigenproblem are by definition positive or zero:

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm . (5)

Let v1, v2, · · · , vm be the corresponding eigenvectors. Then the projection y = VT x, from the initial space

to the new space of reduced dimensionality employs the projection matrix V = [v1, v2, · · · , vm′ ] whose columns

are the eigenvectors vi, i = 1, . . . ,m′ and m′ � m.135

LDA seeks for a low-dimensional space, such that when data vectors x are projected, their classes are well

discriminated [4]. Let us denote the total number of classes by c, the mean vector of the i-th class by µi, the

mean vector of the whole data set by µ, the number of samples belonging to the i-th class by ni and the q-th

vector of the i-th class by xi
q. The objective of LDA is to find the projection vectors v that minimize the Fisher

ratio (3), where S(LDA)
W is the within-class and S(LDA)

B the between-class scatter matrix defined as [4]:140

S(LDA)
W =

c∑
i=1

ni∑
q=1

(
xi

q − µ
i
) (

xi
q − µ

i
)T
, (6)

S(LDA)
B =

c∑
i=1

(
µi − µ

) (
µi − µ

)T
. (7)

CDA, like LDA, looks for a linear transform that effectively separates the projected data of each class. Its

difference with LDA is that CDA makes use of the potential subclass structure. Let us denote the total number

of subclasses inside the i-th class by di and, for the j-th subclass of the i-th class, the number of its samples

by ni j, its q-th sample by xi j
q and its mean vector by µi j. CDA attempts to minimize (3), where S(CDA)

W is the

within-subclass and S(CDA)
B the between-subclass scatter matrix, defined as [5]:145

S(CDA)
W =

c∑
i=1

di∑
j=1

ni j∑
q=1

(
xi j

q − µ
i j
) (

xi j
q − µ

i j
)T
, (8)

S(CDA)
B =

c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

(
µi j − µlh

) (
µi j − µlh

)T
. (9)

The difference between SDA and CDA mainly lies on the definition of the within scatter matrix, while the

between scatter matrix of SDA is a modified version of that of CDA. The exact definitions of the two matrices

are:

S(S DA)
W =

n∑
q=1

(
xq − µ

) (
xq − µ

)T
, (10)

S(S DA)
B =

c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

pi j plh

(
µi j − µlh

) (
µi j − µlh

)T
, (11)
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where pi j =
ni j

n is the relative frequency of the j-th cluster of the i-th class [6]. It is worth mentioning that S(S DA)
W

is actually the total covariance matrix of the data.150

The previously described DR methods can be seen under a common prism, since their basic calculation

element towards the construction of the corresponding optimization criteria is the similaritiy among the samples.

Thus we can unify them in a common framework if we consider that the samples form a graph and we set criteria

on the similarities between the nodes of this graph. In the following section we describe in detail this approach.

4. Graph Embedding155

In this section, the problem of dimensionality reduction is described from a graph theoretic perspective.

Before we proceed further into the analysis of this approach, let us briefly give some basic graph notation which

will be used subsequently.

4.1. Graph Notation

A graph G = {X,E} consists of a vertex set X and an edge set E such that E ⊆ X2. A graph is called160

weighted, when the above edges are characterized by some weights, constituting the weight-matrix W. This

matrix provides a good graph description of the form G = {X,W}. A non-zero value in W indicates that there is

a connection between the corresponding vertices. Also, a zero value in W indicates that there is no connection

between the corresponding vertices. A graph is called undirected, when the weight-matrix W is symmetric.

Otherwise, it is called directed [38].165

In our analysis, we shall use only undirected graphs. The degree matrix is defined as the diagonal matrix

D which has at position (q, q) the value Dqq =
∑

p Wqp. This value is the summation of all values of W across

the q-th row or column, since W is symmetric. In fact, the sum is calculated over the adjacent vertices to vertex

xq, as, for all the other vertices, the weights are zero: Wqp = 0. Therefore, the elements of D give an indication

of the adjacency of the q-th vertex to the rest of the vertices. Finally, the Laplacian matrix L is defined as170

L = D −W [7].

4.2. Graph Embedding

In the GE framework, the set of the data samples to be projected in a low dimensionality space is repre-

sented by two graphs, namely, the intrinsic Gint = {X,Wint} and the penalty Gpen = {X,Wpen} graph, where

X = {x1, x2, · · · , xn} is the set of the data samples in both graphs. The intrinsic graph models the similarity con-175

nections between every pair of data samples that have to be reinforced after the projection. The penalty graph

contains the connections between the data samples that must be suppressed after the projection. For both of

the above matrices these connections might have negative values. A negative value causes the opposite results,

i.e., a negative value in the intrinsic matrix means that the corresponding data samples should diverge and a
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negative value in the penalty matrix means that the corresponding data samples should converge after the pro-180

jection. Choosing the values of both the intrinsic and the penalty graph matrices, may lead in either supervised,

unsupervised or semi-supervised DR algorithms. Now, the problem of DR could be interpreted in another way.

It is desirable to project the initial data to the new low dimensional space, such that the geometrical structure of

the data is preserved. The corresponding objective function for optimization is:

argmin
tr{YBYT }=d

J(Y) , (12)

J(Y) =
1
2

tr{
∑

q

∑
p

(yq − yp)Wint(q, p)(yq − yp)T } , (13)

where Y = [y1, y2, · · · , yn] are the projected vectors, d is a constant, B is a constraint matrix, defined to remove185

an arbitrary scaling factor in the embedding and Wint(q, p) is the value of Wint at position (q, p). The structure

of the objective function (13) postulates that, the larger the value Wint(q, p) is, the smaller the distance between

the projections of the data samples xq and xp has to be. By using some simple algebraic manipulations, equation

(13) becomes:

J(Y) = tr{YLintYT } , (14)

where Lint = Dint −Wint is the intrinsic Laplacian matrix. The Laplacian matrix Lpen = Dpen −Wpen of the190

penalty graph is often used as the constraint matrix B. Thus, the above optimization problem becomes:

argmin
tr{YLintYT }

tr{YLpenYT }
. (15)

The optimization of the above objective function is achieved by solving the generalized eigenproblem:

Lintv = λLpenv , (16)

keeping the eigenvectors, which correspond to the smallest eigenvalues.

This approach leads to the optimal projection of the given data samples. In order to achieve the out of sample

projection, the linearization [7] of the above approach should be used. If we employ y = VT x, the objective195

function (13) becomes:

argmin
tr{VT XLpenXT V}=d

J(V) , (17)

J(V) =
1
2

tr{VT

∑
q

∑
p

(xq − xp)Wint(q, p)(xq − xp)T

 V} , (18)

8



where X = [x1, x2, . . . , xn]. By using simple algebraic manipulations, we have:

J(V) = tr{VT XLintXT V} . (19)

Similarly to the straight approach, the optimal eigenvectors are given by solving the generalized eigenproblem:

XLintXT v = λXLpenXT v . (20)

It can be easily shown [7], that if the intrinsic matrix Wint takes the form: Wint(q, p) = 1
n , ∀(q, p) and the

penalty Laplacian matrix equals the identity matrix, Lpen = I, GE becomes identical to PCA. Now, let us denote200

the set of the samples that belong to the i-th class by Ci and define the intrinsic matrix as follows:

Wint(q, p) =


1
ni

, if xq, xp ∈ Ci

0 , otherwise
. (21)

Let us also choose the penalty matrix to be:

Wpen(q, p) =


ni−n
nni

, if xq, xp ∈ Ci

1
n , otherwise

. (22)

Then, GE becomes identical to LDA [2].

5. Subclass Graph Embedding

5.1. Linear Subclass Graph Embedding205

In this section we propose a GE extension in a way that allows the exploitation of subclass information. In

the following analysis, it is assumed that the subclass labels are known. We attempt to minimize the scatter

of the data samples within the same subclass, while separating data samples from subclasses that belong to

different classes. Finally, we are not concerned about samples that belong to different subclasses of the same

class.210

Usually, in real-world problems, local geometry of the data is related to the global supervised structure.

Samples that belong to the same class or subclass, should be “sufficiently close” to each other. SGE actually

exploits this fact. It simultaneously handles supervised and unsupervised information. As a consequence, it

combines the global labeling information with the local geometrical characteristics of the data samples. This is

achieved by weighing the above connections with the similarities of the data samples. The Gaussian similarity215

function, defined in (2), has been used in this paper.

Let us denote as P an affinity matrix. Without limiting the generality, we assume that this matrix has block

form, depending on the subclass and the class of the data samples. Using the linearized approach, we attempt to

optimize a more general discrimination criterion. We consider again that y = VT x is the projection of x to the

9



new subspace. Pi j(q, p) is the value of P at position (q, p) of the submatrix that contains the j-th subclass of the220

i-th class. Then, the proposed criterion is:

min J(Y) , (23)

J(Y) =
1
2

tr{
c∑

i=1

di∑
j=1

ni j∑
q=1

ni j∑
p=1

(
yi j

q − yi j
p

)
Pi j(q, p)

(
yi j

q − yi j
p

)T
} (24)

=
1
2

tr{VT

 c∑
i=1

di∑
j=1

ni j∑
q=1

ni j∑
p=1

(
xi j

q − xi j
p

)
Pi j(q, p)

(
xi j

q − xi j
p

)T
 V} (25)

= tr{VT X (Dint −Wint) XT V} (26)

= tr{VT XLintXT V} . (27)

The derivation of (27) can be found in Appendix A. The matrix Wint is block diagonal with blocks that corre-

spond to each class and is given by:

Wint =



W1
int

W2
int 0

0
. . .

Wc
int


. (28)

Wi
int are block diagonal submatrices, with blocks that correspond to the subclasses and are given by:

Wi
int =



Pi1

Pi2 0

0
. . .

Pidi


. (29)

Pi j is the submatrix of P that corresponds to the data of the j-th cluster of the i-th class. By looking carefully at

the form of Wint, it is clear that the degree intrinsic matrix Dint has values

Dint(
i−1∑
s=0

j−1∑
t=0

nst + q,
i−1∑
s=0

j−1∑
t=0

nst + q) =
∑

p

Pi j(q, p) , (30)

where p runs over the indices of the j-th cluster of i-th class.225

In parallel, we demand to maximize a criterion, which encodes the similarities among the centroid vectors

of the subclasses. Let the value Qlh
i j express the similarity between the centroid vectors µi j and µlh. The more
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similar two centroids that belong to different classes are, the further apart their projections mi j = VTµi j have to

be from each other:

max G(mi j) , (31)

G(mi j) = tr{
c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

(
mi j −mlh

)
Qlh

i j

(
mi j −mlh

)T
} (32)

= tr{VT

 c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

(
µi j − µlh

)
Qlh

i j

(
µi j − µlh

)T
 V} (33)

= tr{VT X
(
Dpen −Wpen

)
XT V} (34)

= tr{VT XLpenXT V} , (35)

as derived in Appendix B. The block matrix Wpen in (34) consists of block submatrices:230

Wpen =



W1,1
pen W1,2

pen · · · W1,c
pen

W2,1
pen W2,2

pen · · · W2,c
pen

...
...

. . .
...

Wc,1
pen Wc,2

pen · · · Wc,c
pen


. (36)

It is obvious that Wpen consists of the submatrices Wi, j
pen, where the ones on the main block diagonal are given

by:

Wi,i
pen =



Wi1

Wi2 0

0
. . .

Widi


, (37)

where Wi j corresponds to the j-th subclass of the i-th class and is given by:

Wi j = −

(∑
ω,i

(∑dω
t=1 Qωt

i j

))
(
ni j

)2 eni j (eni j )T , (38)
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where eni j = [

ni j-times︷  ︸︸  ︷
11 · · · 1 ]T . Respectively, the off-diagonal submatrices of Wpen are given by:

Wi,l
pen =



Wl1
i1 Wl2

i1 · · · Wldl
i1

Wl1
i2 Wl2

i2 · · · Wldl
i2

...
...

. . .
...

Wl1
idi

Wl2
idi
· · · Wldl

idi


, i , l , (39)

where:235

Wlh
i j =

Qlh
i j

ni jnlh
eni j (enlh )T . (40)

It can be easily shown that D = 0, so that Lpen = −Wpen.

5.2. Physical Meaning

By looking carefully at the intrinsic graph matrix Wint given in (28) and (29), it becomes clear that it has a

block diagonal form, where each block corresponds to a different subclass. The values of these subclass-blocks

are positive, imposing a “favorable” connection between the data samples within the same subclass. The zeros240

out of the block diagonal put no constraint to the corresponding data samples. Similar remarks should also be

pointed regarding the penalty graph matrix, whose off diagonal blocks have positive values, corresponding to

data samples which belong to different classes. These connections are unfavorable and have to be suppressed.

The blocks in the main block diagonal, have also a block diagonal form given in (37). These blocks correspond

to the several subclasses and have negative values. This fact induces a favorable connection between the data245

samples within the same subclass, since they lie in the penalty matrix. Finally, the zeros of Wpen indicating

the data samples, which belong to the same class but to different subclasses, do not impose any constraint. Of

course, the above discussion absolutely fits the motivations that lead to the utilized SGE criteria.

5.3. Kernel Subclass Graph Embedding

In this section, the kernelization of SGE is presented. Kernels are widely used in classification problems,250

where the data are not linearly separable and in unsupervised learning when the data lie on a nonlinear manifold.

Let us denote by X the initial data space, by F a Hilbert space and by f the non-linear mapping function from

X to F . The main idea is to firstly map the original data from the initial space into another high-dimensional

Hilbert space and then perform linear subspace analysis in that space. If we denote by mF the dimensionality

of the Hilbert space, then the above procedure is described as:255

X 3 xq → yq = f (xq) =


∑n

p=1 a1pk(xq, xp)
...∑n

p=1 amF pk(xq, xp)

 ∈ F , (41)
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where k is the kernel function. From the above equation it is obvious that

Y = AT K , (42)

where K is the Gram matrix, which has at position (q, p) the value Kqp = k(xq, xp) and

A = [a1 · · · amF ] =


a11 · · · amF 1

...
. . .

...

a1n · · · amF n

 (43)

is the map coefficient matrix. Consequently, the final SGE optimization becomes:

argmin
tr{AT KLintKA}
tr{AT KLpenKA}

. (44)

Similarly to the linear case, in order to find the optimal projections, we resolve the generalized eigenproblem:

KLintKa = λKLpenKa , (45)

keeping the eigenvectors that correspond to the smallest eigenvalues.

5.4. Subclass Extraction260

From the above discussion, the need for efficient data clustering, is evident. A variety of clustering methods

has been proposed in the literature. Techniques such as K-means and Expectation-Maximization (EM) [39] have

been used for extracting clusters in a database. It is well-known that there is no method that outperforms the rest

in all cases. A relatively new technique relying on spectral graph theory [40], called Spectral Clustering (SC),

has also been proposed for data clustering. It has been shown that SC often outperforms traditional clustering265

algorithms such as K-Means [41]. However, the use of this method has certain limitations, described in [42].

SC can be used for the estimation of the correct number of subclasses within each class [41]. Another potential

advantage of SC is that it uses the Gram matrix, which is also used by Kernel SGE. Therefore, when combining

SC with Kernel SGE, the Gram matrix has to be calculated once, hence reducing the computational load. In

this paper, a multiscale Spectral Clustering (MSC) approach, proposed in [43] has been used, in order to extract270

clusters within each class of the data at different scales.

6. SGE as a General Dimensionality Reduction Framework

From the previous analysis, a correspondence can be established between a specific criterion –which has to

be optimized– and a specific graph matrix. In this subsection, it is shown that SGE is a generalized framework

that can be used for subspace learning, since all the standard approaches are specific cases of SGE. Let us use275

the Gaussian similarity function (2), in order to construct the affinity matrix.
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In the following analysis, we initially let the variance of Gaussian σ2 to infinity. Hence,

S (xq, xp) = 1, ∀(q, p) ∈ {1, 2, · · · , n}2 .

Let the intrinsic matrix elements be:

Pi j(q, p) =


S (xq,xp)

ni j
= 1

ni j
, if xq, xp ∈ Ci j

0 , otherwise
, (46)

where Ci j is the set of the samples that belong to the j-th subclass of the i-th class.

Obviously, (25) becomes the within-subclass criterion of CDA. Thus, in this case, Wint is the intrinsic graph

matrix of CDA. Let also:280

Qlh
i j = S (µi j,µlh) = 1,∀ i, j, h, l (47)

the penalty matrix elements. Then, (33) becomes the between-subclass criterion of CDA. Thus, Wpen is the

penalty graph matrix of CDA and the connection between CDA and GE has been established.

Let us consider that each data sample constitutes its own class, i.e., c = n, di = 1 and ni = 1, ∀i ∈

{1, 2, · · · , c}. Thus, each class-block of the penalty graph matrix reduces to a single element of the matrix.

Obviously, each data sample coincides with the mean of its class. By setting:285

Ql1
i1 =

S (µi,µl)
n

=
1
n
, ∀ (i, l) ∈ {1, 2, · · · , c}2 , (48)

then:

−

(∑
ω,i

(∑dω
t=1 Qωt

i1

))
(ni)2 = −

∑
ω,i

(
1
n

)
=

1
n
− 1 . (49)

These values lie on the main diagonal of the penalty graph matrix. Regarding the off diagonal elements we

have:

Ql1
i1

ninl
=

1
n
. (50)

It can be easily shown that the degree penalty matrix is D = 0, so that Lpen = −Wpen. Obviously, Lpen =

I − 1
n en (en)T and XLpenXT becomes the covariance matrix C of the data. By using as intrinsic graph matrix the290

identity matrix, SGE becomes identical to PCA:

argmin
tr{VT XLintXT V}
tr{VT XLpenXT V}

= argmin
tr{VT IV}
tr{VT CV}

(51)

leading to the following generalized eigenproblem:

Iv = λCv , (52)
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Table 1: Dimensionality Reduction Using SGE Framework

P(Lint) Q(Lpen) σ2 c di d

LPP P11(q, p) = exp
(
−

d2(xq,xp)
σ2

)
,∀xq, xp Q11

11 = n2

1−n

(
Lpen = I

)
σ2 1 1 1

PCA Lint = I Ql1
i1 = 1

n ∞ n 1 n

LDA Pi1(q, p) = 1
ni
, xq, xp ∈ ci Ql1

i1 = ninl
n ∞ c 1 c

CDA Pi j(q, p) = 1
ni j
, xq, xp ∈ ci j Qlh

i j = 1 ∞ c di d

SDA Lint = I − 1
n en (en)T Qlh

i j =
ni jnlh

n ∞ c di d

solved by keeping the smallest eigenvalues, or by setting µ = 1
λ
, since λ , 0, this leads to:

Cv = µIv , (53)

solved by keeping the greatest eigenvalues, which is obviously the PCA solution.

Now, consider that every class consists of a unique subclass, thus di = 1,∀i ∈ {1, 2, . . . , c}. If we set:295

P(q, p) =


S (xq,xp)

ni
= 1

ni
, if xq, xp ∈ Ci

0 , otherwise
, (54)

then the intrinsic graph matrix becomes that of LDA. Furthermore, if we set:

Ql1
i1 =

ninl

n
,∀ (i, l) ∈ {1, . . . , c}2 (55)

then

−

(∑
ω,i

(∑dω
t=1 Qωt

i1

))
(ni)2 =

ni − n
nni

(56)

and

Ql1
i1

ninl
=

1
n
. (57)

These are the values of the penalty graph matrix of LDA. So, by taking the Laplacians of the above matrices,

we end up to the LDA algorithm.300

Let us now reject the assumption that the variance of Gaussian tends to infinity. Consider that there is only

one class which contains the whole set of the data, i.e., c = 1. Also consider that there are no subclasses within

this unique class, i.e., d1 = 1. In this case the intrinsic graph matrix becomes equal to P. Thus, by setting P

equal to the affinity matrix S, the intrinsic Laplacian matrix becomes that of LPP.
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We observe that by utilizing the identity matrix as the penalty Laplacian matrix, obviously we get the LPP305

algorithm. Since we consider a unique class, which contains a unique subclass, from (36) and (37) we have that

Wpen = W11. The values of W11 are given from (38), which in this case reduces to:

W11 = −
Q11

11

n2 en (en)T . (58)

If we set:

Q11
11 =

n2

1 − n
, (59)

then Wpen = W11 = 1
n−1 en (en)T . Consequently,

Lpen =



1 1
1−n · · · 1

1−n

1
1−n 1 · · · 1

1−n
...

...
. . .

...

1
1−n

1
1−n · · · 1


. (60)

Thus, if we make the assumption that the number of the data-samples becomes very large, then asymptotically310

we have Lpen = I.

Finally, to complete the analysis, if we consider as the intrinsic Laplacian matrix, the matrix

Lint = I −
1
n

en (en)T (61)

and if we set:

Qlh
i j =

ni jnlh

n
, (62)

in (38) and (40), SGE becomes identical to SDA. The parameters that determine the connection of the several

methods with SGE are summarized in Table 1.315

7. Subclass Marginal Fisher Analysis

Having established the connection of a set of state-of-the-art DR methods with the SGE framework, we

are now at the position to propose a novel algorithm for dimensionality reduction. Motivated by the well-

known Marginal Fisher Analysis (MFA) method presented in [7], we propose Subclass Marginal Fisher Analysis

(SMFA) employing the SGE framework. The new method combines the power of subclass methods with the

agility of the classical MFA to overcome the limitation of the intraclass Gaussian distribution assumption. The

intrinsic graph matrix characterizes the intra-subclass compactness, while the penalty graph matrix characterizes
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the inter-class separability. Both graph matrices are built using neighbouring information of the graph nodes.

More specifically, the intrinsic graph matrix is defined as:

Pi j(q, p) =

 1 , if p ∈ Nkint (q) or q ∈ Nkint (p)

0 , otherwise
, (63)

where Nkint (q) denotes the index set of the kint nearest neighbours of the q-th sample in subclass j of class i.

Recall that Pi j(q, p) is the value of the intrinsic matrix at the (q, p) position of the j-th subclass belonging to the

i-th class. The penalty graph matrix is defined as:

Wi,l
pen(p, q) =

 1 , if i , l and
(
p ∈ Mkpen (q) or q ∈ Mkpen (p)

)
0 , otherwise

, (64)

whereMkpen (q) denotes the set of samples that belong to the kpen nearest neighbours of q outside the class of q.

Recall that Wi,l
pen(p, q) is the value of the penalty matrix at the (q, p) position, where q belongs to the i-th class

and p belongs to the l-th class. It is worth noting that in contrast to the intrinsic graph matrix, the values of the

penalty graph matrix depend on the class information regardless of the subclass labels. In this way we avoid to320

put constraints between subclasses belonging to the same class offering better generalization chances.

The proposed SMFA algorithm inherits all the advantages of the typical MFA method. More specifically,

there is no assumption on the data distribution, since the intra-subclass compactness is encoded by the nearest

neighbours of the data belonging to the same subclass and the inter-class separability is modelled using the

margins among the classes. Moreover, the functionality of SMFA is based on two parameters, i.e., kint and kpen,325

which appropriately adjusted may lead to avoiding potential overfitting therefore offering huge generalization

power to the method. Also, the available projection dimensionality using SMFA is determined by kpen, which

almost always is much larger than that of LDA, CDA and SDA. Finally, SMFA is capable of handling and

leveraging potential subclass structure of the data, which in many cases may boost its performance. In the

following section, the superiority of SMFA over a number of previously presented state-of-the-art DR methods330

in terms of classification accuracy is demonstrated through a series of experiments.

8. Experimental Results

We conducted classification experiments on several real-world datasets using the proposed linear and kernel

SGE framework. For validating the performance of the algorithms, the 5-fold cross-validation procedure has

been used. For extracting automatically the subclass structure, we have utilized the MSC technique [43], keep-335

ing the most plausible partition for each dataset. For classifying the data, the Nearest Centroid (NC) classifier

has been used with LPP, PCA, LDA and MFA algorithms, while the Nearest Cluster Centroid (NCC) [44] has

been used with CDA, SDA and SMFA algorithms. In NCC, the cluster centroids are calculated and the test

sample is assigned to the class of the nearest cluster centroid. NC and NCC were selected because they provide
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Table 2: Cross Validation Classification Accuracies (%) of Linear Methods on Several Real-World Datasets

DATASET LPP PCA LDA MFA CDA SDA SMFA

FER-AIIA 40.9(3) 31.0(120) 64.6(6) 72.6(10) 73.2 75.5(11) 72.6(12)

BU 39.4(298) 38.1(49) 51.6(6) 52.4(6) 49.1(16) 52.3(15) 49.3(11)

JAFFE 46.8(18) 37.6(39) 53.2(6) 61.5(14) 40.0(15) 54.1(6) 44.9(20)

KANADE 34.2(92) 43.3(46) 67.1(6) 66.3(19) 59.7(7) 67.1(5) 63.8(9)

MNIST 71.1(259) 79.9(135) 84.6(9) 82.8(38) 84.8(15) 85.1(14) 85.3(40)

SEMEION 53.6(99) 83.2(55) 88.2(9) 86.9(8) 89.2(19) 89.4(19) 87.5(10)

XM2VTS 95.7(54) 92.0(86) 70.5(1) 97.7(4) 98.1(3) 97.4(2) 98.4(4)

IONOSPHERE 84.6(23) 72.3(15) 78.9(1) 76.0(12) 80.6(2) 83.4(2) 84.3(26)

MONK 1 66.7(3) 68.3(5) 50.8(1) 71.7(2) 70.0(4) 74.2(3) 78.3(2)

MONK 2 56.0(1) 53.3(4) 52.0(1) 58.7(2) 54.2(1) 54.0(2) 60.7(1)

MONK 3 77.2(5) 80.9(4) 49.4(1) 81.6(1) 74.6(2) 66.3(2) 86.1(5)

PIMA 61.8(1) 63.5(6) 56.5(1) 74.4(1) 60.5(3) 73.5(3) 74.9(1)

SPECIFIC RANK 5.1 5.8 5.0 3.0 4.0 2.7 2.3

OVERALL RANK 9.0 9.8 8.5 5.0 6.6 5.0 4.0

the optimal classification solutions in Bayesian terms, thus proving whether the DR methods have reached the340

goal described by their specific criterion.

In the following paragraphs, we briefly present the datasets that have been used along with the performance

rates of the various subspace learning methods.

8.1. Classification experiments

For the classification experiments, we have used diverse publicly available datasets offered for various clas-345

sification problems. More specifically, FER-AIIA, BU, JAFFE and KANADE were used for facial expression

recognition, XM2VTS for face frontal view recognition, while MNIST and SEMEION for optical digit recog-

nition. Finally, IONOSPHERE, MONK and PIMA were used in order to further extend our experimental study

to diverse data classification problems.

In our experiments, for performing DR we have used both the linear and the RBF kernel approach. The350

maximal dimensionality of the reduced space is determined by the rank of the corresponding matrices utilized

by the discriminant analysis methods. Moreover, as already mentioned, LPP is a parametric method regarding

the variance of Gaussian similarity function, when constructing the affinity matrix. Thus, looking for the optimal

variance, in order to achieve the best classification results, makes the comparison very complex. In this paper,

for the sake of simplicity and relying on some empirical studies of ours, this parameter was allowed to take355

values in the range [0.1 · Ê(di j), 2.0 · Ê(di j)], with step 0.1 · Ê(di j), where Ê denotes the sample mean and

di j is the Euclidean distance between i, j samples. Similarly, MFA and SMFA both depend on kint and kpen

parameters. Since, to the best of our knowledge, there is no study on the optimal values of these parameters in

the literature and as an exhaustive grid search is impossible for computational purposes, we experimented with

several indicative values and the best results obtained are reported.360

18



Table 3: Cross Validation Classification Accuracies (%) of Kernel Methods on Several Real-World Datasets

DATASET KLPP KPCA KDA KMFA KCDA KSDA KSMFA

FER-AIIA 50.2(252) 41.5(29) 54.9(6) 61.3(9) 56.1(12) 53.5(12) 56.7(39)

BU 52.7(317) 35.9(290) 46.6(6) 44.4(29) 41.0(13) 48.0(14) 39.9(18)

JAFFE 28.8(98) 25.9(58) 42.4(6) 47.8(6) 36.1(18) 46.3(5) 34.1(13)

KANADE 32.7(99) 33.2(88) 44.3(6) 46.6(6) 40.0(6) 38.5(6) 45.8(7)

MNIST 81.4(299) 64.5(155) 86.0(9) 86.4(21) 83.4(19) 85.2(15) 86.7(34)

SEMEION 83.8(99) 77.4(77) 95.3(9) 90.0(11) 94.1(19) 95.9(19) 94.9(20)

XM2VTS 71.3(297) 74.7(56) 61.3(1) 78.7(31) 71.5(3) 57.3(4) 81.2(4)

IONOSPHERE 83.7(23) 70.3(2) 92.9(1) 92.3(1) 93.1(1) 92.9(1) 92.6(1)

MONK 1 63.3(2) 72.5(1) 55.8(1) 60.0(1) 58.3(4) 61.7(3) 70.8(4)

MONK 2 54.8(1) 59.8(3) 69.7(1) 70.8(2) 78.7(1) 54.5(1) 79.7(2)

MONK 3 62.5(2) 79.2(5) 51.7(1) 79.2(2) 67.5(2) 58.3(1) 73.3(2)

PIMA 50.7(3) 67.5(4) 48.9(1) 54.0(3) 52.5(3) 52.9(1) 56.2(3)

SPECIFIC RANK 5.3 5.0 4.3 2.8 3.9 4.1 2.6

OVERALL RANK 10.2 10.0 8.1 6.3 8.2 8.3 6.1

The cross-validation classification accuracy rates for the several subspace learning methods over the utilized

datasets, are summarized in Tables 2 and 3 for the linear and the kernel methods, respectively. The optimal

dimensionality of the projected space that returned the above results is depicted in parenthesis. For each dataset,

the best performance rate among linear and kernel methods separately is highlighted with bold, while the best

overall performance rate among all methods, both linear and kernel, is surrounded by a rectangle.365

For ranking the methods in terms of classification performance we further conducted a post-hoc Bonferroni

test [45] for each pair of methods. The performance of pairwise methods is significantly different, if the corre-

sponding average ranks differ by at least the critical difference CD = qα
√

j( j+1)
6T [46], where j is the number of

methods compared, T is the number of data sets and critical values qα can be found in [47]. In our comparisons

we set α = 0.05. The ranking has been performed including both linear and kernel methods in the comparison,370

as well as separately for the linear and kernel methods. The classification performance rank of each method is

referred to in the last two rows of Tables 2 and 3. Specific Rank denotes the method rank independently for

the linear and the kernel methods. Overall rank refers to the rank of each method among both the linear and

the kernel methods. The ranking results are also illustrated in Fig. 1 left and right, for the linear and kernel

methods, respectively. The vertical axis in both figures depicts the various methods, while the horizontal axis375

depicts the performance ranking. The circles indicate the mean rank and the intervals around them indicate the

confidence interval as this is determined by the CD value. Overlapping intervals between two methods indicate

that there is not a statistically significant difference between the corresponding ranks.

The first remark from Tables 2,3 and Fig. 1 is that SMFA and KSMFA outperform the rest methods in the

linear and kernel case, respectively. Although their superiority is not statistically significant over all remaining380

methods, undoubtedly these two methods offer a strong potential to improve the performance or the state-of-

the-art in many classification domains. In addition, it is interesting to observe the robustness of SMFA and
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Figure 1: Ranking of Various Methods After Pairwise Post-Hoc Bonferroni Tests on Real Data. (Left: Linear Methods, Right: Kernel

Methods)

MFA along with their kernel counterparts across the datasets. This observation combined with the fact that both

these methods rely on the same motivations shows the advantage gained by encoding the data distributions using

neighbouring information between the samples towards overcoming the several limitations previously presented385

in this paper, offering at the same time great generalization chances.

As a general remark, the superiority of subclass methods against unimodal ones is evident, with MFA and

KMFA being vivid exceptions. The top overall performance is shown by SMFA followed by SDA and MFA,

while the worst performance is shown by KLPP. More specifically, on the one hand, SDA, MFA and KMFA

display on average the best performance in facial expression recognition problems. On the other hand, in optical390

digit recognition, face frontal view recognition and the remaining classification problems, SMFA and KSMFA

clearly have on average the optimal performance.

In comparing linear with kernel methods, a simple calculation yields mean overall rank equal to 6.84 for the

linear methods and 8.17 for the kernel ones. Although the difference between the two approaches (i.e., linear

and kernel) is significant, we must admit that there is ample space for improving the kernel results by varying395

the RBF parameter, as the selection of this parameter is not trivial and may easily lead to over-fitting. Actually,

the top performance rates presented in this paper have been obtained by testing indicative values of the above

parameter. As a matter of fact, it is interesting to observe that the use of kernels proves to be beneficial for

some methods in certain datasets, while deteriorates the performance of others. For instance, from Tables 2

and 3, the use of kernels boosts the performance of PCA in three out of the four last datasets (i.e., MONK 1,400

MONK 3 and PIMA), while this is not the case for example in XM2VTS. There are two main reasons for this.

Firstly, while some datasets contain linearly separable classes, others need some kernel to obtain this linearity.

The second reason is that in our experiments, for relaxing the computational complexity, we have used the same

kernel values per dataset across all methods and there is no fact advocating that the same value constitutes the
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optimal parameter for each method.405

9. Conclusions

In this paper, data subclass information has been incorporated within Graph Embedding (GE) leading to a

novel Subclass Graph Embedding (SGE) framework, which constitutes the main contribution of our work. In

particular, it has been shown that SGE comprises a generalization of GE, encapsulating a number of state-of-the-

art unimodal subspace learning techniques already integrated within GE. Besides, the connection of SGE with410

subspace learning algorithms that use subclass information in the embedding process has been also analytically

proven. The physical meaning of the graphs involved in SGE has been described providing some intuition. Also

the kernelization of SGE has been presented.

The contribution of this paper has been enriched by a novel Subclass Marginal Fisher Analysis (SMFA)

dimensionality reduction method, which has been designed employing SGE. The functionality of SMFA is415

based on adjacency information of data samples within the same subclass as well as the proximity of “marginal”

samples belonging to different classes. In this way, the new method combines the flexibility of neighbourhood

modelling methods like MFA with the modularity offered by subclass information towards overcoming inherent

limitations stemming from the data distributions, offering at the same moment great generalization chances.

Through an extensive experimental study, it has been shown that SMFA outperforms a number of state-420

of-the-art subspace learning methods in many real-world datasets pertaining to various classification domains.

Similar remarks could be also drawn for KSMFA. In addition, the experimental results highlight the superiority

in terms of classification performance of subclass-based methods against unimodal ones. Most importantly,

through the superiority of SMFA and generally of subclass-based methods, SGE has gained credibility as a

powerful generalized platform for designing novel dimensionality reduction methods.425

Although the performance of the proposed method is impressive, there is yet space for exploring new meth-

ods employing SGE, either by designing completely new methods or by modifying SMFA. Experimenting on

this direction is encompassed in our future plans. Moreover, in order to reinforce even more the outcomes of this

paper and to provide more credibility to SGE, in the near future we intend to extend our current experimental

study to more datasets from additional classification domains.430
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Appendix A.

In this Appendix, the derivation of eq. (27) from eq. (25) is given.

1
2

tr{VT
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 V} = (25)

tr{VT AV} , (A.1)

where A is given by530

A =
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where δil denotes the true delta function. From now on by
∑

we will denote the above six-fold summation.

Using the following relation,
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XLXT =

n∑
s=1

n∑
t=1

xsLstxT
t =

∑
xi j

q Lqp (i, l, j, h) xlh
p , (A.2)

where Lqp (i, l, j, h) is the value of L at position (a, b), where a corresponds to the q-th sample of the j-th cluster

of the i-th class and b corresponds to the p-th sample of the h-th cluster of the l-th class, then it can be easily

shown that535

A = X (Dint −Wint) XT = XLintXT ,

where the values of Wint are those given by (28) and (29). Thus, (A.1) becomes

tr{VT XLintXT V} ,

which is essentially eq. (27).

Appendix B.

In this Appendix, the derivation of eq. (35) from eq. (33) is given.
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where B = B1 + B2 + B3 + B4 and Bk are given below.540
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where

g(i, j) =
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ω=i+1

dω∑
t=1

Qωt
i j

 , 1 ≤ i ≤ c − 1, 1 ≤ j ≤ di .

We extend g(i, j) to i = c as
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g′(i, j) =
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d(i) = t(i, i + 1) + t(i, i + 2) + · · · + t(i, c) .
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Summarizing the above we have that550
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By definition of g′ and e′ we have that
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In the same manner as in Appendix A, using (A.2) it can be shown that

B = X
(
Dpen −Wpen

)
XT = XLpenXT , (35)

where the values of Wpen are those given by eq. (36) – (40). Thus, eq. (B.2) becomes555

tr{VT XLpenXT V} ,

which is essentially eq.(35).

29


	Introduction
	Related Work
	Subspace Learning Techniques
	Graph Embedding
	Graph Notation
	Graph Embedding

	Subclass Graph Embedding
	Linear Subclass Graph Embedding
	Physical Meaning
	Kernel Subclass Graph Embedding
	Subclass Extraction

	SGE as a General Dimensionality Reduction Framework
	Subclass Marginal Fisher Analysis
	Experimental Results
	Classification experiments

	Conclusions
	
	

