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The expansion of the internet over the last decade and the proliferation of online social communities, such

as Facebook, Google+ and Twitter and multimedia sharing sites such as, YouTube, Flickr and Picasa
has led to a vast increase of available information to the user. In the case of multimedia data, such as

images and videos, fast querying and processing of the available information requires the annotation of the

multimedia data with semantic descriptors, i.e., labels. However, only a small proportion of the available
data are labeled. The rest should undergo an annotation-labeling process. The necessity for the creation

of automatic annotation algorithms gave birth to label propagation and semi-supervised learning. In this

study, basic concepts in graph-based label propagation methods are discussed. More precisely, methods
for proper graph construction based on the structure of the available data and label inference methods

for spreading label information from a few labeled data to a larger set of unlabeled data are reviewed.

Furthermore, applications of label propagation algorithms in digital media, as well as evaluation metrics for
measuring their performance are presented.
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1. INTRODUCTION

The introduction of the world wide web in the 1990s and the creation of portable dig-
ital devices in the 2000s allowed massive audiovisual user-fed content creation. More
recently, social networking and social media, which connect users to each other and
typically involve user-fed content, have been a big success. The current period is char-
acterized by the direct interconnection of individuals and information sharing through
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the Internet. Such information is typically accessible online. A great percentage of the
available information concerns multimedia content, i.e., text, audio, images, videos
and animations. One of the biggest multimedia sharing websites is YouTube, whose
servers host video clips totaling hundreds of petabytes. The most common way for de-
scribing and searching the multimedia content is by applying semantic labels (tags),
which capture its basic characteristics. This procedure is called annotation.

Annotations can serve the semantic multimedia data search. In websites such as
YouTube, annotation is performed manually by the individual users: every time the
user uploads a video to the YouTube database, he/she also associates it with tags,
which can be used in a subsequent keyword-based search. However, manual anno-
tation is not feasible, when the user is confronted with a large amount of unlabeled
media content. This situation arises also in the case of television content annotation
in television broadcaster archives. In this case, archivists perform a coarse annotation
of the entire video, which is often insufficient for journalists to directly access video
shots/frames of interest. Such problems can be overcome with semi-automatic annota-
tion techniques, based on label propagation.

Label propagation is a semi-automatic annotation process for labeling a large
amount of unlabeled data, when manual annotation is prohibitive. The objective of
label propagation algorithms is to spread the labels from a small set of labeled data
to a larger set of unlabeled data. Let us define the set of labeled data XL = {xi}nli=1,
which are assigned labels from the set L = {lj}Lj=1 and a set of unlabeled data XU =
{xi}nui=1. Without loss of generality, we define the set of labeled and unlabeled data as
X = {x1, . . . ,xnl ,xnl+1, . . . ,xN}, N = nl + nu. The vector y = [y1, . . . , ynl , 0, . . . , 0]T =
[yLyU ]T ∈ LN contains the labels of the labeled data in the first nl positions and takes
the value 0 in the last nu positions. In matrix notation, the label matrix Y ∈ <N×L
is defined as the matrix with entries Yil = 1 if the i-th sample has the l-th label and
Yil = 0 otherwise. The objective of label propagation methods is to spread the labels
in L from the set of labeled data XL to the set of unlabeled data XU . Label propaga-
tion is essentially a diffusion process that exploits media content item (e.g. video seg-
ment) similarities. Similar diffusion approaches have been used in social networks for
recommendation/preferences/concept propagation. Label propagation takes into con-
sideration the following two requirements: 1) the labels of the initial labeled media
items should remain unchanged and 2) media data that are ”close” or ”similar” to each
other or lie in a compact domain of the feature space should be assigned the same la-
bel. The term ”closeness” refers to the distance or similarity of the data projections to
the utilized feature space. The most common way of describing the label propagation
process is through a graph, where the data projections to the feature space represent
the graph nodes and their pairwise distances (or equivalently, similarities), represent
the weights of the graph edges. Then, label inference is performed along the graph
paths that connect labeled nodes to unlabeled ones. The form of the graph, namely the
weights on the graph edges, affects the performance of the label inference methods.
Therefore, care should be taken, in order to construct a graph that captures efficiently
the multimedia data structure. Moreover, label propagation performance is highly af-
fected from the selection of the initial set of labeled data. Thus, in the beginning of the
semi-automatic annotation procedure the small set of data that is manually assigned
labels should be selected so that it maximizes the propagation accuracy.

Label propagation algorithms consist a subclass of the more general semi-supervised
classifiers class. Semi-supervised learning refers to the exploitation of a great number
of unlabeled data, in combination with a much smaller number of labeled data in the
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construction of classifiers. Semi-supervised classifiers offer a better understanding of
the data class distributions than supervised classifiers, which use only labeled data
for training. Semi-supervised learning methods often lead to better classification accu-
racy than supervised ones. However, they cannot be used as a panacea. Limitations to
the effectiveness of semi-supervised learning techniques are discussed in [Shai et al.
2008],[Singh et al. 2008]. Semi-supervised classifiers are divided into two categories,
with respect to their application domain [Zhu 2008]: transductive classifiers, which
learn a local representation of the data space and, therefore, can be employed only on
the available labeled and unlabeled data and inductive classifiers, which learn a global
representation of the data space and, therefore, can be also employed on ”unknown”
data that do not belong to the originally available labeled and unlabeled datasets.
Label propagation algorithms are transductive classifiers, i.e., they operate on a spe-
cific graph, whose nodes are the available labeled and unlabeled data. However, some
recent works extend label propagation in the inductive setting, e.g., by assigning to
incoming data the label of the closest labeled sample.

Label propagation algorithms encounter several challenges that affect their perfor-
mance. An important one is the insufficiency of available labeled data, especially when
label propagation is applied on real world datasets [Yan et al. 2003][Yan et al. 2006] .
Another one is the proper choice of a distance function, which affects highly the struc-
ture of the constructed data graph [Maier et al. 2008]. Another challenge is the curse
of dimensionality [Beyer et al. 1999], [Evangelista et al. 2006]. There are many situa-
tions in which data need to be represented by high-dimensionality low-level features.
In such situations, the number of available labeled data that are required for good
propagation performance increases prohibitively. Moreover, there are several methods
that consider statistical models for the labeled data. If the number of labeled data is
limited, the estimated statistical models are inaccurate for the entire dataset. The ma-
jority of datasets in computer vision consist of a few hundreds of labeled images/videos.
The largest annotated multimedia data base that exists is ImageNet [Russakovsky
et al. 2013], that consists of 1.2 million images for training, 50K images for validation
and 100K images for testing object detection algorithms. Moreover, the largest dataset
employed in semi-supervised learning is the extended MIT face database, where ap-
proximately 900K images where used for training and 24K for testing [Tsang and
Kwok 2006]. Finally, label propagation methods in video data should take into account
the temporal data consistency, ensuring that the semantic concept variation is small
in local video temporal neighborhoods, i.e., within than across shots.

Label propagation has a wide range of applications. As mentioned above, it can be
employed for multimedia content annotation [Phi et al. 2011]. Moreover, it can be
exploited in the inference of semantic concepts from community-contributed images
[Tang et al. 2009]. In medical imaging, it has been employed for anatomical brain
MRI segmentation [Heckemann et al. 2006]. In biology, it finds application in disease
gene discovery [Hwang and Kuang 2010], protein classification [Weston et al. 2005]
and interaction studies [Letovsky and Kasif 2003]. In social networks, label propaga-
tion is employed for community detection [Gregory 2010]. In language analysis, label
propagation has been used for document re-ranking [Yang et al. 2006], word sense
disambiguation [Niu et al. 2005], noun phrase anaphoricity learning [Zhou and Kong
2009], word polarity induction [Rao and Ravichandran 2009] and classification [Spe-
riosu et al. 2011]. In multimedia sharing sites, such as Youtube or Flickr, label prop-
agation can be adopted in order to provide or to improve semantic annotations for
the multimedia objects, or to recommend multimedia objects and groups to users. The
feature descriptors used to represent the aforementioned objects depend on the ap-
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Fig. 1. Graph of a recommendation Network. Fig. 2. 3D video content similarity graph.

plication and the multimedia type. Content-based descriptors can be visual or audio
features, extracted from image/video or audio data respectively. For example, image
annotation in image-sharing sites such as Flickr utilizes visual features in order to
represent the semantic concepts appearing in the images [Houle et al. 2013], [Tang
et al. 2011]. Furthermore, other descriptor types can be utilized, which capture the
user activity within the community. As an example, video recommendation in Youtube
can be based on users co-view information [Baluja et al. 2008]. In the current survey,
we focus on the study of graph-based label propagation algorithms and their applica-
tion in digital media. Our purpose is to summarize the basic notions and principles, as
well as the work done in this area so far.

2. GRAPH CONSTRUCTION

2.1. Basic graph theory concepts

Graphs provide a natural representation of entities and relationships between them.
They are used in various research fields to mathematically represent a wide range of
networks describing data relationships [Wasserman and Faust 1994]. Given a set of
N entities and their pairwise relationships, a graph G = (E ,V) is constructed, where
the set of nodes V represents the entities and the set of edges E represents their rela-
tionships. Figure 1 depicts the graph of a recommendation network. Such a network
represents how a recommendation, which may refer to a product or an idea, is propa-
gated (through arrows) among the individuals (nodes) in the network. Figure 2 shows
a graph, whose nodes are 3D videos in YouTube. Its edges represent content similarity.
In label propagation on such data, we want to propagate content labels from labeled
3D video nodes to unlabeled ones along these edges. Such labels can be, e.g., ’shallow
depth’, ’uncomfortable for viewing’, ’good 3D quality’, etc.

There are two types of graphs, based on the type of the pairwise relationships: binary
and weighted ones. In binary graphs, the adjacency matrix A ∈ <N×N is defined as:

Aij =

{
1, if nodes i and j are connected to each other
0, if nodes i and j are not connected to each other. (1)

In weighted graphs, the (i, j)- entry of the weight matrix W ∈ <N×N is the similar-
ity Wij between the i-th and j-th node. When the relationships depend on the node
relation direction, then the graph is called directed and the edges are represented by
arrows. Otherwise, the graph is undirected. In undirected graphs, the adjacency and
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weight matrices are symmetric, i.e. A = AT , W = WT . If all graph nodes have the
same number of neighbors, i.e., they have the same number of incident edges, then the
graph is a regular one. In the special case where every graph node is connected to all
other graph nodes, the graph is a complete one. The degree is the number of the inci-
dent edges at a node. It is associated to the “importance” of a node in the graph. The
higher the degree is, the more a node is important in a graph, as many edges converge
to it. Nodes without connections are called isolates, and their degree equals 0. In a di-
rected graph, the in-degree represents the number of edges ending at a node, while the
out-degree represents the number of edges starting from a node. A sequence of consec-
utive edges in a graph defines a path. For a path to exist between two nodes, it must be
possible to travel from one node to the other one, through an uninterrupted sequence
of edges. In binary graphs, the path length is the number of the traversed edges. In
weighted graphs, the length of the path is the sum of the inverse edge weights that
belong to the path [Newman 2001]. A more general definition of the path length is
given in [Opsahl et al. 2010], as being the sum of the inverse graph weights raised to a
power of a, where a is a regulation term that determines the significance of the graph
weights, versus the number of the edges in the path.

Given a graph with weight matrix W, the degree matrix D ∈ <N×N is defined as
the diagonal matrix, whose i-th entry is given by Dii =

∑
jWij . Moreover, the combi-

natorial graph Laplacian matrix L ∈ <N×N is defined as L = D−W. The normalized
Laplacian L̃ ∈ <N×N is defined as L̃ = D−1/2LD−1/2. Matrices D, L and L̃ are widely
used in label inference methods, as will be shown in Section 3.

2.2. Graph construction methods

The first step in label propagation deals with the construction of a suitable graph for
proper multimedia data representation. Essentially, label propagation is a classifica-
tion task. Therefore, a proper graph should capture the data characteristics that are
most discriminative for the label propagation task. This means that the constructed
graph should maximize the label propagation accuracy, i.e., the label spread should be
performed among data that belong to the same class. Graph construction methods can
be divided into three categories: neighborhood methods, local reconstruction methods
and metric learning methods. Neighborhood methods result in sparse graphs, however
they are sensitive to the selection of the node neighborhood which greatly influences
the propagation accuracy. Local reconstruction methods construct more robust sparse
graphs, however they are not suitable for large datasets, since they have high compu-
tational complexity. On the other hand, metric learning methods have the advantage
of incorporating prior knowledge for the data. The selection of the graph construction
method depends on the label propagation application. A study on the significance of
graph construction can be found in [Maier et al. 2008].

2.2.1. Neighborhood methods. In neighborhood methods, each graph node described by
a feature vector is connected only to its closest neighbors. There are two types of
neighborhood graphs: k-nearest neighbor graphs (k-NNG) and e-neighborhood graphs
[Talukdar 2009]. In k-NNG, each node is connected to its k nearest nodes, where node
proximity is measured by a distance function, such as the Euclidean distance on the
feature space. For a graph with N nodes, if we set k = N − 1, then the graph is com-
plete, i.e., each node is connected with every other graph node. By setting a small
value for k, the resulting graph is sparse. If a node i belongs to the k nearest neighbors
of node j, this does not mean that node j belongs to the k-nearest neighbors of node
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i. Therefore, k-NNG results in irregular graphs, where the nodes have different de-
grees. In e-neighborhood graphs, each node i is connected to all nodes, which lie within
a ball around node i with radius e. The disadvantages of e-neighborhood graphs are
that they are sensitive to the value of e and that they commonly create graph struc-
tures with disconnected components. Traditionally, both neighborhood creation meth-
ods are not scalable, i.e., the growth of nodes increases the computational complex-
ity of the graph construction super-linearly. This drawback is alleviated in [Satuluri
and Parthasarathy 2009] and [Wang et al. 2012], by introducing scalable methods for
searching for the k-nearest neighbors in very large graphs.

k-NNG and e-neighborhood graph construction methods result in irregular graphs.
The construction of regular graphs is guaranteed in the b-matching method proposed
by Jebara et al. in [Jebara et al. 2009]. The b-matching method consists of two steps:
a) graph sparsification, which deals with the selection of the graph edges that will
be present in the final graph and b) edge re-weighting. b-matching operates on the
distance matrix D ∈ <N×N , which is derived from the weight matrix W by Dij =√
Wii +Wjj − 2Wij . In the sparsification step, the algorithm searches for the binary

matrix P ∈ {0, 1}N×N that minimizes the objective function:

min
P

∑
ij

PijDij , (2)

subject to the constraints (in short s.t.)
∑
j Pij = b, Pii = 0, Pij = Pji,∀i, j = 1, . . . , N .

Edge re-weighting can be performed in three ways: a) by using binary weights (W =

P), b) by applying Gaussian kernel weighting Wij = Pij exp
(
−d(xi,xj)2σ2

)
, where d(xi,xj)

is some distance function between the node vectors xi, xj describing the node multime-
dia data and σ is the kernel bandwidth or, c) motivated by the Locally Linear Embeding
(LLE) algorithm [Roweis and Saul 2000], by finding the coefficients that minimize the
reconstruction error:

min
W

∑
i

‖xi −
∑
j

PijWijxj‖2 s.t.
∑
j

Wij = 1,Wij ≥ 0. (3)

2.2.2. Local reconstruction. In most label propagation methods, data are organized in
complete graphs, where similarities between nodes are calculated through a Gaussian
function, such as the Radial Basis Function (RBF):

Wij = exp

(
−‖xi − xj‖2

2σ2

)
, (4)

where σ is the variance of the Gaussian function. The greatest disadvantage of this
graph construction is that the resulting weight matrix W and, subsequently, the la-
bel propagation results depend highly on the value of σ. This problem is addressed in
local graph reconstruction methods. Such methods aim at the reconstruction of each
graph node from other nodes in the graph, usually as their linear combination. In Lin-
ear Neighborhood Propagation (LNP) [Wang and Zhang 2006], the k nearest neighbors
of each graph node are selected, based on the RBF kernel similarity. The objective is
the minimization of the reconstruction error of each node from its k nearest neigh-
bors, subject to the constraints that the coefficients Wij of each linear combination are
positive and sum to one:

min
Wij

∥∥∥∥∥∥xi −
∑

j:xj∈N (xi)

Wijxj

∥∥∥∥∥∥
2

s.t.
∑
j

Wij = 1, Wij ≥ 0, (5)
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where N (xi) is the neighborhood of node i. A sparse graph is then reconstructed,
where each node is connected only to its k nearest neighbors, with weights equal to the
respective coefficients of the linear combination. An extension of LNP to the non-linear
space through kernels was introduced in [Tang et al. 2008]. In the resulting Kernel
Linear Neighborhood Propagation (KLNP) method, the feature data are mapped to a
higher dimensional space by a kernel mapping φ : X→ Φ. The new objective function
then takes the form:

min
Wij

∥∥∥∥∥∥φ(xi)−
∑

j:φ(xj)∈N (φ(xi))

Wijφ(xj)

∥∥∥∥∥∥
2

s.t.
∑
j

Wij = 1, Wij ≥ 0, (6)

Another variant of LNP is the Correlative Linear Neighborhood Propagation (CLNP)
introduced in [Tang et al. 2009]. In CLNP, the objective is to exploit prior informa-
tion about the semantic correlations between the data labels in graph construction. In
[Cheng et al. 2009], Cheng et al. proposed a method for graph reconstruction using a
Sparsity Induced Similarity (SIS) measure. SIS is based on the intuitive notion that
the sparse decomposition of a node indicates its true neighborhood structure. There-
fore, for each graph node, the sparsest decomposition in other graph nodes is searched.

Similarly to [Wang and Zhang 2006], Daitch et al. proposed a hard and an a-soft
graph reconstruction method in [Daitch et al. 2009], which aim at minimizing the
objective function:

min
W

∑
i

‖dixi −
∑
j

Wijxj‖2, (7)

where di =
∑
jWij is the weighted degree of node i. One can notice that, in contrast to

LNP (5), the nodes j are not required to belong to the neighborhood of node i. In hard
graph construction, each node is constrained to have a weighted degree of at least 1
(di ≥ 1). In a-soft graph construction, this constraint is relaxed to

∑
i(max(0, 1−di))2 ≤

aN , where a is a hyper-parameter. The a-soft constraint implies that, in the case of
outliers, the weighted degrees of the respective nodes are allowed to take a lower value.

Motivated by the study of Rao et al. [Rao 2002], Tang et al. proposed a kNN-Sparse
graph construction method [Tang et al. 2011], which removes most of the semantically-
unrelated edges between nodes by performing a sparse reconstruction of each node
from its k nearest neighbors. The objective is the minimization of:

min
wi
‖wi‖1, s.t. xi = Biwi, (8)

where Bi is the matrix of the samples that belong to the k nearest neighbors of xi
and wi is the vector of the reconstruction coefficients. By selecting k = N − 1, then
the one-vs-all sparse graph reconstruction method is obtained [Tang et al. 2009]. The
graph weights are selected according to the following rule:

wij =

{
wi(p), if xj ∈ N (xi) and j = ip
0, if xj /∈ N (xi), (9)

where ip denotes the p-th neighbor of xi.

A novel method that extends the LNP algorithm in hypergraphs is introduced in
[Wang et al. 2009]. In hypergraphs, hyperedges connect any number of nodes instead
of exactly two, as common graph edges do, i.e., they represent multiple node relation-
ships. Given the graph G = (V, E) with nodes V and edges E , the hypergraph G′ = (V, E ′)
is constructed, where V is the set of nodes of graph G and E ′ is the set of hyperedges.
The hyperedges e′ ∈ E ′ are subsets of E . In [Wang et al. 2009], the hyperedge e′i is de-
fined as the set of all the adjacent edges to node i. If the graph G is cast into a first-order
Intrinsic Gaussian Markov Random Field (IGMRF) framework [Rue and Held 2005],
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then the hypergraph G′ can be cast into a second-order IGMRF framework, where the
increment for hyperedge e′i is defined as:

di = yi −
∑
j∈Ni

Wijyj ,
∑
j∈Ni

Wij = 1, (10)

where Ni is the set of neighboring nodes to node i and yi the label of node i. The
hyperedges weights Wij are computed by solving the quadratic problem (5).

2.2.3. Metric Learning. In both supervised and semi-supervised learning algorithms,
the classification performance depends highly on the metric used for computing the
distances between multimedia data. In graph construction, data distance is exploited,
in order to calculate a similarity measure (edge weight) between multimedia data
(graph nodes). In the absence of prior information, most algorithms employ the Eu-
clidean distance d(xi,xj) = ‖xi − xj‖2 for computing the similarities between two
nodes. However, Euclidean distance contains no information for an underlying struc-
ture (e.g., cluster or manifold) that may exist in the training data. If labeled data are
available, they can be exploited in the construction of a distance metric that sets small
distance values between data with the same label and large values between data with
different labels. Generally, metric learning algorithms estimate a Mahalanobis dis-
tance dA(xi,xj) between data [Xing et al. 2002]:

dA(xi,xj) =
√

(xi − xj)A(xi − xj), (11)

by imposing constraints derived from the labeled data (supervised metric learning).
In the above equation (11), A ∈ <N×N is a positive semi-definite matrix A � 0. Ma-
halanobis distance is a generalization of the Euclidean distance, which performs lin-
ear scaling and rotation in each dimension of the feature space. A proper choice of
matrix A should increase the significance of informative dimensions and ignore the
non-informative ones. By setting A = IN , where IN ∈ <N×N is the identity matrix,
we obtain the Euclidean distance. The constraints can be divided into two categories.
Those that are applied on the set of similar data pairs (xi,xj) ∈ S (e.g., the distance
between similar data pairs should not be greater that a predetermined threshold) and
those that are applied on the set of dissimilar data pairs (xi,xj) ∈ D (e.g., the distance
between dissimilar data pairs should be over a threshold value). Finally, the graph
weights Wij are calculated according to a rule of the form:

Wij ∝ exp{−dA(xi,xj)}. (12)

Metric learning algorithms try to minimize a cost function of f(A) subject to the
constraints g(A):

min
A�0

f(A), s.t. g(A) (13)

In the method proposed by Xing et al. in [Xing et al. 2002], the objective is to min-
imize the squared sum of distances between similar data pairs, under the constraint
that the sum of distances between dissimilar data pairs does not drop under a thresh-
old. Equivalently, the objective is the maximization of the sum of distances between
dissimilar data pairs, under the constraint that the squared sum of distances of sim-
ilar data pairs does not exceed some threshold. In the Information-Theoretic Metric
Learning (ITML) algorithm [Davis et al. 2007], prior knowledge about the inter-object
distances and the matrix A, denoted by A0, is considered. The objective function f(A)
targets the minimization of the Log-Determinant divergence of matrices A, A0:

Dld(A,A0) = tr(AA−1
0 )− log det(AA−1

0 )−N, (14)
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Fig. 3. Schematic illustration of LMNN.

subject to the constraints that the sum of distances between similar data pairs is
under a threshold u and the sum of distances between dissimilar data pairs is over a
threshold l.

In [Goldberger et al. 2004] and [Weinberger and Saul 2009], the objective is to trans-
form the feature space, so that application of the metric distance satisfies the k-NN
classification objective, i.e., the k nearest neighbors have the same label. In Neighbor-
hood Component Analysis (NCA) [Goldberger et al. 2004], matrix A in (11) is written
in the form A = LTL, where L is the transformation matrix. Then, the objective is the
maximization of the expected number of correctly classified nodes:

f(L) =
∑
i

∑
j∈Ci

exp
(
−‖Lxi − Lxj |‖22

)∑
k 6=i exp (−‖Lxi − Lxk‖22)

, (15)

where Ci is the set of nodes with the same label as node xi. In Large Margin Nearest
Neighbor (LMNN) algorithm [Weinberger and Saul 2009], for each labeled node, k
nearest neighbors (target neighbors) are determined based on the Euclidean distance.
The algorithm then searches for a transformation of the feature space that pulls the
target nodes closer to the labeled node and pushes nearby nodes with different labels
(impostors) away by a margin, which is determined from the distance of the impostor
to the nearest target neighbor. A schematic illustration of LMNN algorithm is depicted
in Figure 3. Similarly to [Goldberger et al. 2004] and [Weinberger and Saul 2009], a
Support Vector Machine approach to metric learning called MLSVM, was proposed in
[Nguyen and Guo 2008], that incorporates the kernel trick on the data X .

In the method proposed in [Bilenko et al. 2004], a novel distance metric learning
method is presented, that assumes a different metric for each cluster, thus allowing dif-
ferent shapes for different clusters. For each cluster c, a weight matrix Ac is searched
that minimizes the total squared Euclidean distance between the data of the cluster
and the cluster centroids µc and maximizes the complete data log-likelihood, under
must-link and cannot-link constraints:

arg min
Ac

∑
xi∈X

(
‖xi − µc‖2Ac − log(det(Ac))

)
+

∑
(xi,xj)∈S

wij1[li 6= lj ] +
∑

(xi,xj)∈D

w̄ij1[li = lj ], (16)

where
‖xi − µc‖Ac =

√
(xi − µc)TAc(xi − µc) (17)

and 1 is the indicator function 1[true] = 1 and 1[false] = 0. The above mentioned met-
ric learning algorithms are supervised in nature, as they exploit a priori information
provided by the labeled data. Dhillon et al. [Dhillon et al. 2010] introduced a semi-
supervised metric learning algorithm, which exploits information obtained from both
labeled and unlabeled data, called Inference Driven Metric Learning (IDML). The idea
behind IDML is to combine supervised metric learning algorithms with transductive
graph-based label propagation algorithms in a unified framework. Metric learning and
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label propagation are performed sequentially in an iterative manner, by applying label
propagation on the graph constructed by metric learning. At the end of each iteration,
the set of labeled data is enriched with the data that were assigned a label with a high
confidence. In the next iteration, a new graph is constructed based on the enriched la-
beled dataset. The procedure continues, until no more data can be added to the labeled
dataset. In Laplacian regularized metric learning (LRML) [Hoi et al. 2008], knowledge
of unlabeled data information is exploited through the graph Laplacian. The intuitive
notion behind LRML is to find the metric that minimizes the distance between the
sample xi and its k nearest neighbors N (xi).

When no labeled data are available, unsupervised metric learning is related to mani-
fold learning and, subsequently, dimensionality reduction [Yang 2006]. Dimensionality
reduction methods search for the low-dimensional manifold that preserves the geomet-
ric relationships, i.e., the distance between the data. The most commonly used unsu-
pervised dimensionality reduction methods are Principal Component Analysis (PCA)
[Jolliffe 2002], Multidimensional Scaling (MDS) [Borg and Groenen 2005], Locally Lin-
ear Embedding (LLE) [Saul and Roweis 2003], the Laplacian Eigenmap [Belkin and
Niyogi 2003] and ISOMAP [Tenenbaum et al. 2000]. A comprehensive study on the
relationship between unsupervised distance metric learning and dimensionality re-
duction can be found in [Yang 2006].

3. LABEL INFERENCE

After graph construction, label propagation is performed on the data (graph nodes) ac-
cording to some label inference method. Label inference refers to the way the labels L
are spread from the set of labeled data XL to the set of unlabeled data XU . Label in-
ference methods can be divided into several categories, based on the rules that govern
the label spread and the type and number of graphs they apply to.

3.1. Iterative algorithms

In iterative label propagation algorithms, label spread is performed gradually on the
unlabeled data, according to some update rule, which converges to a stationary state as
t → ∞. The stationary state of each iterative algorithm can be computed beforehand.
Therefore, in practice, these methods are performed in a single step. In one of the
earlier methods on label propagation proposed by Zhu et al. [Zhu and Ghahramani
2002], the labels of the labeled and unlabeled nodes are updated according to:

F(t+1) = D−1WF(t), (18)

where F ∈ <N×L is a classification function that assigns labels to the labeled and
unlabeled data and D = diag{Dii =

∑
jWij} is the degree matrix. The term D−1W

corresponds to the probability of each node to take the label of its neighbors. The iter-
ative algorithm (18) is also employed in [Phi et al. 2011] for label propagation in facial
images (anchor persons), where additional information was exploited concerning the
anchor person appearances in the videos. A similar iterative algorithm, inspired by the
Jacobi iterative method for linear systems [Barrett et al. 1994] is introduced in [Bengio
et al. 2006], where the update rules of the labeled and unlabeled nodes are given by:

y
(t+1)
i =

∑
jWijy

(t)
j + 1

µ
y

(t)
i∑

jWij + 1
µ

+ ε
, y

(t+1)
i =

∑
jWijy

(t)
j∑

jWij + ε
, (19)

respectively, where µ is a parameter that regulates the weight of the labeled node.
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Zhou et al. [Zhou et al. 2004] proposed an iterative process:

F(t+1) = µ(I− L̃)F(t) + (1− µ)Y, where F0 = Y, (20)

of gradual spread of label information through the graph, where L̃ is the normalized
graph Laplacian, which will be discussed in subsection 3.4. In each iteration, the graph
nodes receive information from their neighbors, while maintaining the information
of their initial state (label). The function F assigns to each node, either labeled or
unlabeled, L values, one for each candidate label. The new node label is the one that
corresponds to the highest F value. This method was incorporated in the graph-based
active learning method introduced in [Long et al. 2008]. Similarly to [Zhou et al. 2004],
Wang et al. [Wang and Zhang 2006] employed the update rule:

F(t+1) = αWF(t) + (1− α)Y, where F0 = Y. (21)

3.2. Random walks

In label propagation methods based on random walks, the classification decision is
taken by comparing the expected random steps required to reach the unlabeled nodes,
starting from the labeled nodes of different classes. In the method proposed by Szum-
mer et al. [Szummer and Jaakkola 2002], the transition probabilities pij from node i
to node j are given by:

pij =
Wij∑
kWik

. (22)

Then, node k takes the label ystart, if the probability that we arrive at node k after t
steps starting from some node with label ystart is greater than 0.5. This probability is
given by:

P t(ystart|k) =

N∑
i=1

P (y = ystart|i)P0|t(i|k), (23)

where P (y|i) is the probability that node i has the label y and P0|t(i|k) is the probability
of reaching node k starting from node i in t steps. The probabilities P (y|i) are estimated
using an iterative EM algorithm or by maximizing a criterion that leads to a closed-
form solution. In the two-class classification problem in [Zhou and Schölkopf 2004],
the transition probability matrix P is defined as:

P = (1− a)I + aD−1W, (24)

where a ∈ (0, 1). The classification decision is taken by comparing the commute times
Ḡij to the labeled nodes of different classes with labels L = {+1,−1}:

p+(xi) =
∑
j|yj=1

Ḡij , p−(xi) =
∑

j|yj=−1

Ḡij , (25)

where Ḡ = (I − aD−1/2WD−1/2)−1. Commute time Ḡij is the expected number of
steps required to reach node j with a random walk starting from node i, and get back
to i. The Adsorption algorithm proposed in [Baluja et al. 2008] can be interpreted
as a random walk process on a graph. Each node i is associated with a probability
distribution functionNi defined over its neighbors, calculated as in (22).Then, the label
distribution Li of a node i can be considered as a convex combination of its neighbors’
label distributions Li =

∑
j

Ni(j)Lj .
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3.3. Graph regularization

Generally, label propagation on graphs defines a classification function f ∈ <N on both
labeled and unlabeled data that spreads the labels from the labeled to the unlabeled
graph nodes. The classification function f should try to maintain the original labels
on the labeled nodes as much as possible while applying the same label on unlabeled
nodes that lie close to each other or belong to the same structure (e.g., cluster or man-
ifold). The second assumption implies that f should be smooth over the entire graph.
This results in a regularization framework of the form:

min
f
{αC(fL) + βS(f)}, (26)

where C(fL) is a cost function on the labeled nodes that penalizes the divergence of the
output labels from the initial labels and S(f) is a smoothness constraint on the whole
graph. α and β are regularization parameters, which capture the trade-off between the
two terms. Usually, the smoothness constraint is of the form:

S(f) = fTSf , (27)
where S is a smoothing matrix. The algorithms of this category differ in the choice of

the cost function and smoothness constraint, as well as in the incorporation of addi-
tional constraints. In one of the earlier works, Zhou et al. [Zhou et al. 2004] proposed
a label propagation method which ensures local and global consistency. The algorithm
minimizes the quadratic cost function on the labeled data:

C(fL) = (fL − yL)T (fL − yL), (28)
under the smoothness constraint:

S(f) = fT L̃f , (29)

where L̃ is the normalized Laplacian. It is proven that the iterative process (20) con-
verges to the global minima of the regularization framework defined by (26)-(29) [Zhou
et al. 2004]. The equivalence between the regularization framework and the iterative
process is applied in numerous other graph-based propagation algorithms [Wang and
Zhang 2006].

In [Wang and Zhang 2006], [Tang et al. 2011], the cost function used is the one in (26)
and the smoothness matrix is S = I−W, where W is the weight matrix. In [Belkin
et al. 2004], two regularization methods are introduced, namely Tikhonov regulariza-
tion:

min
f

{
1

k
(fL − yL)T (fL − yL) + γfTSf

}
, γ ∈ < (30)

and interpolated regularization:

min
f

{
fTSf

}
, (31)

where k is the number of nodes, which belong to the regularization manifold and S = L
or S = Lp, p ∈ N, under the stabilization constraint

∑
fi = 0.

The measure propagation method in [Subramanya and Bilmes 2011] introduces an
objective function which relies on the minimization of the Kullback-Leibler divergence
between probability measures that encode label membership probabilities. Specifically,
for each node i of the graph and for each node j of the labeled set of nodes, two proba-
bility measures are defined: pi(l), i = 1, .., N expresses the (predicted) probability that
node i belongs to the label (class) l, l ∈ L, while rj(l), j = 1, ..., nl is the known proba-
bility distribution of the labeled nodes. The objective function takes the form:

min
p

nl∑
i=1

DKL(ri||pi) + µ

N∑
i=1

∑
j∈N (i)

wijDKL(pi||pj)− ν
N∑
i=1

H(pi), (32)
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where DKL denotes the Kullback-Leibler divergence between pi and qj , calculated as
DKL(p||q) =

∑
y p(y) log p(y)

q(y) , while H(p) = −
∑
y p(y) log p(y) is the Shannon entropy

of p. The two first terms correspond to the constraints expressed in (26) and the third
term enforces probability distributions pi to be close to the uniform distribution.

The method in [Zhu et al. 2003] formulates the regularization problem by defining
a Gaussian Random Field on the graph and minimizing the quadratic energy function
fTLf , while retaining the initial labels of the labeled nodes, by setting the parameter
a in (26) to ∞. The minimum energy function satisfies the harmonic property, i.e., it
is equivalent to the average energy of the neighboring nodes. Zhu et al. studied the
relationship between Gaussian random fields and Gaussian processes in [Zhu et al.
2003], using a spectrum transformation on the graph Laplacian matrix, which will be
described in subsection 3.4.

The graph mincuts method [Blum and Chawla 2001] targets the problem of binary
label propagation with labels L = {−1, 1} as a clustering problem, which finds the
minimum set of edges whose removal isolate the nodes with label 1 from those with
label -1. The regularization framework of graph mincut takes the form:

min
f
{a(fL − yL)T (fL − yL) +

1

2
fTLf}, (33)

where a → ∞, under the constraint fi ∈ {0, 1}. In [Blum et al. 2004], the mincut
algorithm is performed multiple times on the graph, by adding random noise on the
edge weights. In each iteration, a label is assigned to the unlabeled nodes. Each un-
labeled node then takes the label having the maximum assignment frequency. This
randomized mincut algorithm provides a confidence measure for the assigned labels.
In [Joachims 2003], spectral graph partitioning is performed through the constrained
ratiocut algorithm that adds a quadratic penalty to the objective function of standard
ratio cut [Hagen and Kahng 1992]:

min
f
{fTLf + c(f − g)TC(f − g)} s.t. fT1 = 0 and fT f = N, (34)

where c is a regularization parameter and C is a diagonal matrix, whose i-th diagonal
element contains a misclassification cost for node i.

The method proposed in [Talukdar and Crammer 2009] consists a modification of
the Adsorption algorithm [Baluja et al. 2008]. Similarly to [Baluja et al. 2008], la-
bel propagation is regarded as a random walk, where each node i is associated three
probabilities: injection (pinji ), referring to the case when the walk stops and the pre-
defined label vector y is returned, continue (pconti ), expressing the probability that the
walk continues to another neighboring node j according to the value of Wij , and aban-
don or dummy probability (pabndi ), corresponding to the case of abandoning the walk
and assigning a dummy label, expressing uncertainty of the node’s label. The dummy
probability reflects a node’s degree: the higher the degree the higher the value of pabnd
is. The introduction of the dummy probability accounts for the fact that high degree
nodes can be unreliable, in the sense that they may connect dissimilar nodes. In con-
trast to the Adsorption algorithm, learning in [Talukdar and Crammer 2009] is stated
as a convex optimization problem. Apart from the requirements for the labels of ini-
tially labeled nodes to remain unchanged and the smoothness of the labeling function,
an additional regularization term is introduced, that accounts for discounting of high
degree nodes:

min
f

{
µ1 (y − f)T S (y − f) + µ2f

TLf + µ3 ||f − r||2
}
, (35)

where r is a vector of length m + 1 (m denoting the number of labels), with m first
entries equal to zero and the last equal to pabndi .
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In [Orbach and Crammer 2012], the notion of confidence of the label assignments
is incorporated in the learning process, in order to take into consideration the level of
agreement between neighboring nodes. Label propagation is treated as an optimiza-
tion over two sets of parameters, defined for each of N nodes. The first set consists
of the score vectors fi,∈ Rm, representing node’s i degree of belonging to each of the
m classes. Furthermore, each node is associated with a diagonal matrix Σi ∈ Rm×m,
the entries of which express the uncertainties of the corresponding scores in fi. The
optimization problem is defined by the following objective function:

min
f ,Σ

{
1

4

N∑
i,j=1

wij
[
(fi − fj)

T (Σ−1
i + Σ−1

j )(fi − fj)
]

+
1

2

nl∑
i=1

[
(fLi − yLi)

T (Σ−1
i +

1

γ
I)(fLi − yLi)

]

+α

N∑
i=1

TrΣi − β
N∑
i=1

log det Σi

}
, (36)

where α, β are constant parameters. The first term expresses the requirement for
neighboring nodes to have similar scores, the second accounts for the requirement
that the scores fL of the labeled nodes must be close to the input labels yL, while the
third term forces the uncertainty matrix to be close to a predefined matrix.

3.4. Regularization with graph kernels

In manifold regularization methods with graph kernels, the smoothness constraint
(27) is written in the form:

S(f) = ‖f‖H = fTKf , (37)
where K is a kernel associated with the Reproducing Kernel Hilbert Space (RKHS)
H. Graph kernels capture the local and global structure of the data space. A function
K is considered to be a kernel function, if it is symmetric and positive semi-definite.
A kernel matrix is equivalent to the Gram matrix, i.e., the matrix of all possible inner
products of the data. Kondor et al. [Kondor and Lafferty 2002] exploited the property
that the exponentiation operation on any symmetric matrix H results to a symmetric
and positive semi-definite matrix K:

K = eβH = lim
n→∞

(
1 +

βH

n

)n
, (38)

to define an exponential family of kernel functions, where H is called the generator
and β is a bandwidth parameter. The exponential kernel K has the property that, if
the generator H represents the local structure of the data space, then K represents
the global structure of the data space. Equation (38) leads to the following differential
equation:

d

dβ
K = HK. (39)

Equation (39) is the heat equation on graph G (see Section 4). The resulting kernels
are called diffusion or heat kernels. By considering an un-weighted non-directional
graph and by choosing:

H =

 1, node i connected to node j
−di, i=j

0, otherwise,
(40)

the solution of the heat equation (39) in the infinite discrete space with initial condi-
tions K(xi, xj) = δ(xi − xj), where δ is the Dirac function, is the Gaussian function:

K(xi, xj) =
1√
4πβ

e
−
‖xi−xj‖

2
2

4β . (41)

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:15

In (40) di denotes the degree of node i. By setting β = σ2/2, (41) becomes equal to the
Gaussian kernel function:

K(xi, xj) =
1√

4πσ2
e
−
‖xi−xj‖

2
2

2σ2 . (42)

This means that the Gaussian kernel function is a special case of the more general
diffusion kernels (41). The same analysis can be also applied in symmetric weighted
graphs and/or multigraphs, by setting Hij equal to the sum of weights connecting
nodes i and j.

Another way for defining kernel families on graphs comes for the spectral analysis of
the graph Laplacian matrix [Smola and Kondor 2003]. Let us define the eigensystem
of L as {λi, φi}, where L =

∑
i λiφiφ

T
i . The normalized graph Laplacian L̃ has some

very interesting properties for the graph structure [Smola and Kondor 2003], [Zhu
et al. 2005]. It is symmetric, positive semi-definite (even if W is not) and its eigenval-
ues take values in the range [0, 2], with λ0 = 0, where λ0 is the smallest eigenvalue
of L̃. Moreover, the algebraic multiplicity of λ0 indicates the number of disjoint graph
components. In the case of a regular graph, the matrices W,L, L̃ have the same eigen-
vectors. Another important property of L̃ is that the eigenvectors φ that correspond
to smaller eigenvalues λ of L̃ are smoother than the eigenvectors that correspond
to larger eigenvalues, while the eigenvector that corresponds to λ0 = 0 is constant.
This means that the function

∑
ijWij(φ(i)− φ(j))2 takes smaller values, when φ cor-

responds to a smaller eigenvalue.

The spectral analysis of the normalized graph Laplacian matrix L̃, namely, the
eigenvectors of L̃ contain information about the graph partitions and, therefore, are
an important tool for graph clustering. A popular clustering method based on the spec-
tral analysis of L̃ is the normalized graph cut algorithm [Shi and Malik 2000], which
performs recursive bi-partitions of the graph according to the entry of the eigenvector
that corresponds to the second smallest eigenvalue of L̃ that minimizes the normalized
cut (Ncut) disassociation measure. Smola and Kondor [Smola and Kondor 2003] define
a class of regularization functionals on graphs of the form:

〈f , f〉H = 〈f , r(L̃)f〉, (43)

where r(L̃) :=
∑
i r(λi)φiφ

T
i and 〈·〉H denotes the inner vector product in the RKHS H

with kernel:
K =

∑
i

r−1(λi)φiφ
T
i . (44)

All kernel functions are derived from (44) with a proper choice of spectrum transform
of the Laplacian r(λ). For example, the diffusion kernel in [Kondor and Lafferty 2002]
is obtained for r(λ) = exp (σ2/λ) and the regularized Laplacian L + I/σ2 [Zhu et al.
2003] is obtained for r(λ) = λ+ 1/σ2.

In the general manifold regularization framework [Belkin et al. 2006], the objective
is the minimization of:

1

nl

nl∑
i=1

V (xi, yi, f) + γA‖f‖2H + γI‖f‖2I , (45)

where the first term is the general form of the cost function on the labeled data,
‖f‖2H is a regularization term in the RKHS of the kernel K and |f‖2I is a regulariza-
tion term of the geometry of the probability distribution. Laplacian Regularized Least
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Squares (LapRLS) and Laplacian Support Vector Machines (LapSVM) [Gomez-Chova
et al. 2008] are special cases of manifold regularization.

3.5. Inductive label inference

Graph-based label propagation methods are generally transductive methods, i.e., they
operate only on existing data, without being able to handle the arrival of new data.
Bengio et al. [Bengio et al. 2006] proposed a common framework in which different la-
bel propagation algorithms minimize a quadratic cost function with a closed-form solu-
tion obtained by solving a linear system of size equal to the number of available data.
This cost function is then expanded in the inductive setting, assigning a label to the
incoming data. More precisely, let us assume that all existing data X = {x1, . . . ,xN}
have been labeled as y = {ŷ1, . . . , ŷN} through a label propagation method. When a
new example x arrives, it is embodied in the graph, with a new weight matrix Wx.
The objective is then to minimize the objective function:

constant + µ

(∑
j

Wx(x,xj)(ŷ − ŷj)2 + εŷ2

)
, (46)

with respect to the new label ŷ. The minimum of (46) is computed by setting the first
derivative to zero:

ŷ =

∑
jWx(x,xj)ŷj

Wx(x,xj) + ε
. (47)

If the weight matrix Wx is extracted by using the k-NN function, then (47) is equiv-
alent to k-NN classification. If Wx is estimated by employing the Gaussian kernel (4),
then (47) is equivalent to the Nadaraya-Watson kernel regression [Bierens 1987].

3.6. Incorporating class prior knowledge

The classification results of label propagation methods can be enhanced in accuracy
and robustness by incorporating class prior knowledge during label inference. More
specifically, the accuracy of label propagation is increased with the imposition of ad-
ditional constraints on the class proportions p1, . . . , pL, defined as the percentage of
data belonging to each class, estimated from the labeled data. In [Zhu and Ghahra-
mani 2002], the authors proposed two methods for exploiting the class prior knowl-
edge: class mass normalization and label bidding. In both methods, for each unlabeled
example xi, a vector Yi = [Yi1, . . . , YiL]T is defined, whose j-th value corresponds to the
probability that the example belongs to class j, with

∑L
j=1 Yij = 1. The mass of class j

is defined as:

mj =
1

nu

nu∑
i=1

Yij . (48)

In class mass normalization, the elements of the j-th column of Y are scaled by the fac-
tor wj =

pj
mj

and the label assignment for unlabeled sample xi is performed according
to argmaxj{wjYij}. Mass class normalization does not require the knowledge of the ex-
act label (class) proportions. However, if the exact class proportions are known, a label
bidding heuristic can be employed. Let us denote by cj the number of unlabeled exam-
ples that are assigned the label lj , with

∑
j cj = nu. In each iteration, the unlabeled

example xi with the highest class probability maxj{Yij} is found and assigned the label
ljmax , where jmax = argmaxj{Yij}, if the number of the already assigned labels ljmax
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does not exceed cjmax . Otherwise it is ignored and the next highest class probability is
searched.

3.7. Label propagation with multiple representations

So far, we considered that the labeled and unlabeled data have a single representa-
tion. However, in many real world applications, the data can be represented in more
than one feature spaces. For each representation a new graph can be constructed. For
example, in the scientific publication network, two graphs may be constructed having
as nodes the articles: one that connects each article with its citations and another that
connects articles that have at least one common author. In the case of 3D video seg-
ments, each video item (node) can be described in terms of color as well as depth (or dis-
parity) feature vectors. The fusion of multiple data representations can be performed
either on the graph construction level (early fusion), e.g., by concatenating the sepa-
rate feature vectors into a global feature vector, or on the decision level (late fusion),
e.g., by learning a classification algorithm for each data representation and fusing the
classification results. Late fusion is also called ”multi-modal fusion” of ”multi-modality
learning” [Wang et al. 2009a]. A study on early versus late fusion methods for se-
mantic analysis of multi-modal video can be found in [Snoek et al. 2005]. In [Snoek
et al. 2005], experimental results on 184 hours of video content showed that the late
fusion framework had better performance for most semantic concepts, however with
increased computational complexity with respect to early fusion methods.

In one of the first approaches in this area, Joachims et al. [Joachims et al. 2001]
employed convex combinations of independent kernels K(x1,x2) = αK(x1,x2) + (1 −
α)K(x1,x2), 0 ≤ α ≤ 1. The kernels are considered independent, if they are derived
from independent data representations. This method is based on the property that any
convex combination of kernels produces a new kernel. In a similar notion, a convex
combination of the graph Laplacians is employed in [Argyriou et al. 2005], [Tsuda
et al. 2005] and [Sindhwani and Niyogi 2005]. These approaches do not discriminate
between graphs relevant to the classification task and more irrelevant graphs, which
provide no useful information. In order to alleviate this drawback, Kato et al. [Kato
et al. 2009] and Wang er al. [Wang et al. 2009a] proposed a propagation method that
constructs a convex combination of the graph Laplacians, by optimizing the weights
via an iterative process, so that informative graphs are assigned larger coefficients.
Moreover, a novel method for optimizing the weights of the convex graph Laplacian
combination during the data representation step (i.e., data dimensionality reduction)
is introduced in [Zoidi et al. 2014].

First in [Tong et al. 2005] and then in [Wang et al. 2007], [Wang et al. 2009a], the
authors extended the single-graph regularization framework proposed in [Zhou et al.
2004] in the case of multiple graphs, as a weighted sum of multiple objective functions:

arg min
f ,ag

{∑
g

ag

(∑
i,j

Wg,ij

(
fi√
Dg,ii

− fj√
Dg,jj

)2

+ µg
∑
i

(fi − yi)2

)}
, s.t.

∑
g

ag = 1, (49)

which is solved sequentially for the score function f and the weights ag. Moreover, in
[Tong et al. 2005] a sequential fusion scheme of two graphs is proposed, by sequentially
minimizing the following two-stage optimization problem:

f∗1 = arg min
f

= µfT (I− S1)f + (1− µ)(f − y)T (f − y) (50)

f∗2 = arg min
f

= ηfT (I− S2)f + (1− η)(f − f∗1 )T (f − f∗1 ), (51)
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where S1 and S2 are the constraints from the first and second graph, respectively.
The differences between the linear and sequential approach is in the way the simi-
larity graphs are fused. In the linear case, the score function f is spread through the
information from the two graphs and then, the results are fused. In the sequential
case, first a label propagation is performed, based on the first similarity graph and the
resulting labels are spread using the information of the second graph.

In another approach proposed in [Zhou and Burges 2007] each directed graph is con-
sidered to be a Markov chain with a unique stationary distribution similar to [Zhou
et al. 2005]. Then they are combined in a mixture of Markov chains framework. In
[Xiao et al. 2007], 3D points and 2D images are exploited for multiple view segmenta-
tion. Three similarity graphs are constructed, which measure the 3D point coordinate
similarity, the 2D color similarity and the patch histogram similarity between two joint
points. The joint points are vectors consisting of the coordinates of a 3D point and its
corresponding patches in all images. The final graph, representing the joint similar-
ity between two joint points is constructed by summing the three similarity graphs.
In [Zhou et al. 2008], multi-graph label propagation for document recommendations
is performed, by fusing information of the citation matrix, the author matrix and the
venue matrix. An objective function is constructed for each modality and then, they
are merged in a single objective function.

Two methods for combining information obtained from the left and right channel of
a stereo video for facial image label propagation are introduced in [Zoidi et al. 2013]. In
the first one, label propagation is performed through LNP [Wang and Zhang 2006] in
the left and right channel separately, producing two classification matrices FL and FR.
Each stereo facial image is then assigned to the label that corresponds to the maximum
column of the matrix:

Fmaxij = max(FLij ,F
R
ij). (52)

In the second merging technique, label propagation is performed on the average graph
weight matrices of the left and right channel.

3.8. Label propagation with hypergraphs

In all label propagation methods examined so far, the relationships between data are
expressed in data pairs. However, there are many real-world applications, in which
the data relationships are more complex than pairwise relationships, concerning an
arbitrary number of multimedia data (graph nodes). These situations arise when the
data are represented by more than one labels. In such applications, the use of the
typical pairwise relationships, represented by graphs, leads to loss of information and,
consequently, to suboptimal solutions. These complex relationships between data can
be effectively represented by hypergraphs.

A hypergraph is a graph, whose edges can connect more than two nodes [Berge
1989]. This means that, in hypergraphs, edges are subsets of nodes. A hypergraph
H is defined as a pair H = (E ,V), where V is a finite set of nodes and E is a set of
nonempty subsets of nodes, called hyperedges, which represent the data relationships.
In the case when hyperedges contain only two nodes, the hypergraph is equivalent to a
simple graph. An example of a hypergraph is shown in Figure 4, where the set of nodes
is V = {v1, v2, v3, v4, v5, v6, v7, v8} and the set of hyperedges is E = {e1, e2, e3}, where
e1 = {v1, v2, v8}, e2 = {v5, v6, v7} and e3 = {v2, v3, v4, v6, v8}. When the hyperedges
are associated with possitive weights wij , the hypergraph is weighted and is denoted
by H = (E ,V, w). A hyperedge e ∈ E is incident with the node v ∈ E if v ∈ e. The

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:19

Fig. 4. Example of a hypergraph.

hypergraph H is represented by the incidence matrix H ∈ <|V|×|E|, where:

h(v, e) =

{
1, if v ∈ e
0, if v 6∈ e. (53)

The degree (strength) of the node v ∈ V is defined as the summation of the weights
associated with its incident hyperedges d(v) =

∑
e∈E w(e)h(v, e). In a similar way, the

degree of hyperedge e ∈ E is equal to its cardinality δ(e) =
∑
v∈V h(v, e). The hyper-

graph adjacency matrix A, as defined by Zhou et al. in [Zhou et al. 2007] according to
the random walk model, is given by:

A = HWHT −Dv, (54)

where W and Dv are the diagonal matrices of the hyperedge and node weights, re-
spectively. The normalized hypergraph Laplacian matrix is defined accordingly [Zhou
et al. 2007]:

L = I− 1

2
D−1/2
v HWHTD−1/2

v =
1

2

(
I−D−1/2

v AD−1/2
v

)
. (55)

An alternative definition of the hypergraph Laplacian based on the number of random
walks can be found in [Rodrı́guez 2003].

Let us consider a weighted hypergraph H = (E ,V, w), with a subset of nodes S ⊂ V
labeled with labels L = {lj}Lj=1. Label propagation in hypergraphs refers to the task
of label assignment to the unlabeled nodes, under the restriction that nodes belonging
to the same hyperedge should be assigned the same label. In one of the earlier works,
Zhou et al. [Zhou et al. 2007] presented a hypergraph transductive inference scheme
that follows hypergraph clustering. Given a classification function f : V → <|V|, the
classification decision is given by a framework of the form:

arg min
f
{Remp(f) + µΩ(f)}, (56)

where Remp(f) is an empirical loss, Ω(f) is the clustering objective function and µ is a
regularization parameter.

In [Corduneanu and Jaakkola 2004] and [Tsuda 2005], two information regulariza-
tion frameworks for hypergraph label propagation are presented that employ label
probability distributions, instead of deterministic labels. The idea behind the proposed
methods is the minimization of the number of bits required to communicate labels for
unlabeled data. The predicted label distributions of the unlabeled nodes are derived
from the distributions of the labeled nodes and the node relationships in the hyper-
edges. The framework in [Corduneanu and Jaakkola 2004] minimizes the mixture-
type information regularizer (m-regularizer), while the framework in [Tsuda 2005]
minimizes the exponential-type information regularizer (e-regularizer), which is the
dual of m-regularizer. The advantage of e-regularizer over m-regularizer is that it has
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a closed form solution. In [Sun et al. 2008], multiple label propagation is performed
through hypergraph spectral learning. The method is based on the property that the
hypergraph spectrum captures the correlation among labels. Moreover, an approxi-
mate hypergraph spectral learning framework is introduced, for targeting large scale
multi-label propagation problems. The framework is based on the approximation of the
hypergraph Laplacian matrix L ∈ <n×n by L = HHT , where H ∈ <n×k has orthonor-
mal columns. In [Chen et al. 2009], a novel method for multi-label propagation based
on hypergraph regularization is presented, called Rank-HLapSVM. The method objec-
tive is to minimize the ranking loss, while having a large margin. It incorporates the
hypergraph Laplacian regularizer tr{FTLF} in the objective function of Ranking-SVM
[Elisseeff and Weston 2001]:

min
F

1

2

∑
i

‖wi‖2 +
1

2
λtr{FTLF}+ C

∑
i

1

|yi||ȳi|
∑

(p,q)∈yi×ȳi

ξipq (57)

s.t. 〈wp −wq, xi〉 ≥ 1− ξipq, (p, q) ∈ yi × ȳi, ξipq ≥ 0, (58)

where yi ⊂ L is a subset of labels, ȳi ⊂ L is its complementary set and ξipq are slack
variables. In [Wang et al. 2009], multi-label propagation with multiple hypergraphs
was employed for music style classification that integrates three types of information:
audio signals, music style correlations and music tag information/correlations. The
multiple hypergraphs are combined in a single hypergraph that models the correla-
tions between different modalities, by constructing a hyperedge for each category that
contains all the nodes that are relevant to the same category. Then, hypergraph Lapla-
cian regularization of the form tr{FTLF} is performed, similar to the simple graph case
described in subsection 3.3. Hypergraph Laplacian regularization ensures that the la-
bel assignment function F ∈ <n×L is smooth on the hypergraph nodes. Hypergraph
Laplacian regularization for semi supervised label propagation is also performed in
[Ding and Yilmaz 2008], [Tian et al. 2009], with applications in image segmentation
and gene expression classification, respectively. In [Ding and Yilmaz 2008], a random
walk interpretation of hypergraph Laplacian regularization is also presented, as well
as the extension of the normalized and the ratio cut (presented in subsection 3.3) to
hypergraphs.

4. DIFFUSION PROCESSES IN RELATED AREAS

Diffusion is directly related to label propagation, which is essentially an information
diffusion process over graphs/networks that can be modeled by the heat equation [Ding
et al. 2007], [Ma et al. 2008]. Therefore, the crossfertilization of the two research topics
is very important. In the following sections, the notions of diffusion in physics as well
as in social networks are discussed.

4.1. Diffusion in physics

In physics, diffusion describes the flow of mass, energy or momentum in a medium,
observed in a bunch of physical processes called transport phenomena, such as molec-
ular diffusion and heat transfer [Alonso and Finn 1967]. Molecular diffusion refers to
the flux of liquid or gass molecules from regions of high to regions of lower concen-
tration, due to thermal energy dissipation. It can be considered as a gradual mixing
of materials having different original concentrations, until an equilibrium of uniform
concentration is reached. Similarly, heat conduction is a mode of kinetic energy trans-
fer within and between bodies, due to a temperature gradient. The conduction takes
place from bodies (or body parts) at a higher temperature to bodies (or body parts)
at a lower temperature. At the equilibrium state (thermal equilibrium), the bodies
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reach the same temperature. The evolution of temperature T (x, y, z, t) within a homo-
geneous, finite, three-dimensional body is described by the following equation, known
as heat equation:

∂T

∂t
= γ(

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
) , (59)

where T (x, y, z, t) denotes the spatiotemporal temperature diffusion over x, y, z and
t, whereas γ denotes heat diffusivity, which is the quotient of thermal conductivity κ
and heat capacity c. The theory of heat diffusion has been used in diffusion models of
influence [Ma et al. 2008], as well as in label propagation [Wang et al. 2011].

4.2. Models of diffusion in social networks

In a social network context, diffusion refers to the flow of information through the in-
dividuals in a network. According to the theory by E. Rogers [Rogers 1962], diffusion
describes how an idea or an innovation is adopted by units (e.g. persons, groups) be-
longing to a social system over time. With respect to the degree of eagerness to adopt
an innovation (inovativeness), social units are divided into five categories: innovators,
early adopters, early majority, late majority and, finally, laggards. Rogers theory, and
especially the terminology regarding the adopter categories, has been adopted in sev-
eral studies of information diffusion in social networks [Ma et al. 2008], [Kempe et al.
2005], [Kempe et al. 2003]. In order to model diffusion in social networks, various
methods have been developed, which can easily be extended to label propagation in
multimedia data graphs.

4.2.1. Game theoretic models. Game theory [von Neumann and Morgenstern 1944] can
provide methods to build models of real-world social interactions, where the decisions
of each individual depend not only on his/her choices, but also on the choices made
by others. Each game-theoretic model is based on a game (social interaction), involv-
ing a set of players (individuals) and a payoff function that assigns a value to each
player, according to his/her choices. Classic game theory studies how players should
behave, in order to maximize their payoff. Evolutionary game theory studies the evo-
lution of large populations of players that repeatedly play a game and are subjected
to evolutionary changes. Learning game theory studies the dynamics of a population
of individuals, who repeatedly play a game and adjust their behavior over time, as a
result of their experience. Local interaction games extend the two-player coordination
games, under the assumption that there is a large population of players interacting in
a social network [Blume 1993], [Ellison 1993] and [Morris 2000].

4.2.2. Virus propagation models. The study of information diffusion often adopts disease-
propagation models from epidemiology, due to the obvious analogy of information
spread and epidemics [Pastor-Satorras and Vespignani 2001]. In the Susceptible-
Infected-Recovered (SIR) model, the subject goes through the following states: first,
he is susceptible to the disease then he becomes infected with probability p and finally
recovers. After the subject recovers, he is no longer susceptible to the same disease. In
the Susceptible-Infected-Susceptible (SIS) model, the subject goes through the follow-
ing states: first, he is susceptible to the disease then he becomes infected with proba-
bility p and, after he recovers he becomes susceptible to the same disease. Regarding
information diffusion in a social group, the SIS model can be interpreted as follows:
first, the subject is ignorant to the information (susceptible) then he learns the infor-
mation (infected) and after a period of time forgets it (susceptible)[Xu and Liu 2010].
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Applications of virus propagation models in social networks can be found in [Opuszko
and Ruhland 2013], [Woo et al. 2011] and [Yagan et al. 2012].

4.2.3. Threshold Models. They were originally proposed by Granovetter [Granovetter
1978] and Schelling [Schelling 1978]. A social network can be modeled with a graph,
whose nodes are individuals and its edges represent relationships of influence between
them. Each node is assigned a threshold value and each edge is assigned a weight, rep-
resenting the probability that a node influences its neighbor. A node can be activated
(i.e., adopt a behavior), if the fraction of its neighbors that are already active exceeds
its threshold value. A common threshold model is the Linear Threshold Model. In this
model, a set of nodes are initially active. Each edge is assigned a weight wuv that re-
flects the influence of node v on u, for which

∑
wuv ≤ 1. In addition, each node u has

a threshold θ that depicts the intrinsic tendency of the node to adopt a state, given
that its neighbors have already adopted it. At a time step t, a node u is activated only
if the sum of weights of its active neighbors exceeds its threshold value θu. Once ac-
tivated, a node remains at this state. If the threshold values are known, the process
arising from the Linear Threshold Model is deterministic. However, this hypothesis
can be lifted [Kempe et al. 2003], considering that thresholds are randomly drawn
from a uniform distribution in [0, 1], independently for each node. Kempe et al. intro-
duced also a General Threshold Model, where the activation criterion is substituted
by a monotone activation function fu on the set of neighboring active nodes of u, tak-
ing values in the interval [0, 1]. Finally, in [Watts 2002], global cascades are studied,
using a threshold model. Global cascades are cascades that affect a large portion of a
network, occur rarely and are triggered by a small number of initial seeds. In [Watts
2002], the authors study common properties of global cascades regarding the network
connectivity.

4.2.4. Cascade Models. These models study how new ideas spread in a network of indi-
viduals by employing a cascade scheme. The underlying assumption in cascade models
is that the decision of an individual on adopting a new idea is strongly influenced by
the recommendations and decisions of others. The probability that a node v will become
active increases monotonically with the number of its active neighbors. A widely used
simple cascade model is the Independent Cascade Model [Goldenberg et al. 2001], in
which the probability that a node v is activated by an active neighbor u is independent
of any previous failed attempts conducted by other nodes. Each active node u has the
chance to activate a neighbor node v with a probability pv(u) at time t. A successful
attempt results in the activation of node v at time t + 1. Once an active node has re-
alized all attempts to influence its neighbors at time t, it then remains active but no
longer contagious. Therefore, each active node attempts to activate neighboring nodes
only once. In [Kempe et al. 2003], a generalization of the Independent Cascade Model
is also suggested. In the General Cascade Model, the probability that a node u acti-
vates a neighbor v depends on the previous attempts for activation committed by its
neighbors. The General Cascade Model assumes that the order, in which more than
one nodes attempt to activate a node v at time t, does not affect the result. The set of
nodes perform their attempts arbitrarily at time t, regardless of the order they do so.
Another type of cascade model is the Triggering Model [Kempe et al. 2003], in which
the nodes become active from a randomly chosen set of nodes, called ”triggering set”.

4.2.5. Applications of information diffusion models to other areas. The models of diffusion in
social networks can be extended to label propagation in multimedia data graphs. A
common issue in diffusion models is to maximize the spread of influence through the
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network. This consists in finding an initial set of active nodes to start the diffusion
process, such that the spread will be maximized. The problem was studied by Domin-
gos and Richardson in [Domingos and Richardson 2001], in a viral marketing context.
In terms of label propagation on multimedia data, influence maximization is equiva-
lent to determine the initial set of labeled data that optimize the propagation criterion
[Zoidi et al. 2013]. Diffusion methods can also be applied to collaborative filtering.
Collaborative filtering algorithms are mainly used in recommendation systems, for
making automatic predictions about the interests of a user, by collecting preferences
or taste information from many users [Terveen and Hill 2001], [Shang et al. 2010].
These predictions are based on the preferences of other individuals in the network
that share the same interests with the user. Label propagation can be adopted in rec-
ommendation systems, by treating recommendation as the process of label information
propagation from labeled data (i.e., items with ratings) to unlabeled data (i.e., items
without ratings) [Wang et al. 2011]. Finally, another field of application of information
diffusion are citation networks. In [Shi et al. 2009], Shi et al. studied citation networks
of publications in computer science from the perspective of information diffusion. The
structural features of the information paths through these networks, as well as their
impact on the information flow were analyzed.

5. EVALUATION METRICS

Several evaluation metrics exist, for measuring the performance of label propagation
algorithms. The choice for the proper evaluation metric depends on the application.
When the scope of label propagation is classification then, all classification accuracy
measures can be employed for performance measurement. On the other hand, when
label propagation is performed on large graphs with the aim of detecting the commu-
nities between the graph nodes, clustering measures are employed.

5.1. Classification evaluation metrics

Classification metrics measure the data percentage that has been assigned the correct
label and require knowledge of the groundtruth (actual label of each sample). They are
employed in label propagation algorithms that assign competitive labels on unlabeled
data, i.e., each sample can be assigned one label from a set of mutually exclusive labels.

5.1.1. Binary evaluation metrics. Binary evaluation metrics are employed when the data
belong to two classes. The possible outcome of label propagation is described in Table
I. According to this table, the following classification measures are defined.

Table I. Possible label propagation outcome

ground truth
actual label A actual label not A

assigned label A true positive (tp) false positive (fp)label propagation
outcome assigned label not A false negative (fn) true negative (tn)

Classification accuracy. Classification accuracy is the simplest measure for validat-
ing classification algorithms. It is defined as:

classification accuracy =
tp + tn

tp + tn + fp + fn
. (60)
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Classification accuracy takes values in the range [0, 1]. When classification accuracy
takes the value 1 it means that all data have been assigned the correct label.

Precision-Recall and F -score. In binary classification tasks, precision measures the
purity of the data that have been assigned the label and recall measures the percent-
age of the retrieved data that should be assigned the label. More specifically, for label
A we define:

precision =
|{data assigned the label A} ∩ {data that belong to class A}|

|{data assigned the label A}| =
tp

tp + fp
(61)

and

recall =
|{data assigned the label A} ∩ {data that belong to class A}|

|{data that belong to class A}| =
tp

tp + fn
. (62)

Precision and recall are combined in a single measure by taking their harmonic mean.
The resulting measure is called Fβ-score and is given by:

Fβ = (1 + β2) · precision · recall
β2precision + recall

=
(1 + β2) · tp

(1 + β2) · tp + β2 · fp + fn
. (63)

When β = 1, i.e., equation (63) is equal to the harmonic mean of precision and recall,
equal importance is given to precision and recall and the popular F1-score, also known
as F -measure, is obtained.

Precision-Recall Break Even Point. The Precision-Recall Break Even Point (PRBEP)
is the point in which recall is equal to precision. Let fA ∈ <M be the score vector for
label A and τA be the threshold that determines whether the sample xi is assigned the
label A or not, according to the following rule:

l(xi) =

{
A if fA,i > τA

not A otherwise , for i = 1, . . . ,M. (64)

PRBEP is then calculated by tuning the value of threshold τA so that precision and
recall have equal values.

Receiver operating characteristic curve . The receiver operating characteristic (ROC)
curve is a plot of the true positive rate (also known as sensitivity) over the false positive
rate (also known as specificity):

true positive rate =
tp

tp+fn false positive rate =
fp

fp+tn . (65)

The ROC curve is constructed by the true and false positive rates for varying values
of τA (64). True and false positive rates take values between [0, 1]. The propagation
accuracy is measured as the area under the receiver operating characteristic curve.
When the area is 1, i.e., the label propagation algorithm is 100% accurate, the ROC
curve consists of two straight lines, one vertical from point (0,0) to point (0,1) and one
horizontal from point (0,1) to point (1,1). When the label propagation algorithm assigns
the labels randomly, the ROC curve is a straight line from point (0,0) to point (1,1) and
the area under it is equal to 0.5.

5.1.2. Multi-class evaluation metrics. Multi-class evaluation metrics are employed when
the data belong to more than two classes. In this case, the multi-class classification
problem is divided into multiple binary classification problems according to the one-
against-all or the one-against-one validation method. Then, for each binary classifi-
cation problem the binary evaluation metrics are computed and, the total evaluation
metric is calculated by macro- or micro-averaging the respective binary metrics.
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Let L be the set of L labels for the L classes and F (tpl, fpl, tnl, fnl) one of the bi-
nary evaluation metrics for label l ∈ L presented in the previous section. The macro-
averaged evaluation metric is calculated by averaging the binary evaluation metrics:

Fmacro =
1

L

∑
l∈L

F (tpl, fpl, tnl, fnl), (66)

while the micro-averaged evaluation metric is calculated by:

Fmicro = F

(∑
l∈L

tpl,
∑
l∈L

fpl,
∑
l∈L

tnl,
∑
l∈L

fnl

)
. (67)

The main difference between macro- and micro-averaging is that, in macro averaging
the significance of each class is equal, while in micro-averaging the significance of each
per-sample classification decision is equal.

5.2. Clustering evaluation metrics

In the case where label propagation is performed on large graphs, often obtained from
social networks, with the scope of finding structures and communities among the graph
nodes, label propagation can be viewed as a clustering task. Therefore, clustering met-
rics, such as modularity and cohesiveness, can be employed for evaluating the propa-
gation performance.

5.2.1. Modularity. Modularity is an indicator of whether the graph nodes partition rep-
resents properly the network communities. It is measured by comparing the fraction of
edges that connect nodes between different communities (clusters) over the total num-
ber of edges that exist in the network. Let B be the number of communities detected
through label propagation and B ∈ <K×K be the symmetric matrix whose (i, j) value
represents the fraction of edges that connect nodes of community i with nodes of com-
munity j. Modularity is then defined as the fraction of edges that connect nodes in the
same community minus the fraction of edges between nodes in the same community
in a network with the same partition but with randomly assigned edges between its
nodes:

Q =

K∑
k=1

(
Bii −

K∑
j=1

Bij

)
. (68)

Modularity takes values in the range from 0 (if the network edges were assigned
randomly) to 1 (if strong connections exist between nodes in the same community). A
second definition of modularity, based on the graph adjacency matrix A ∈ <N×N is:

Q =
1

4N

∑
ij∈C

(
Aij −

kikj
2N

)
, (69)

where C is the set of node pairs in the same community and ki the degree of node i.
The matrix D with entries Dij = Aij − kikj

2N is called modularity matrix.

5.2.2. Cohesiveness. Cohesiveness measures how strong are the connections between
nodes in the same community. More specific, a community is considered to be cohesive
if the nodes of the community are more similar to nodes in the same community than
to nodes in different communities. Let K be the number of categories (classes) in which
the data belong to. The cohesiveness of community Cj is then defined as follows:

C = −
K∑
i=1

ni
|Cj |

log2

(
ni
|Cj |

)
, (70)

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26

where ni denotes the number of data in community Cj that belong to class i and |Cj | is
the cardinality of community Cj . When all data in the community belong to the same
class the cohesiveness of the community is C = 0. Cohesiveness takes the smallest
value C = 1 when the community consists of equal number of data from each class,
i.e., the data are clustered randomly.

6. APPLICATIONS IN DIGITAL MEDIA

As digital devices are becoming more and more affordable and popular, interaction
with multimedia content has come to be part of most people’s daily routine, leading to
an inevitable expansion in the volume of the data. Also, a vast amount of multimedia
data is created, accessed and processed on the Web: on-line communities enable users
to upload and share pictures (Flickr, Picassa, Photobucket), videos (Youtube, vimeo,
Dailymotion) or music (Last.fm, soundcloud), as well as to annotate multimedia ob-
jects, according to their semantic content. Furthermore, users of social networking
websites such as Facebook, Google+ and Twitter share, rank and annotate multime-
dia data every day. The growing popularity of the aforementioned communities and
networks over the last years has given rise to a huge amount of on-line available mul-
timedia data. The effective handling of large scale multimedia content for applications
such as archival searching, indexing, or retrieval, has, therefore, attracted significant
research interest.

An essential prerequisite for the success of the aforementioned applications is the
annotation of the data, i.e. the assignment of labels (tags) characterizing their seman-
tic content. As a matter of fact, usually only a very small percentage of the data re-
siding in large multimedia collections and websites are annotated. Manual annotation
by users is time consuming and often infeasible for large data collections. Additionally,
user-provided annotations tend to be subjective. For the above reasons, the develop-
ment of methods for automatically propagating the known labels of a small set of data
to unlabeled data is of great importance. Label propagation has been widely used for
semi-supervised annotation of the semantic concepts that appear in video sequences.
These concepts may either describe entire videos, video frames, or segments of video
frames. There exist several annotation tools based on label propagation algorithms for
indexing multimedia data in large repositories [Lin et al. 2003b], [Lin et al. 2003a],
[Lin et al. 2003c].

Label propagation in video can be performed in terms of pixels [Chen and Corso
2010], [Badrinarayanan et al. 2010], [Vijayanarasimhan and Grauman 2012], i.e., the
label of initially labeled pixels in a handful of video frames is propagated to the pixels
of the remaining video frames. In this case, the video pixels represent the graph nodes,
while pixel labels describe the semantic concept of the structure it belongs to (e.g., an
object in the frame). This procedure essentially leads to intra video frame segmenta-
tion and reduces greatly the effort required for the production of pixel-wise semantic
labels [Chen and Corso 2011]. Several datasets have been proposed for benchmarking
pixel label propagation algorithms [Brostow et al. 2009]. Pixel label propagation takes
into account both the spatial relationships of pixels in the same frame, as well as the
temporal relationship of the pixels in successive video frames [Badrinarayanan et al.
2010]. A common method for extracting temporal relationship between pixels is optical
flow. However, optical flow fails in the case of occlusion and reappearance of an object.
This problem is tackled in [Budvytis et al. 2010], with the introduction of a variational
expectation maximization model. The performance of pixel label propagation methods
depends highly on the initial set of labeled frames. In [Vijayanarasimhan and Grau-
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man 2012], an active frame selection method is performed, for selecting the set of video
frames from which label propagation will begin, so that the manual labeling effort will
be minimized.

Label propagation can be also used for assigning labels that characterize entire video
frames [Tang et al. 2009], [Qi et al. 2007] [Wang et al. 2009b], video snippets [Zhang
et al. 2012], or identifying the persons that appear in the video frames, [Coppi et al.
2011]. The semantic labels may describe the type of video content (news report, sports,
weather report, etc.), the scenes that appear in the video (city, forest, mountain sea,
etc.), the shot type (outdoor, indoor, long shot, medium shot, close up, etc.), objects that
appear in the videos (faces, cars, animals, etc.), actions that appear in the videos (ex-
plosion, human actions, crowd behavior, etc.). In these cases, the graph nodes represent
the video frames, the video snippets, and regions of interest (bounding boxes) in the
frames that enclose the persons’ facial images/bodies, respectively. In such systems,
video processing methods are employed, such as shot boundary detection algorithms
and automatic object/face detection and tracking. The video shots can be divided into
subshots, according to different events detected in the shots [Zhang et al. 2012]. More-
over, in the case of person identity label propagation in videos, the information about
the co-appearance of persons in the video can be exploited for increasing the annotation
accuracy, i.e., facial images that appear in the same frame obviously belong to differ-
ent persons, therefore should be assigned different labels [Phi et al. 2011], [Zoidi et al.
2013]. A common benchmark dataset used in such systems is TRECVID [Amir et al.
2003], that consists of approximately 170 hours of TV news videos from 13 programs
in 3 languages: English, Arabic and Chinese.

Similarly, image annotation methods employ label propagation in both pixel and
image level. The goal of the methods that operate on the pixel level is to automate
the segmentation process, rather than propagate labels across images. Starting from
a set of initially labeled pixels, usually referred to as seeds, labels are propagated to
the remaining image pixels [Grady 2006], [Rubinstein et al. 2012], [Wang et al. 2007],
[Kuettel et al. 2012]. In [Rubinstein et al. 2012], label propagation is applied jointly
on all the images of a dataset, taking into account image correspondences, instead of
propagating the labels in each image individually. In this way, consistency of the anno-
tations of similar entities across different images is enforced. Pixel label propagation
also finds application in medical imaging. Segmentation of medical images, like the
ones acquired by Magnetic Resonance Imaging (MRI) or Computerized Tomography
(CT) scans, is an essential step during diagnosis. Again, segmentation is regarded as
a label propagation problem, where labels from initially labeled pixels are propagated
to unlabeled pixels [Grady and Funka-Lea 2004], [Yong et al. 2013].

In contrast to pixel label propagation, methods that operate on the image level uti-
lize global descriptors for each image [Chen et al. 2010], [Houle et al. 2013], [Guil-
laumin et al. 2009]. Instead of relying merely on visual features, some methods use
also textual information, combining, thus, image- and word-based graph learning [Liu
et al. 2009], [Lee et al. 2013]. The advantage of these approaches is, that a better con-
sistency between image similarity and label similarity is achieved. The majority of
the image annotation methods assume that each tag is propagated separately. On the
contrary, several recently proposed methods consider multi-label propagation [Chen
et al. 2010],[Bao et al. 2011], [Lee et al. 2013]. Instead of propagating each label (tag)
individually, these methods propagate the different labels simultaneously, taking the
interactions between the tags into account, and allow for improved annotation results,
as well as for more efficient computations. Usually, image annotation methods assume,
that similar images have similar labels, without considering the fact that each label
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characterizes only a local region of the image, while image similarity is computed glob-
ally. To deal with this fact, the method proposed in [Bao et al. 2011] takes into account
the label locality, by considering the relationships between semantic regions of the
images.

It is very often the case, that users provide either incorrect or incomplete annota-
tions for the data. This results in the existence of ”noise” in the dataset labels, which
limits the performance of the algorithms applied on it. Several methods have been
proposed in order to improve the quality of the labels in image datasets, usually re-
ferred to also as retagging or tag ranking algorithms [Tang et al. 2011], [Liu et al.
2009], [Liu et al. 2011], [Wang et al. 2006], [Tang et al. 2014]. The method proposed
in [Tang et al. 2011] for annotation of image data incorporates a strategy for refine-
ment of the noisy training data, through a regularization scheme. In [Liu et al. 2011],
image retagging is regarded as a multiple graph-based, multi-label learning problem.
The proposed method takes into consideration the visual information of the images,
the semantic correlation of the tags, as well as user-provided prior knowledge. Prop-
agation is performed using multiple tag-specific similarity graphs (one for each tag),
expressing the relationships between images associated with the same tag, as well as
a label-similarity graph, which captures the semantic similarity between tags. The tag
ranking method in [Tang et al. 2014], considers not only the relationships between
entire images, but also the relationships among the visual content in salient regions,
a fact that leads to more accurate results. Music re-tagging aims at suppressing the
noise existing in tags which characterize a music object (i.e. an artist, album or track),
such that the refined tags reflect better the semantic description of the music objects.
The method in [Yang et al. 2012] exploits label propagation in order to refine the tags
provided either by users or by automatic tagging systems. A label-refinement method
is also proposed in [Wu et al. 2013], as part of a graph-based semi-supervised learning
algorithm for music emotion recognition.

Another application of label propagation can be found in recommendation systems,
which consist an important feature of on-line media sharing communities. Recommen-
dation methods may rely on information related to the users’ preferences, expressed
through user-provided ratings. These methods are usually referred to as collaborative
filtering methods. Alternatively, content-based recommendation methods exploit in-
formation associated to the multimedia content itself, derived either from meta-data
or by extraction of features from the data. In recommendation systems in large video
repositories, such as YouTube, label propagation is performed on multiple video graphs
and the recommendation results are personalized for each user [Baluja et al. 2008],
[Liu et al. 2007], [Tang et al. 2007]. Recommendation systems exploit co-view infor-
mation, i.e., if the user watches video A and from co-view statistics it is known that
other users who watched video A also saw videos B and C, then these videos will be
recommended to the user. In co-view graphs, the nodes are the videos and the edge
weights that connect two nodes represent the number of users that have watched the
two videos. An alternative way for representing the relationships between the videos
and the users is the user-video bipartite graph [Baluja et al. 2008]. A certain video is
recommended for the user if the path between the video and the user is short, if there
are multiple paths between the video and the user and if the paths between the video
and the user avoid high-degree nodes (popular videos). Recommendation systems are
also integrated in music sharing websites. The method presented in [Shao et al. 2009]
uses both user related information and acoustic content features, in order to take ad-
vantage of the information contained in the two types of data. The authors propose a
similarity measurement scheme, to calculate the similarity between music tracks and
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subsequently, recommendation is regarded as a label propagation process from labeled
to unlabeled tracks. Apart from multimedia objects, recommendation may regard so-
cial groups which share similar interests with a user. The method proposed in [Yu
et al. 2011] consists such an example, where visual content of images along with text
annotations are utilized in a label propagation scheme, in order to recommend social
groups according to users’ personal photo collections.

7. CONCLUSION

Label propagation is a semi-automatic annotation process, with a wide application
range, varying from multimedia content annotation to the study of social networks.
Most label propagation methods exploit a graph representation for the set of labeled
and unlabeled data and their pairwise relationships. These methods were reviewed in
this paper. The review focuses on the most important methods for graph construction
and label inference that appeared in the last decade. Label propagation is essentially
an information diffusion process. Therefore, information diffusion in certain domains,
e.g., in innovation adoption and social networks have been reviewed as well, since it
can have a multitude of applications in label propagation. Furthermore, the diffusion
processes in physics have been presented, since they have greatly influenced the re-
search in this area. In particular, diffusion methods derived from the study of social
networks were analyzed. However, several obstacles have yet to be overcome, since the
existing methods are sensitive to insufficient training data volumes, the proper choice
of multimedia data distance functions and the curse of dimensionality.
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D. Kempe, J. Kleinberg, and É. Tardos. 2003. Maximizing the spread of influence through a social network.

In Proc. 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining.
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