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Abstract—In this paper we propose a novel algorithm for
dimensionality reduction, which uses as a criterion the mutual
information between the transformed data and their corre-
sponding class labels. The mutual information is a powerful
criterion which can be used as a proxy to the Bayes error rate.
Furthermore, recent quadratic non-parametric implementations
of mutual information are computationally efficient and do not
require any prior assumptions about the class densities. We
show that the quadratic non-parametric mutual information can
be formulated as a kernel objective in the graph embedding
framework. Moreover, we propose its linear equivalent as a
novel linear dimensionality reduction algorithm. The derived
methods are compared against the state-of-the-art dimensionality
reduction algorithms with various classifiers and on various
benchmark and real-life datasets. The experimental results show
that non-parametric mutual information as an optimization
objective for dimensionality reduction gives comparable and in
most of the cases better results compared to other dimensionality
reduction methods.

Index Terms—Dimensionality Reduction, Mutual Information,
Feature Extraction, Quadratic Mutual Information, Face Recog-
nition, Graph Embedding Framework, Data Visualization.

I. INTRODUCTION

The problem of dimensionality reduction has attracted the
attention of a vast number of researchers in computer vision
and pattern recognition. This is mainly attributed to the
fact that in many systems, dimensionality reduction is the
necessary preprocessing step to efficiently manipulate high-
dimensional data or to denoise them [4]. A dimensional-
ity reduction algorithm is an approach which, given a set
of high-dimensional data of dimensionality d, maps them
into a lower-dimensional space of dimensionality [, where
! < d. For this to be accomplished, many linear and non-
linear algorithms have been proposed. Among them, Principal
Component Analysis (PCA) [18] and Linear Discriminant
analysis (LDA) [9], [12] are the most popular linear ones in
the categories of unsupervised and supervised dimensionality
reduction respectively. By the term supervised dimensionality
reduction we mean that the specific method uses the data class
labels in order to achieve a mapping, linear or non-linear,
such that the resulting mapped data which belong to different
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classes will be well separated [11]. Another linear approach
that can be either supervised or unsupervised, is the Locality
preserving projections (LPP) [15]. LPP tries to preserve the
local relationships within the data samples and thus to reveal
their overall structure. On the other side of dimensionality
reduction lie the non-linear methods like Laplacian Eigen-
maps (LEM) [3], Locally Linear Embedding (LLE) [27] and
ISOMAP [32]. These methods try to find non-linear projections
of the data that are more likely to detect their latent non-linear
manifold structure. With the recent advent of the kernel trick
[31] most of the linear methods can be reformulated as kernel
ones. Kernels have been extensively used in the context of
Support Vectors Machines (SVM) [6]. The main idea behind
the kernels is to employ a linear mapping ¢ : R™ — H in a
high-dimensional Hilbert space H where in the original space
this mapping will be non-linear [17]. Many linear methods
have been extended to their kernel equivalent like Kernel
Principal Component Analysis (KPCA) [30], Kernel Fisher
Discriminant (KFD) [26], Generalized Discriminant Analysis
(GDA) [1], Complete Kernel Fisher Discriminant (CKFD) [36]
and many recent ones like Kernel Orthogonal Neighborhood
Preserving Projections (KONPP) [22].

Recently, Shuicheng Yan et. al proposed a general frame-
work for dimensionality reduction, the so called Graph Em-
bedding Framework [35]. Graph embedding unifies most of the
popular dimensionality reduction methods under a well defined
framework while it gives the ability to formulate new ones.
Under the context of the Graph Embedding Framework, we
propose the formulation of a novel dimensionality reduction
algorithm that uses as an optimization criterion the Mutual
Information (MI) [7]. The intuition behind the use of the MI
is the fact that it is a general criterion which can overcome lim-
itations of the previous proposed methods. MI uses high-order
statistics, and not just second-order ones as, for example, LDA.
Furthermore, it can be can used as an alternative to the Bayes
error rate, which is the optimal criterion for classification [33].
However, computing the MI is computationally inefficient,
since probability density functions of variables are required
and also high-dimensional numerical integration of thoses.
In [33], an efficient quadratic non-parametric formulation of
the MI (QMI) between the data feature vectors and their
corresponding class labels is proposed, which gives better
MI estimation in high-dimensional spaces with acceptable
computational cost.

In our work we show that QMI can be integrated in the
Graph Embedding Framework and hence, we are able to derive



a closed mathematical form for the optimization of the corre-
sponding objective criterion. In particular, we show that under
the Graph Embedding Framework, QMI can be reformulated
to produce a kernel dimensionality reduction method that we
call Kernel Quadratic Mutual Information (KQMI). Secondly,
we derive the linear equivalent of this method, called Linear
Quadratic Mutual Information (LOMI). Under the perspective
of the closed form optimization formula, we are given the
opportunity to evaluate the use of the non-parametric MI as a
dimensionality reduction objective. Furthermore, we compare
the reformulated methods against the mainstream projective
dimensionality reduction approaches available, with various
classifiers and on several benchmark and real-life datasets. Our
results show that our proposed algorithms attain comparable
and in most of the cases better results than other state-of-the-
art supervised dimensionality reductions methods.

Our paper is organized as follows. In Section II we describe
the prior work of several researchers that form the basis of our
proposed method. In Section IIT we give all the theoretical
background of our work. In Section IV we illustrate our
experimental results. Finally, in Section V we conclude our
work.

II. PRIOR WORK

In this Section we comment on the work of several re-
searchers that supplied the motivation for the derivation of
our work.

A. Graph Embedding Framework

Recent work has shown that many dimensionality reduction
algorithms can be reformulated into the Graph Embedding
Framework [35]. The Graph Embedding Framework is based
on the introduction of the undirected weighted graph G =
(X, W), with vertex set the data points X = [xy,...,x,]T €
R"*4 and similarity matrix W € R"*", The graph embedding
of the graph G is, therefore, an algorithm to find the low-
dimensional representation of the data that best preserve the
relationships between the vertex pairs of G. The graph G can
be seen as an intrinsic graph. Furthermore, a penalty graph
GP = (X, WP) can also be defined, such that the weight
matrix of the graph penalizes specific characteristics of the
data structure. For the one-dimensional case, assuming that
Yy = [y1,...,yn]? is the vector containing the projections of
each data sample x;, the graph criterion to be optimized is

n
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where L is the graph Laplacian defined as L = D—W and D
is the diagonal degree matrix defined as D;; = Z;’:l Wij i =
1,...,n. Cis a constraint matrix to avoid trivial solutions and
is typically a diagonal matrix for scale normalization, or the
graph Laplacian of GP, that is C = LP? = DP? — WP and ¢ is
a constant. If we assume that the vector y is obtained by the

linear projection y = Xw, where w € R? is the projection
vector, then the objective becomes
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Following similar arguments to [30] in the case of PCA (see
also (4) below) we see that the solution to the objective (2)
should lie on the span of the data points x3, ..., X,, therefore
it can be written as a linear combination of the form w =
Yi1 Bixi.

The objective in (2), even though is computationally ef-
ficient to optimize, is not always optimal in terms of clas-
sification perfomance, especially when the underlying data
are distributed in a highly non-linear way. A solution to this
problem is to introduce the kernel extension of objective (2)
to handle non-linearly distributed data by using the kernel
trick [31]. The input data are mapped to a higher dimensional
Hilbert space H using a map ¢ : x — H. In this new feature
space, a linear projection algorithm is performed similar to (2).
The key property of the kernel trick is that it is based only
on inner products of data pairs defined by the kernel function
k(xi,x;) = ¢(x;) T d(x;). As in the linear case, the projection
direction w € R™ lies in the span of ¢(x1),...,¢(x,) (see
also [30]), therefore it admits a representation of the form
w = > 1, a;$(x;). By defining the kernel matrix K € R"*"
as K;; = ¢(x;) T #(x;), the objective in (2) can be written as
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The solutions of (1), (2) and (3) can be obtained by solving
the generalized eigenvalue problem

Av = \Bv, 4

where, A =L, XTLX, KTLK and
B =1,C,X"CX, K,K"CK, depending on the type of the
problem.

= arg

B. Quadratic Mutual Information

Many ways have been proposed to accurately estimate the
MI between data points and their respective class labels.
Quadratic Mutual Information (QMI) [33] is an accurate
estimation method for high-dimensional problems with ac-
ceptable computational cost. We assume a random variable
X representing the data points x; € R? and a discrete random
variable Y representing the class labels. Therefore, we have
data pairs of the form {x;,y;}" ;. Let p(x) be the probability
density function of the data points and P(Y) the class prior
probabilities. The MI between the two random variables is
defined as

I(X,Y) = zy: /x p(x,y) log m(ix. 5)



The MI is a measure of dependence between random variables,
in our case between the data points X and their class labels
Y. The above equation can also be interpreted as a Kullback-

Leibler divergence:
L@ (x. /Q1 x.9)log 3 M,
(6)

where Q1 (x,y) = p(x,y) and Q2(x,y) = p(x)P(y). In [20,
p-178], [21, Chapter 4], it is argued that if our goal is to
find the distribution that maximizes the divergence and not
to compute its absolute value, the axioms used in deriving
divergence measures can be relaxed resulting in the same
maximizing distribution. One such measure that satisfies the
relaxed axioms is given by
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where « # 0, 1. Selecting o = 2 and extending the measure to
continuous densities we arrive at the quadratic measure given
by (up to a constant)

Dy(Q1,Qs) = / Q1) - Qo(x)%dx. (8

Another justification for using the quadratic divergence mea-
sure is given in [33], where it is shown that maximizing
D5(Q1,Q2) is equivalent to maximizing a lower bound to
KL(Q1,Q2). The MI can now be expressed in terms of the
divergence between the joint density and the product of its
marginals. Inserting these forms of the distributions into (8)
leads to the Quadratic Mutual Information measure (QMI)
between two continuous variables x1, Xo:

To(X,, Xa) = / / (p(ox1, x2) — plox1 )p(x2) P xa. (9)

In our case, the QMI between the continuous variable X of
the data points and the discrete random variable Y of the class
labels is defined as

o(X,Y) ZZ/p(xy)zderZ/p(x)2P(y)2dx
—2Y [ pxpeor

In [33], the above probability distributions are approximated
using Parzen window estimators with a Gaussian kernel.
Therefore, p(x), P(y; = ¢) and p(x,y; = ¢) can be written
as

(y)dx. (10)

p(x)=> p(xy ii/\f(x xj,0°I)
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where in the above equations n is the total number of data
points, C' is the total number of classes, J. is the number
of samples of class ¢ and N (x;m,X) denotes the Gaussian
probability distribution function with mean vector m and
covariance matrix X, defined as

L oo (—;(x Cm) TS (x m)) .
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By expanding equation (10) we get the following equation:

Zo(x,y)

Nxm,X) =

=Vin +Varr — 2Verw, (11)

where
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The above pairwise interactions between samples,

Vin,Varr, Verw can be interpreted as follows [33]:

e VN can be seen as interactions between pairs of samples
inside each class.

e Varp consists of interactions between all pairs of sam-
ples, regardless of class membership.

e Vprw consists of interactions between samples of each
class against all other samples.

III. GRAPH EMBEDDING OF QUADRATIC MUTUAL
INFORMATION

In this Section, we show that the QMI can be formulated
into the Graph Embedding Framework and can be interpreted
as a direct kernelization of a linear objective.

A. Formulation of KOMI and LOMI Algorithms

We assume our initial data points are centralized, that is they
have zero mean. Otherwise, we subtract from each data sample
the mean vector of the whole dataset. We define the centralized
kernel matrix K € R"*" with elements K;; = (K E,K —
KE, + E,KE,),;, where K;; = N(x; — x;;0,20%I) and
E, the n x n matrix with all elements equal to 1/n. The
kernel matrix can also be written as K = ®® ", where ® €
R™*™ is the matrix of the mapped data points X € X" into a
Hilbert space H through the mapping ¢ : X — H and m is



the unknown dimensionality of the feature space. We define
1=11,...,1]T € R" and 1, € R" with elements

[10]1' = {(1)

if x; €c

else

c
1 2
Furthermore, we define the constants C a7, = v ;(Jc) R
1 J, .
Ciy = ) and CBTW,c =3, C= 1,...,C. With the
above notation, the Va5, Viny and Vprw terms can be
written as
Varr = Capptr{®@ 7117 &}, (15)
c
Vin = Cintr{®" (Z 1C1j> ), (16)
c=1
c
Verw = t{®'1 <Z CBTW,C1CT> ). (17)
c=1

Using the above, the QMI between the data points and their
respective class labels can be reformulated as

C
IQ(X, y) = tr{@—r (CALLllT + C[N(Z 151;r> —

c=1

-2 l(iCBTW,ClcT))@}.

c=1

(18)

Detailed derivations of the expressions (15),(16),(17) can be
found in Appendix A. In order to compute non-linear pro-
jections of the data points, we define the projection vectors
w; € R™ ¢ = 1,...,n. We can restrict these vectors to be
in the range of ®, since they belong to R™, which is the
column space of ®. Therefore, they can admit a representation
of the form w; = Z;’ ai;d(x;) = ®T ;. By arranging them
as columns of a matrix we can create the projection matrix
W = {w}r, = {®Ta,;}", = ®TA € R"™", where
A = {ay}; € R™ " After the non-linear projection with
the matrix W and by defining

C
M = (CALL]_]_T + CIN(Z ]_C]_;r>

c=1

c
-2 1<ZOBTW,C1;F)>5

c=1

19)

we result in the following formulation of the QMI inspired
graph embedding objective:

5 (x,y) = r{ (W) M®W} = r{ ATKMKA}. (20)

The above formulation uses the matrix M that represents the
interactions between data samples in the graph embedding
framework and has been extracted by the QMI formulation
in (18) in order to connect the data samples after projection
to an arbitrary Hilbert space (represented in @ ") and dimen-
sionality reduction (represented in (®W)" = ATK). The
optimal matrix A can be computed by solving the following
optimization problem:

A* =arg max tr{ATKMKA]}. 21
ATKA=T

The constraint ATKA =1 is derived from the orthogonality
constraint of the projection matrix W, that is, W'W =1 =
(@TA)(@TA)=I=AT®P'A=1=ATKA=1LIn
general, the matrix M is not symmetric due to the Cprwy,c
terms, unless the classes of the dataset are balanced. However,
it is known that for every general square matrix M € R"*"
and x € R”, it holds x ' Mx = x ' M'x, where M’ = (M +
MT)/2 the symmetrization of M [14]. By symmetrizing the
matrix M in (19) we obtain the equivalent objective

A* =arg max tr{ATKM'KA}. (22)
ATKA=I

In order to make the problem well-posed (see also Section
III-C), we additionally enforce the constraint that the embed-
ding vectors have unit covariance, that is, = (®W) T (®W) =
I= %(@@TA)T(CI“I)TA) =I= (KA)"(KA) = nl =
ATKKA = nl. The final objective becomes
r{ATKM'KA}

max .
ATkA=1 tr{ATKKA}
The solution of the above optimization problem is given by
the generalized eigenvalue problem

KM'KU = AKKU & M'KU = AKU,

A* =arg (23)

(24)

where A is the diagonal matrix of the eigenvalues A\; and U
is the matrix whose columns contain the eigenvectors v;. To
satisfy the constraint ATKA = I, each eigenvector v; must
be divided by v/v;Kv; in order to get normalized eigenvectors
v;. It is important to note here that the matrix M’ has rank
C — 1, therefore the product KM'K has maximum rank also
C'—1. As a result, using this formulation, we are able to utilize
only C' — 1 eigenvectors that belong to the column space of
KM'K and the maximum projection dimension is C' — 1. The
optimal non-linear projection of the data points to dimension
l=1,...,C—1is given by the first [ dominant eigenvectors
v;, i = 1,...,1, that is A* = {v,;}l_,. The matrix of the
projected data points is given by K = KA*.

Another more robust strategy to solve (23) is to apply an
eigenvalue decomposition of the kernel matrix K = PLP ',
where P is the matrix which contains in its columns the
eigenvectors of K and L is the diagonal matrix that contains
the eigenvalues of K. The quotient becomes now

B tr{ ATPLPTM'PLPT A}
~ u{ATPLPTPLPTA} ’
By defining B = LPTA and using the fact that P is
orthonormal, the quotient becomes
r{B"PTM'PB}
tr{BTB}
This quotient is maximized by solving the eigenvalue problem

P 'M'PZ = HZ, 27)

(25)

Q= (26)

where Z is the matrix containing the eigenvectors of P M'P
and H a diagonal matrix containing the corresponding eigen-
values. The optimal projection vectors can now be computed
by A* =P TL™'B=PL'B.

The complete algorithm to compute the optimal non-linear
projections produced by the QMI between the data points and



Algorithm 1 Kernel QMI

Algorithm 2 Linear QMI

Input:
o Vectory ={y;li=1,...,n}, y; €{1,...,C}.

o Centralized data matrix X = ({x;}7_;) " € R™*™ with
zero mean.

Output:
o Non-linearly projected data K* € R"*9,

Step 1:

1: Calculate centralized kernel matrix K € R™*",
If:ij = (K — EnK — KEn + EnKEn>”, where
K;j = N(x; — x;, 0*1) and E,, the n x n matrix with
all elements equal to 1/n.

2: Calculate matrix M using (19) and symmetrize it to
obtain M'.

Step 2:

1: Decompose the kernel matrix K into its eigenvectors
and eigenvalues:

K=PLP'.
2: Solve the eigenvalue problem

P'M'PZ = HZ.
where H is the diagonal matrix containing the
eigenvalues of PTM'P and Z is the matrix whose
columns are the corresponding eigenvectors.
3: Sort the eigenvalues with descending order and arrange
the corresponding eigenvectors into the matrix B.
4: Compute the optimal projection vectors as

A =PL'B.

Step 3:

1: Select the first d = 1,...,C — 1 eigenvectors of A to
create a new matrix A*and compute the resulting
projected data as

K” = KA*.

their respective labels is given in Algorithm 1. The objective
in equation (23) can be seen as a direct kernelization of a
linear objective of the form

r{WTXTM'XW}

W* =
arg max HWTXTXW]

wTw=I

(28)

where W = {w;}7_, € R%*4 contains the projection vectors.
The solution of the above optimization problem is given by
the generalized eigenvalue problem

XT™M'XV =TX'XV & (X"X)'X"M'XV =TV,

(29)
where I' is the diagonal matrix of the eigenvalues ~; of
(XTX)"!XTM'X and V is the matrix whose columns con-
tain the eigenvectors v; of M’X. To enforce the orthogonality
constraint W T W = I each eigenvector v; must be divided by
||v;]| in order to get normalized eigenvectors v;. The optimal
linear projection of the data points to dimension ! = 1,...,d is
given by the first [ dominant eigenvectors v;, ¢ = 1,...,[, that
is W* = {v;}!_,. The matrix of the projected data points is
given by X7 = XW*. The algorithm to compute the optimal
linear projections is described in Algorithm 2.

Input:
o Vectory ={y;li=1,...,n}, y; €{1,...,C}.

o Centralized data matrix X = ({x;}1_;)" € R"*™ with
Zero mean.

Output:
« Linearly projected data X7 € R"*<,

Step 1I:
1: Calculate matrix M as in (19) and symmetrize it to
obtain M’.
Step 2:
1: Solve the generalized eigenvalue problem

X'"M'XV =TX'XV &
& (XTX) I XTM'XV =TV,

where T is the diaﬁonal matrix containing the

eigenvalues of (X' X)"!XTM’'X and V is the matrix
whose columns are the corresponding eigenvectors.

2: Sort the eigenvalues with descending order and arrange
the corresponding eigenvectors into the matrix W.

Step 3:

1: Select the first d = 1,...,C — 1 eigenvectors of W to
create a new matrix W*and compute the resulting
projected data as

XP = XW*.

B. Graph derivation of KOMI

We now derive the intrinsic graph that corresponds to the
proposed dimensionality reduction algorithm, which is based
on the non-parametric MI. In the following we assume that
the data in the matrix X are sorted according to their class
labels. By defining o = Cinv +Carr —2Cprw,c and Be o =
Carr — Cerw,c — Crw,e, the matrix M’ has the form

o o o Bi,c Bi,c
o o Bi,c B1,c
M =
B1,c B1,c ac -+ oc
B1,c B1,c ac -+ oc
(30)
where each submatrix containing the o, c = 1,...,C entries
has dimensions J. x J. and each submatrix containing the
Bees, ¢ = 1,...,C, ¢ = 1,...,C entries has dimensions
Jo X Jor.
By defining a graph with weight matrix W as
0 S —an —Bi,c —Bi,c
—aq 0 —B1,c —Bi,c
W =
—Bi.c —B1,c 0 —ac
—Bi,c —B1,0 —ac - 0
[€20)



the matrix M’ is the Laplacian matrix of this graph and can be

written as M’ = D — W, where D = diag(M’). In Appendix
B it is shown that the property Z?=1 Wij =Dy, i=1,...,n
holds. The above weight matrix W corresponds to a fully
connected graph, where data samples that belong to the
same class are connected with edges of non-positive weights
—a, = 2Cprw,c — Crnv — Carr and data samples belonging
to different classes are connected with edges of non-negative
weights —3.. = Cerw,c + Cerw,er — CaLL.

C. Discussion

One of the key contributions of the proposed approach is
to interpret the QMI in the graph embedding framework in
order to derive novel closed form dimensionality reduction
objectives. To do so, someone has to consider either to
maximize the QMI between the samples and the labels after
the dimensionality reduction, which is what Torrkola did,
giving an iterative algorithm in his work [33], or to use the
information provided by the QMI formulation in order to build
new dimensionality reduction criteria that can be solved in
closed form, which is what we propose. If someone wants to
follow the second approach he can observe that in the QMI
formulation given in (18) we have two elements that define
the measure. One is the matrix ® that corresponds to the data
samples in the feature space and has been derived by a specific
kernel used in Parzen estimation (i.e., the Gaussian kernel), to
define sample similarity. The other element is the matrix M
in (19) that represents the links between the data samples in
the intrinsic graph that forms the QMI measure. Thus, using
different kernels in Parzen estimation will result in different
forms of ® with the same matrix M that defines the graph con-
nections. Moreover, someone can directly use the matrix M in
the graph embedding framework and change the feature map
using other well-known kernels. The simplest form of ® is the
original data matrix X. If we consider that the data samples are
the outcome of a projection to lower dimension using W then
the data matrix X is replaced by XW. Proceeding from the
linear case to the nonlinear case, the projection matrix W is
a linear combination of the samples in the feature space given
in ®, thatis W = {w;}7, = {®Ta;}7., = PTA € RV,
In all cases, the dimensionality reduction objectives depend
on a constant graph embedding matrix M that represents
the QMI sample interactions and a feature matrix P that
represents the samples in the corresponding Hilbert space and
can be considered to correspond to a specific kernel used in
Parzen estimation. Finding the kernel for the Parzen estimation
that corresponds to the well-known kernels used in projecting
samples in RKHS is out the scope of the paper and will be
considered in future research.

For the derivation of KQMI in Section III-A we enforce
an additional constraint of unit covariance of the embedding
vectors. This modification was done for two reasons. First, this
covariance condition implies that the projected points W
will be differenct from each other, because of the orthogonality
of the columns of ®W [22]. This is similar to what PCA
does. Second, we also conducted experiments without this
constraint, however they were slightly worse than the ones
we present in Section IV using the additional constraint.

Furthermore, another logical question arises of why to use
the MI as a criterion for Dimensionality Reduction. It is
known that the Bayes error rate is the optimal criterion for
classification and it can take the form [33]

E(X) = [ (1~ maxp(yfx))dx

The above criterion needs the computation of class posterior
probabilities and numerical integration of those. This is a
difficult problem given only one training dataset. Several
approximations have been proposed which use parametric
estimation of class-conditional densities followed by numerical
optimization [13], [29]. For example, LDA assumes all classes
to be Gaussian with a single shared covariance matrix. The key
difference of MI with the already proposed approximations
is the fact that it accounts for high-order statistics and not
only the second order. Another major property is that MI
bounds the Bayes error rate. An upper bound of the form
E(X) < L(H(Y) - I(X,Y)) is given in [16]. Furthermore,
in [8] a lower bound involving the Bayes error rate and the MI
is proved. Both bounds are minimized when the MI between
classes and data points is maximized. That means that we can
use the MI as an alternative criterion of the Bayes error rate.

(32)

IV. EXPERIMENTAL RESULTS

In this Section we illustrate the experimental results ob-
tained by comparing our proposed methods against several
dimensionality reduction methods available.

A. Experimental Results on Benchmark Datasets

We compared our proposed dimensionality reduction meth-
ods against other competitive methods (i.e., LDA, PCA, su-
pervised LPP, GDA, KCFD, supervised KLPP, KPCA) using
20 benchmark datasets from the UCI [10], and Statlog [25],
repositories. The characteristics of each dataset can be seen
in Table I. Let us note here that the methods LPP and KLPP
can be either unsupervised or supervised. In this evaluation,
we have implemented the supervised versions, since our goal
is to compare the supervised KQMI with as many supervised
methods as possible. In these versions of the algorithms, we
compute the KNN graph by connecting with edges the points
that belong to the same class and they are among the k nearest
neighbors of each other.

All the features of each dataset were scaled to the interval
[-1,+1]. To evaluate the test error on the different exper-
iments, we used 10-fold cross validation. In each fold, we
first compute the eigenvectors for each method based only
on the fold’s training set and then we project the feature
vectors of the fold’s training and test sets on the acquired
eigenvectors. As classifiers we used the Nearest Class Centroid
(NCC) classifier, the K Nearest Neighbours (KNN) classifier
[12] with K = 3 and the LIBSVM’s [5] SVM classifier with
linear and Radial Basis Function (RBF) kernels. We set the
cost variable C for both linear and RBF SVM to C' = 100 and
for the RBF SVM we set the RBF kernel’s o to ¢ = 1. For
the kernel dimensionality reduction methods we used RBF
kernel with ¢ = 1. The experimental results for the NCC



TABLE II: Classification error rates of Linear and Kernel Dimensionality Reduction methods with Nearest Class Centroid
Classifier. In parentheses the dimensionality of the final projected features is shown. The last row shows the number of wins
for each method across all datasets.

[ | Kernel Methods I Linear Methods ]

| Dataset | KQMI [ GDA [ KLPP [ CKFD [ KPCA ] LOMI [ LDA [ PCA [ LPP |
Australian 1551 % (1) 24.20 % (1) 16.52 % (I) 20.44 % (1) 14.49 % (14) 14.20 % (1) 14.20 % (1) 13.77 % (4) 14.20 % (1)
Balance 13.12 % (1) 16.47 % (2) 13.44 % (1) 13.74 % (1) 23.83 % (4) 2576 % (2) 29.89 % (2) 26.23 % (4) 25.76 % (2)
Breast Cancer 3.23 % (1) 4.25 % (1) 3.66 % (1) 3.8T % (1) 3.36 % (4) 3.82 % (1) 3.82 % (1) 3.52 % (1) 3.82 % (1)
Dermatology 12.84 % (5) 14.80 % (3) 14.51 % () 17.53 % (10) 17.26 % (34) 2.98 % (5) 3.53 % (5) 327 % (17) 2.98 % (5)
Diabetes 24.75 % (1) 29.05 % (1) 26.70 % (1) 27.22 % (1) 27.74 % (7) 23.57 % (1) 2344 % (1) 26.83 % (7) 2344 % (1)
Ecoli 19.13 % (7) 19.44 % (7) 19.38 % (7) 19.67 % (7) 26.61 % (O) 22.92 % (3) 22.09 % (7) 24.65 % (7) 22.10 % (6)
German Numer 28.10 % (1) 28.30 % (I) 28.30 % (I) 28.50 % (2) 40.40 % (23) 27.60 % (1) | 27.60 % (1) | 29.50 % (22) | 27.60 % (1)
Glass 32.87 % (5) 32.80 % (5) 29.53 % (5) 30.42 % (5) 52.97 % (8) 38.63 % (5) 43.60 % (5) 55.26 % (8) 43.29 % (5)
Heart 19.23 % (1) 22.59 % (1) 22.59 % (1) 21.1T % (2) 20.37 % (13) 15.56 % (1) [ 15.56 % (1) 1852 % (11) | 15.56 % (1)
Tonosphere 8.81 % (1) 6.52 % (1) 5.39 % (1) 6.52 % (2) 26.14 % (19) 12.75 % (1) 16.44 % (1) 25.27 % (8) 12.75 % (1)
Iris 2.67 % (2) 4.00 % (2) 333 % (2) 4.66 % (2) 6.66 % (4) 2.00 % (1) 2.00 % (1) 533 % () 2.00 % (1)
Liver Disorders 28.94 % (1) 32.97 % (1) 29.50 % (1) 29.50 % (1) 41.98 % (4 37.40 % (1) 3712 % (1) 40.5T % (6) 3712 % (1)
Segment 372 % (6) 2.46 % (6) 4.37 % (6) 4.16 % (6) 15.45 % (19) 9.74 % (6) 35.58 % (6) 16.02 % (11) 11.99 % (5)
Sonar 13.03 % (1) 12.53 % (1) 12.53 % (1) 26.56 % (2) 21.65 % (40) 2470 % (1) 2422 % (1) | 29.36 % (I1) | 2422 % (1)

Soy 523 % (2) 6.56 % (2) 5.90 % (2) I1.17 % (3) 14.04 % (27) 5.88 % (2) 816 % (2) 22.90 % (30) 5. lo

Thyroid 325 % (2) 3770 % (2) 2.79 % (2) 327 % (2) 3.70 % (3) 422 % (1) 4.68 % (1) 6.52 % (2) 4.68 % (1)
Vehicle 20.32 % (3) 18.45 % (3) 21.28 % (3) 19.75 % (3) 47.16 % (18) 21.28 % (3) | 21.28 % (3) | 56.03 % (1I5) 22.23 % (3)
Vowel T.0T % (10) 0.51 % (10) 343 % (10) 4.85 % (8) 41.92 % (10) 39.29 % (6) 38.89 % (6) | 49.09 % (10) 39.39 % (6)
Wine 0.56 % (2) 0.56 % (2) 0.56 % (2) LIT % (2) 1.64 % (7) 1.67 % (2) 1.70 % (2) 445 % (2) 111 % (2)
Zoo 30.63 % (6) 31.74 % (6) 30.63 % (6) | 39.01 % (12) 49.38 % (15) 24.88 % (5) 25.79 % (1) 28.8T % (5) 25.79 % (1)

Rank [ 12 [ 5 [ 6 [ 0 [ 1 I 12 [ 9 [ 2 [ I1 ]

TABLE III: Classification error rates of Linear and Kernel Dimensionality Reduction methods with K Nearest Neighbours
Classifier (KX = 3). In parentheses the dimensionality of the final projected features is shown. The last row shows the number
of wins for each method across all datasets.

Kernel Methods Linear Methods
ataset
Australian 16.54 % (1) 25.07 % (1) 16.25 % (1) 20.44 % (1) 15.81 % (13) 15.21 % (1) 15.21 % (1) 1522 % (8) 15.94 % (1)
Balance 3.20 % (1) 831 % () 3.52 % () 4.15 % (1) 12.95 % (49 11.20 % (2) 10.72 % (2) 20.79 % (4) 11.52 % (2)
Breast Cancer 3.81 % (1) 4.11 % (1) 3.52 % (1) 3.96 % (1) 2.78 % (6) 3.66 % (1) 3.66 % (1) 2.64 % (5) 3.66 % (1)
Dermatology 12.84 % (5) 14.80 % (5) 13.95 % (5) 12.33 % (10) 10.12 % (21) 328 % (5) 328 % (5) 2.4 % (A7) 3.82 % (1)
Diabetes 28.38 % (1) 28.12 % (1) 2747 % (1) 28.13 % (1) 25.92 % (8) 25.77 % (1) 26.82 % (1) 2514 % (7) 27.08 % (1)
Ecoli 18.04 % (7) 20.53 % (7) 18.28 % (7) 18.62 % (7) 17.21 % (6) 18.83 % (3) 18.55 % (5) 19.67 % (6) 19.68 % (5)
German Numer 30.00 % (I) 28.30 % (1) 29.40 % (1) 28.60 % (2) 29.80 % (21) 29.60 % (I) 29.80 % (I) 28.50 % (21) 29.30 % (I)
Glass 31.64 % (5) 35.26 % (5) 31.69 % (5) 32.58 % (6) 34.49 % (6) 34.06 % (5) 36.36 % (3) 29.92 % (5) 39.30 % (5)
Heart 18.89 % (1) 22.59 % (I) 21.85 % (1) 20.00 % (2) 23.33 % (3) 18.89 % (1) 18.89 % (1) 20.00 % (6) 18.89 % (1)
Tonosphere 9.54 % (1) 6.51T % (1) 5.97 % (1) 7.08 % (2) 481 % (9) 14.22 % (1) 18.98 % (1) 10.76 % (11) 14.78 % (1)
Iris 2.67 % (2) 333 % (2) 2.67 % (2) 4.67 % (2) 4.67 % (3) 2.00 % (1) 2.00 % (1) 4.67 % (4) 2.00 % (1)
Liver Disorders 34.50 % (1) 37.08 % (1) 34.77 % (1) 33.00 % (1) 40.82 % (5) 38.62 % (I) 38.00 % (1) 35.35 % (6) 38.60 % (1)
Segment 2.90 % (6) 2.68 % (6) 2.94 % (10) 381 % (6) 4.68 % (19) 3.03 % (6) 7.84 % (5) 3.59 % (11) 3.85 % (6)
Sonar 12.53 % (1) 12.53 % (1) 12.53 % (1) 12.56 % (2) 25.49 % (13) 24.72 % (1) 22.29 % (1) 12.46 % (21) 22.29 % (1)
Soy 6.55 % (2) 5.90 % (2) 881 % (2) 7.20 % (3) 10.44 % (28) 523 % (2) 717 % (2) 5.56 % (27) 5.55 % (2)
Thyroid 1.88 % (2) 232 % (2) 2.79 % (2) 1.88 % (2) 2.32 % (3) 327 % (2) 372 % (2) 2.81 % (1) 372 % (2)
Vehicle 19.75 % (3) 18.09 % (3) 17.85 % (3) 18.34 % (4) 33.80 % (18) 24.02 % (3) 2343 (3) 29.66 % (15) 24.61 % (3)
Vowel 0.61 % (10) 0.40 % (10) 2.02 % (10) 2.12 % (9) 4.85 % (9) 323 % (9) 3.03 % (10) 2.83 % (10) 3.43 % (9)
Wine 1.67 % (2) 0.56 % (2) 0.56 % (2) LIT % (2) 1.67 % (5) 111 % (2) 111 % (2) .70 % (7) 11T % (2)
Zoo 30.63 % (6) 31.74 % (6) 39.63 % (6) 31.74 % (12) 35.36 % (10) 24.88 % (5) 25.79 % (1) 26.90 % (4) 25.79 % (1)
Rank [ 7 [ 6 [ 4 [ 2 [ 6 I 8 [ 8 [ 9 [ 3 ]

TABLE 1V: Classification error rates of Linear and Kernel Dimensionality Reduction methods with Linear Kernel SVM
Classifier (C' = 100). In parentheses the dimensionality of the final projected features is shown. The last row shows the
number of wins for each method across all datasets.

[ | Kernel Methods 1 Linear Methods ]
| Dataset | KQMI [ GDA [ KLPP [ CKFD [ KPCA ] LQMI [ LDA [ PCA [ LPP |
Australian 1522 % (1) 24.20 % (1) 16.38 % (1) 20.44 % (1) 14.78 % (14) 14.20 % (1) 14.20 % (1) 14.49 % (4) 14.20 % (1)
Balance 3.68 % (1) 10.08 % (1) 3.84 % (1) 3.68 % (1) 8.95 % (4) 8.32 % (1) 832 % (2) 832 % (4) 832 % (1)
Breast Cancer 3.23 % (1) 4.10 % (1) 3.66 % (1) 4.10 % (1) 3.23 % (1) 323 % () 323 % (1) 2.64 % (5) 323 % (1)
Dermatology 12.84 % (5) 14.80 % () 13.95 % (5) 13.67 % (10) 11.17 % (33) 3.28 % (5) 3.27 % (5) 1.36 % (21) 326 % (5)
Diabetes 2279 % (1) 31.25 % (1) 26.18 % (I) 27.09 % (1) 22.40 % (8) 23.32 % (1) 23.32 % (1) 23.45 % (7) 23.32 % (1)
Ecoli 19.10 % (7) | 26.06 % (7) 19.36 % (6) 20.50 % (7) 22.10 % (6) 19.89 % (6) 20.17 % (6) 20.17 % (7) 20.18 % (6)
German Numer | 27.70 % (1) [ 28.30 % (I) 28.00 % (1) 28.20 % (2) 28.90 % (24) 23.10 % (I) 23.10 % (I) 23.00 % (24) 23.10 % (1)
Glass 31.69 % (5) 46.89 % (5) 30.80 % (4) 30.40 % (5) 35.14 % (7) 35.99 % (1) 36.94 % (5) 36.19 % (7) 37.83 % (5)
Heart 20.00 % (1) [ 2259 % (1) 21.48 % (1) 20.37 % (1) 20.00 % (6) 15.93 % (1) 15.93 % (I) 15.93 % (12) 153.93 % (1)
Tonosphere 5.08 % (1) 6.53 % (1) 5.69 % (I) 6.49 % (1) 6.54 % (28) 13.31 % (I) 35.89 % (I) 10.22 % (19) 13.03 % (1)
Iris 333 % (2) 4.00 % (2) 333 % (2) 4.00 % (2) 4.00 % (2) 3.33 % (I) 2.67 % (1) 4.67 % (4) 333 % (I)
Liver Disorders | 27.49 % (1) | 42.01 % (1) 28.64 % (1) 30.66 % (1) 42.02 % (1) 31.33 % (1) 30.75 % (1) 30.76 % (6) 31.04 % (1)
Segment 3.16 % (6) 2.51 % (6) 3.38 % (6) 3.77 % (6) 7.45 % (13) 5.46 % (6) 85.71 % (I) 429 % (13) 5.93 % (6)
Sonar 12.53 % (O) | 12.53 % (1) 13.03 % (1) 12.56 % (2) 25.49 % (13) 24.22 % (1) 2422 % (1) 19.73 % (1) 2375 % (1)
Soy 5.89 % (2) 5.56 % (1) 4.59 % (2) 6.22 % (3) 19.56 % (33) 5.88 % (2) 12.02 % (2) 3.58 % (30) 588 % (2)
Thyroid 1.86 % (2) 8.33 % (2) 231 % (2) 1.88 % (2) 2.32 % (3) 372 % (2) 372 % (2) 2.79 % (1) 3.27 % (1)
Vehicle 19.85 % (3) 18.45 % (3) 16.80 % (3) 18.34 % (4) 33.80 % (18) 21.29 % (3) 21.16 % (3) 19.40 % (18) | 21.05 % (03)
Vowel 0.61 % (10) [ 0.51 % (10) | 2.73 % (10) 2.12 % (9) 4.84 % (9) 19.60 % (10) | 19.29 % (10) | 1888 % (10) | 19.70 % (10)
Wine LIT % (2) 0.56 % (2) 0.56 % (2) L.IT % (3) 1.64 % (5) 1.70 % (2) 1.11 (2) 1.70 % (5) 2.26 % (2)
Zoo 30.63 % (6) | 31.74 % (6) | 30.63 % (6) | 30.63 % (12) | 38.15 % (12) 24.89 % (5) 25.79 % (I) 26.90 % (4) 2579 % (3)

Rank i 11 i 7 i 5 i 3 i 7 i 7 i 7 i 12 i 7 ]




TABLE V: Classification error rates of Linear and Kernel Dimensionality Reduction methods with RBF kernel SVM Classifier
(C' =100, 0 = 1) In parentheses the dimensionality of the final projected features is shown. The last row shows the number
of wins for each method across all datasets.

Kernel Methods

Linear Methods

ataset
Australian 15.08 % (1) 24.10 % (1) 16.24 % (1) 20.43 % (2) 19.85 % (1) 13.47 % (1) 13.77 % (1) 14.50 % (4) 13.32 % (1)
Balance 320 % (D) | 1008 % () | 3.67% (D) | 448 % (1) | 3137 % 3) 832 % (D | 832% () 537 % @) 832 % ()
Breast Cancer | 3.37 % () | 411 % () 3.66 % ()| 3.96 % (1) 337 % (1 2.78 % (1) 3.66 % (1) 2.64 % (5) 2.78 % (1)
Dermatology 12.84 % (5) 14.30 % (5) 13.95 % (5) 21.30 % (5) 16.64 % (4) 3.28 % (5) 12.32 % (5) 5.20 % (1) 328 % (5)
Diabet 2279 % () | 28.65 % (1) | 2605 % () | 2722 % (1) | 33.86 % (8) [ 23.84 % (1) | 23.57 % (1) | 25.14 % (1) | 23.58 % (1)
Fcoli 19.10 % (1) | 22.16 % (7) | 19.93 % (7) | 29.04 % (3) | 4L.15 % (2 || 19.09 % (1) | 26.33 % (6) 19.13 % (1) 19.89 % (1)
German Numer | 27.90 % (1) 28.30 % (1) 28.70 % (1) 28.50 % (2) | 30.30 % (23) 22.60 % (1) 22.90 % (1) 28.40 % (21) 22.60 % (1)
Glass 32.21 % (5) 32.31 % (3) 30.35 % (4 | 3431 % (5) 52.30 % (6) 34.67 % (4) 3717 % (3) 26.99 % (5) 36.94 % (4)
Heart 19.26 % (1) | 2259 % (1) | 23.33 % (1) | 20.00 % (2) | 2333 % (3) || 1592 % (1) | 18.89 % (1) | _20.00 % (6) 16.30 % (1)
Tonosphere 536 % (1) 6.81 % (1) 5.97 % (1) 7.10 % (2) 22.14 % (3) 13.05 % (1) 35.89 % (I) 5.38 % (12) 13.05 % (1)
Iris 3.33 % (2) 4.00 % (2) 333 % (2) 6.67 % (2) 8.67 % (3) 333 % (1 2.67 % (1) 5.33 % (4) 3.33 % (1)
Liver Disorders | 27.47 % (1) | 40.85 % (1) | 28.64 % (1) | 31.24 % (1) | 38.81 % (4 || 3047 % (1) | 30.75 % (1) | 2922 % (6) | 3047 % (1)
Segment 2.86 % (6) 2.51 % (6) 3.33 %(6) 6.23 % (4) 18.18 % (3) 3.59 % (6) 85.71 % (1) 2.99 % (11) 5.10 % (6)
Sonar 16.46 % (1) 12.53 % (1) 13.03 % () 13.01 % (2) 36.57 % (4) 24.22 % (1) 30.8T % (1) 13.87 % (10) 23775 (1)
Soy 5.00 % (2) 623 % (2 | 492 % (2 | 916 % 3 | 3251 % 3) 557 % () | 1171 % (2) 557 % (9) 3.36 % (2)
Thyroid 232 % (2) 418 % (2) 279 % (2) 1.86 % (2) 781 % (2) 372 % (2) 372 % (2) 2.79 % (1) 3772 % (1)
Vehicle 19.97 % (3) 18.33 % (3) 16.80 % (3) 19.62 % (4) 53.80 % (3) 21.76 % (3) 27.34 (3) 19.87 % (17) 20.8T % (3)
Vowel 0.61 % (10) | 051 % (10) | 242 % (10) | 646 % 5) | 55.05 % (3) T.01 % (10) | 2.02 % 8 0.40 % (10) | 1.01 % (10)
Wine 1.1T % (2) 0.56 % (2) 0.56 % (2) 222 % (3) 438 % (2) 1.11 % (2) 1.11 % (2) 1.11 % (13) 1.67 % (2)
Z00 30.63 % (6) | 3L.74 % (6) | 3063 % (6) | 36.10% 3) | B3 % B [ 259 % &) [ 259 % (0 | 2881 % 3) | 2.9 % )
Rank i 11 i 7 5 i T i T T 5 i 7 i 1T i 3 ]
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Fig. 1: 2D Projections of the Swiss Role dataset using Kernel Dimensionality Reduction Methods.
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Fig. 2: 2D Projections of the Swiss Role dataset using Linear Dimensionality Reduction Methods.
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Fig. 3: 2D Projections of the MNIST dataset using Kernel Dimensionality Reduction Methods.



MNIST LDA

MNIST PCA MNIST LPP

MNIST LQMI
7

1

500

MNIST Supervised LPP

300

20

100

B Sy w -
oy 0 W AR R ;
+, ™, o7 i o
- 3 et E 100 ) b s 1
ity .
-5 *l‘l 'Z‘! *‘2 *‘1 (‘) ‘1 é ‘3 ‘4 5 -04 '0‘ 3 '0‘ 2 '0‘ 1 "J 0‘1 0‘2 0‘3 0‘4 0‘5 06 -500 ‘O SI‘JD 1D‘DD 15‘00 ZD‘DD 25‘00 3000 -200 *1&0 ‘0 1&0 Z‘Oﬂ 3&0 400 -15 1‘0 "5 é ‘5 1‘0 1‘5
(a) LQMI (b) LDA (c) PCA (d) Supervised LPP (e) LPP

Fig. 4: 2D Projections of the MNIST dataset using Linear Dimensionality Reduction Methods.

TABLE I: Benchmark Datasets’ Characteristics.

Dataset Library | Samples | Attributes | Classes
Australian Statlog 690 14 2
Balance UCI 625 4 3
Breast Cancer UCI 683 10 2
Dermatology UCI 366 34 6
Diabetes UCI 768 8 2
Ecoli UCI 336 7 8
German Numer Statlog 1000 24 2
Glass UCI 214 9 6
Heart Statlog 270 13 2
Ionosphere UCI 351 34 2
Iris UCI 150 4 3
Liver Disorders UCI 214 9 7
Segment Statlog 2310 19 7
Sonar UCI 208 60 2
Soy UCI 307 35 3
Thyroid UCI 215 5 3
Vehicle Statlog 846 18 4
Vowel UCI 990 10 11
Wine UCI 178 13 3
Zoo UCI 101 17 7

classifier can be seen in Table II, those of the KNN classifier
can be seen in Table III, for the Linear SVM classifier in
Table IV and for the RBF SVM classifier in Table V. In each
column we illustrate the minimum classification error attained
by each classifier for the specific dimensionality reduction
method and in the parentheses the number of dimensions
this error has been achieved. In the last row of each one
of these tables we can see the rankings (i.e., the number of
winning datasets) of each dimensionality reduction method.
In the case of the NCC classifier (i.e., Table II) we can see
that KQMI obtains better performance than the other kernel
methods. In the case of the linear projection algorithms the
LQMI method displays comparable results with the supervised
LPP method while both methods seem to outperform LDA.
For the KNN classifier (i.e., Table III) we can see that KQMI
and GDA display almost the same performance, obtaining
though better results than CKFD and KLPP. It is interesting
to note here the relatively good performance of the KPCA
method, which for the KNN classifier wins the same number
of datasets as the supervised GDA method. For the same
classifier and for the linear projection algorithms the LQMI
and LDA exhibit the same performance winning however
less sets than the unsupervised PCA. These poor results for
the linear supervised methods can be mainly attributed to
the inadequate number of samples per class, or due to the
fact that the training data might non-uniformly sample the

underlying distribution [24]. Moreover, PCA achieves, in most
of the cases, better performance in higher dimensions than
the supervised methods which are constrained, due to rank
deficiency issues, to less than C' — 1 dimensions. Another
reason for these good results for the unsupervised PCA method
might be the Vapnik-Chervonenkis dimension (VC) [34] of the
classifier in use. That is, the powerful KNN and RBF SVM
classifiers with high VC dimension seem to favour more the
unsupervised PCA than the other supervised methods. This
does not hold for the weaker NCC classifier which seems to
favour more the supervised approaches. In Tables IV and V
we can see that for the kernel methods KQMI becomes the
dominant method when the SVM classifier is used. For the
same classifier but for the linear methods we can see again the
previously mentioned superiority of the PCA method against
the supervised ones.

B. Visualization

We also conducted visualization experiments where we used
the artificially created swissroll dataset and a subset of 1000
samples from the MNIST handwritten digits dataset. The
swissroll dataset was created to test out various dimensionality
reduction algorithms. The idea that lies behind the creation of
this dataset is to create several points in R2, and then map
them to R® with some smooth function. The resulting 3D
dataset can then be used to test how well a dimensionality
method maps the 3D manifold back to the 2D space. Here, our
purpose is to visualize how well the classes of each dataset
are separated in the 2D projective space. For the swissroll the
2D projections of the kernel dimensionality reduction methods
(i.e., KQMI, GDA, supervised KLPP, CKFD and KPCA) can
be seen in Figure 1 and those of the linear dimensionality
reduction methods (i.e., LQMI, LDA, PCA and supervised
LPP) can be seen in Figure 2.

Comparing Figures 1 and 2 we observe that the linear meth-
ods fail to achieve a mapping in which the dataset’s classes
are well separated in the 2D space, while the supervised
kernel methods (i.e., KQMI, GDA, KLPP and CKFD) give
a relatively good mapping in terms of class separability. In
this setting GDA performs best with KQMI and KLPP giving
similar results, even though KQMI produces more compact
clusters with less linearly non-separable points than KLPP.
Moreover, from the above figures we can verify that the



unsupervised methods, both kernel and linear, fail to give a
good mapping in which the classes are well separated, a fact
to be expected due to their unsupervised nature.

In Figures 3 and 4 we can see the 2D visualization of the
MNIST dataset with the kernel and linear reduction methods
respectively. We can see how nicely the KQMI and GDA
methods produce a 2D projection subspace in which the
classes are very well separated, with the KQMI attaining a
better separation of the classes than that of the GDA. It could
be counter-intuitive the fact that the distance between digits 1
and 8 is much smaller than that between 1 and 7. However,
let us note here that the objective function takes into account
all the classes simultaneously and thus, if a specific projection
worsens the separability between two specific classes whereas
it enhances the separability among all the other classes, it
is expected to be selected as an optimal projection. In the
specific case we can see that indeed the separability of all
the classes is enhanced compared to the one obtained with
the KLPP projections except the separability between digits 1
and 8 which is worse. That is, the separability between 1 and
8 is the prize to be payed in order to enhance the other 44
pairwise separabilities. The situation changes in the cases of
the CKFD and KLPP methods where as we can see although
we can moderately discriminate relatively good the classes,
many of them seem to coincide. All the linear methods fail
to give a 2D projection where the classes are well separated.
However, we can mention here that LQMI gives fairly better
2D projection in terms of class discrimination than all the other
linear methods.

C. Face Recognition and Facial Expression Recognition

We also tested our methods on two face recognition
(i.e., ORL and YALE) and two facial expression recognition
datasets (i.e., JAFFE and KANADE). The characteristics of
each dataset can be seen in Table VI. We normalized all the

TABLE VI: Face Recognition and Facial Expression Recog-
nition Datasets’ Characteristics.

Dataset Samples | Attributes | Classes
ORL 400 1024 40
YALE 165 1024 15
JAFFE 213 1200 7
KANADE 704 1200 7

feature vectors of each dataset to unit length and for the linear
methods only, we preprocessed the datasets with PCA in order
to hold 99 % of the initial dataset variance. As can be seen
in Table VI, for all the datasets the number of the dataset
samples n is less than the number of dataset attributes m.
This situation is known as the under-sampled size problem.
For datasets where the under-sampled size problem exists,
in many cases occur singularities that in turn result in very
bad performance of the eigenvalue analysis algorithm. One
of the solutions to overcome the under-sampled size problem
is to perform an initial PCA step on the data and fall to the
dimension where its associated eigenvalue is greater than some
threshold [37]. For the evaluation of the generalization error
we used the same procedure as in IV-A. In the sequel we

give the characteristics of the real-life datasets used in our
evaluation.

ORL [28]: The dataset contains 40 individuals and 10
different images for each individual, including variations in
facial expression and pose. In Figure 7 we can see a male and
a female subject from the ORL dataset.
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Fig. 7: Two subjects from the ORL Face Recognition dataset.

YALE [2]: The dataset contains 165 gray-scale images
of 15 individuals. There are 11 images per subject, one per
different facial expression or configuration: center-light, with
glasses, happy, left-light, without glasses, normal, right-light,
sad, sleepy, surprised, and wink. Figure 8 shows a subject from

the YALE dataset.
29299392
Re9Q
Fig. 8: A subject from the YALE Face Recognition dataset.

JAFFE [23]: The dataset contains 213 images of 7 facial
expressions (6 basic facial expressions + 1 neutral) posed by
10 Japanese female models. Each image has been labeled
with one of 6 emotion adjectives (i.e., fear, anger, disgust,
happiness, surprise, sadness). In Figure 9 we see a subject
from the JAFFE dataset.

AN
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Fig. 9: A subject from the JAFFE Facial Expression Recogni-
tion dataset.

KANADE [19]: The dataset contains 704 images of 7
facial expressions (6 basic facial expressions + 1 neutral).
Each image has been rated on 6 emotion adjectives (i.e., fear,
anger, disgust, happiness, surprise, sadness). The variety of
subjects covers different races, ages and genders. The database
is collected under controlled illumination and background. In
Figure 10 various subjects from the KANADE dataset are
given.

Neutril Anget Disgust Fear

Happiness — Sadness  Suprise
: A & &

Fig. 10: Various subjects from the KANADE Facial Expres-
sion Recognition dataset.

In Tables VII and VIII we show the classification errors
on the above mentioned datasets attained by the various
dimensionality reduction methods using the NCC and KNN
classifiers respectively. We also conducted experiments using
as classifiers the Linear and RBF SVM. However, for these
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Fig. 5: Results on ORL and YALE Face Recognition Datasets. The horizontal axis shows the dimension of the projected
features for several dimensions. The vertical axis shows the corresponding classification error rate.
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Fig. 6: Results on JAFFE and KANADE Facial Expression Recognition Datasets. The horizontal axis shows the dimension of
the projected features for several dimensions. The vertical axis shows the corresponding classification error rate.

TABLE VII: Classification error rates of Linear and Kernel Dimensionality Reduction methods with Nearest Class Centroid
Classifier. In parentheses the dimensionality of the final projected features is shown.

Kernel Methods Linear Methods
Dataset KQMI [ GDA [ KLPP [ CKFD [ KPCA LQMI [ LDA [ PCA [ LPP
ORL 1.25 % (34) 3.75 % (39) 3.50 % (24) 1.75 % (36) 18.00 % (28) 4.00 % (39) | 7.75 % (38) | 14.00 % (142) | 7.25 % (34)
YALE 10.22 % (14) | 12.14 % (14) | 13.39 % (14) | 17.01 % (11) | 27.71 % (62) 9.74 % (13) | 37.65 % (11) | 29.63 % (67) | 35.34 % (12)
JAFFE 9.29 % (4) 10.37 % (6) 27.78 % (4) 15.34 % (5) | 48.48 % (148) 19.76% (5) 10.81 % (6) 52.20 % (93) | 10.31 % (4)
KANADE | 17.46 % (6) 21.27 % (6) 23.73 % (5) | 17.88 % (12) | 48.30 % (130) || 24.67 % (6) | 23.69 % (6) | 46.02 % (175) | 23.71 % (6)

TABLE VIII: Classification error rates of Linear and Kernel Dimensionality Reduction methods with K Nearest Neighbors
Classifier (K = 3). In parentheses the dimensionality of the final projected features is shown.

Kernel Methods

Linear Methods

Dataset KQMI | GDA | KLPP | CKFD | KPCA LQMI | LDA | PCA | LPP
ORL | 1.50 % (38) | 3.75 % (39) | 1.75 % (3% | 1.50 % (36) | 10.00 % (45) || 6.50 % (35) | 8.25 % (26) | 8.50 % (242) [ 6.50 % (34)
YALE | 12.55 % (14) | 13.91 % (14) | 916 % (14) | 17.12 % (24) | 3552 % (32) || 3595 % (13) | 37.72 % (14) | 20.07 % (102) | 11.24 % (4
JAFFE | 892 % (6) | 1037 % (6) | 1501 % (5 | 13.95 % (12) | 15.07 % (86) || 11.78 % (13) | 10.81 % (6) | 15.03 % (14) | 11.24 % (4)

KANADE | 17.32 % (6) | 21.27 % (6) | 20.46 % (6) | 17.76 % (12) | 42.03 % (17) || 23.98 % (6) | 24.69 % (6) | 42.32 % (18) | 25.12 % (6)




classifiers the dominant method was PCA, and all the remain-
ing methods attained equivalent performance. Therefore, we
omit the results of these experiments.

In Figures 5a and 5b we illustrate the diagrams of the
classification error using the NCC classifier in the dimensions
1 —(C —1) for the ORL and YALE datasets respectively. In
Figures 6a and 6b we can see the resulting classification errors
using the NCC classifier on the JAFFE and KANADE datasets
attained in the dimensions 1 — (C' — 1) as well.

From the results in Table VII we can see that, in the case of
the NCC classifier, KQMI obtains better performance in most
of the datasets than all the other kernel methods. In the linear
case for the NCC classifier, the LQMI wins more datasets
than the other methods. For the KNN classifier in Table VIII,
we can see that both KQMI and LQMI exhibit slightly worse
performance than that attained for the NCC classifier, winning
however most of the datasets.

In Figures 5 and 6 we also see that our proposed methods,
in most of the cases, converge faster to their best performance
compared to the other methods and hence, they display better
performance in dimensions lower than C' — 1.

V. CONCLUSION

In this paper we proposed a novel supervised dimension-
ality reduction method based on the maximization of a non-
parametric Mutual Information criterion between the feature
vectors and their respective class labels. We formulated the
Quadratic Mutual Information as a kernel objective function
that can be directly optimized inside the Graph Embedding
Framework. We also derived the linear equivalent of this kernel
method and we compared both methods to several state-of-the-
art kernel and linear dimensionality reduction methods. From
the experimental results we can conclude that the proposed
methods obtain comparable and in most cases even better
classification accuracy than the state-of-the-art.

APPENDIX A
MUTUAL INFORMATION TERMS

In this A‘Bpendix we derive analytically the expressions for

the Varr, Vin and Vpry terms. We have
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APPENDIX B
QMI GRAPH FORMULATION
In this Appendix we show that Z Wi = Dy, @ =
1,...,n for the QMI graph.
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