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Abstract In this paper, we propose a new method for

kernel optimization in kernel based dimensionality re-
duction techniques such as Kernel Principal Compo-

nents Analysis (KPCA) and Kernel Discriminant Anal-

ysis (KDA). The main idea is to use the graph embed-

ding framework for these techniques and, therefore, by

formulating a new minimization problem to simulta-
neously optimize the kernel parameters and the pro-

jection vectors of the chosen dimensionality reduction

method. Experimental results are conducted in vari-

ous data sets, varying from real world publicly available
databases for classification benchmarking to facial ex-

pressions and face recognition databases. Our proposed

method outperforms other competing ones in classifica-

tion performance. Moreover, our method provides a sys-

tematic way to deal with kernel parameters whose cal-
culation was treated rather superficially so far and/or

experimentally, in most of the cases.

1 Introduction

Dimensionality reduction techniques try to reduce the

data dimensionality in a way that, in the reduced space,

the data are better separated than in the original space.
Dimensionality reduction techniques have attracted much

attention in computer vision as well as in pattern clas-

sification, due to their implementation simplicity and

classification performance. The most used linear dimen-
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sionality reduction techniques are Principal Component

Analysis (PCA) [33] and Linear Discriminant Analy-
sis [13]. Other methods exist as well, such as the Lo-

cality Preserving Projection (LPP) [25] and others. A

good review of dimensionality reduction methods can

be found in [31]. Most of these methods have their ker-

nel counterparts. The well known kernel trick [24] can
be applied to most of them in order to create their non-

linear version. In [28], [23] a kernel version of the origi-

nal PCA (KPCA) and the kernel discriminant analysis

(KDA) was proposed respectively. Moreover, other ker-
nel methods exist like ISOMAP [1], Laplacian Eigen-

maps [3] and others.

Kernel optimization and kernel learning refer to tech-

niques that try either to learn a kernel matrix from

the training data or to optimize the kernel function

based on a task-dependent criterion. There is a vast

amount of research works for kernel learning and ker-
nel optimization. Most of the proposed methods try to

create a new kernel, either as a combination of data

dependent kernels, as in [34] and maximization of the

so called kernel alignment criterion [4], or by means of
data-dependent criteria, such as the Fischer ratio [13],

which optimizes the class separability of the data. In

the first case, Cristiannini et al [11] have proposed a

method for kernel optimization, based on kernel align-

ment maximization, towards a base kernel on the labels
of the data. In [18] Lackriet et al proposed a semidefi-

nite programming problem (SDP), to optimize a linear

combination of kernels under their positive semidefinite

assumption on these kernels. To find the kernels coef-
ficients, the support vector machine margin was mini-

mized using an SDP with a constant trace constraint.

In the kernel function optimization case, the kernel

function (i.e., the kernel hyper parameters) is optimized

by means of a specific criterion. The most popular crite-
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rion is the Fisher ration. In [8], the authors proposed to

minimize the so-called J4 criterion, which, in the case

of Gaussian kernels, provides an analytical expression

to find the scale parameter, as proven in [32]. Another

method exist that tries to optimize the same criterion
in order to find the optimal parameters for a specific

kernel function has been proposed in [20].

In this paper, we propose a novel technique for op-

timizing dimensionality reduction criteria that depend
on the selection of the appropriate kernel. The main

novelty of this paper is the proposal of a systematic

way to create new objective functions for kernel opti-

mization, depending on the specific dimensionality re-

duction approach. Therefore, the objective functions to
be minimized are variants of the matrix condition num-

ber, whose minimization can be made through solvable

semidefinite programming (SDP) problems. Moreover,

we give evidence that, if the kernel function satisfies
Mercer conditions [24], the solution of the SDP can be

extended to the hyper parameters of the kernel func-

tion. In this way, we achieve a generalization of kernel

optimization, both in the sense of kernel matrix opti-

mization as well as of kernel function optimization (i.e.,
kernel hyper parameters optimization).

Our approach is based on the graph embedding frame-

work, firstly proposed in [35], which is a unified frame-

work for all dimensionality reduction techniques such
as PCA, LDA, LLE and others. Moreover, means were

provided to easily transform the initial linear problems

to their corresponding kernel and tensor versions. In

this work, we provide the means to go a step beyond in

the kernel version of dimensionality reduction methods,
in such a way that we shall incorporate the kernel ma-

trix (and, hence, the kernel hyper parameters) in the

optimization problem and solve it with respect to both

optimal embedding vectors and hyper-parameters. In
[35], only the kernel versions of PCA and LDA are for-

mulated and solved, thus, we shall investigate these two

techniques. Our approach, does not handle cases where

the kernel is embedded in the graph weights as will be

detailed later on.

Our main novel idea is that, in the proper mathe-

matical framework, the graph embedding optimization

can be transformed to equivalent optimization prob-

lems, whose objective functions involve the matrix con-

dition number. Moreover, since graph embedding pro-
vides a framework for specific dimensionality reduc-

tion techniques (based on the use of an intrinsic and a

penalty graph), our method inherits this property and

thus the new optimization function is specific for the
dimensionality reduction technique described from the

graph embedding problem. As we shall see later on, in

order to connect such problems we need to make use of

the congruence relation of matrices which is apparent

in the optimization problems, defined in the kernel ver-

sion of the graph embedding framework for KPCA and

KDA.

The paper is organized as follows: in Section 2, the
solution of the optimization problem of dimensionality

reduction in the graph embedding framework is proven

and a way is presented to extend it to the calculation

of the optimal kernel hyper-parameters. In Section 3,
we present the semidefinite programing problem (SDP)

we use to solve the proposed optimization problem. Di-

mensionality reduction techniques in the new optimized

kernel framework are presented in Section 4. In Section

5, we demonstrate results of the use of this dimensional-
ity reduction in classification problems. Finally, conclu-

sions are drawn and future work is discussed, in Section

6.

2 Kernel Optimization in Graph Embedding

Graph embedding is defined as the algorithm to find an

optimal low-dimensional vector, representing the rela-

tions among the vertices of a similarity graph G [35]. In
the simple one-dimensional case, the graph embedding

optimization problem can be formulated as follows. Let

xi ∈ R
M , i = 1, .., N be vectorial data (e.g. signals,

images etc). Their similarities can be described by a

similarity matrix W or a similarity graph G = {V,E},
where V the set of graph vertices each representing a

vector xi and E is the set of edges each representing

the similarity of a pair of vertices (vi, vj). Various simi-

larity measures have been used so far in order to calcu-
late W depending on the information xi stored in each

graph vertex [10]. In spectral graph analysis the Lapla-

cian Matrix L of a graph is defined as Lij = Dii−Wij ,

where Dii =
∑N

j=1 Wij and N is the number of vertices
in G. Based on these definitions, the optimization prob-

lem for graph embedding can be formulated as follows

argminyTy=d y
TLy, where d a scaling factor and y the

low-dimensional representation vector of the vertices of
G, such that, each vector xi associated with vertex vi,

has yi as its one-dimensional representation. It is easy to

verify that the solution to the above optimization prob-

lem is given by Ly∗ = λy∗. The trivial solution y∗ = 1,

for the eigenvalue λ = 0 is generally omitted [35]. In our
case, we use the kernel version of the before mentioned

problem. Let φ : RM → F be a function mapping the

data to a high, possibly infinitely, dimensional space F

and K be the kernel Gram matrix Kij = φ(xi)
Tφ(xj)

. Under the assumption that the embedding direction

can be written as w =
∑N

i αiφ(xi), the optimization

problem can be written as:

α
∗ = arg min

αTKα=d
α

TKTLKα, (1)
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In our case, as we want to incorporate the kernel hy-

per parameters in the process, we assume that K also

depends on a matrix Σ with Σij = σij . Therefore the

optimization problem becomes:

α
∗ = arg min

αTK(Σ)α=d
α

TK(Σ)TLK(Σ)α. (2)

Alternatively, we can define a more complex optimiza-
tion problem, where the orthogonality of the optimal

vectors α is conditioned by a matrix B

α
∗ = arg min

αTK(Σ)TBK(Σ)α=d
α

TK(Σ)TLK(Σ)α. (3)

It is well known that the above optimization problem

is simply the generalized eigenvalue problem:

K(Σ)TLK(Σ)v = λK(Σ)TBK(Σ)v. (4)

The solution of this problem is given by the eigen-

vectors of:
(

K(Σ)TBK(Σ)
)−1

K(Σ)TLK(Σ). (5)

In the case of the graph embedding framework for ker-

nel dimensionality reduction, we are interested in solv-

ing (3) as in [35]. The optimal α∗ is equal to the eigen-
vector corresponding to the smallest eigenvalue of the

generalized eigenvalue problem. The solution of (4) is

equivalent to minimizing the Generalized Reyleigh quo-

tient :

r(α,Σ) =
α

TK(Σ)TLK(Σ)α

αTK(Σ)TBK(Σ)α
, (6)

respectively. We shall see that this problem can be trans-
formed to an equivalent problem of the matrix condi-

tion number κ of a symmetric matrix A, which is the

absolute ratio of the minimum and maximum eigen-

value κ(A) =
∣

∣

∣

λmax(A)
λmin(A)

∣

∣

∣
, as long as λmin(A) 6= 0.

Theorem 1 The problem (3) is equivalent to:

argmin
Σ

κ(K(Σ)K(Σ)T ), (7)

respectively.

Proof. Before we structure the proof of Theorem 1, we

state a useful theorem on the congruent matrices. Con-

gruent matrices, are matrices that belong to the same

equivalence class under a similarity transformation [22].
That is, for arbitrary matrices A, B and an invertible

matrix P, A is congruent to B, if B = PTAP. Os-

trowski theorem [30] states that, under the congruence

relation the following relation holds:

λk(P
TAP) = θk · λ(A) (8)

λmin(PPT ) ≤ θk ≤ λmax(PPT ) (9)

All the above, in addition to the Rayleigh quotient, sug-

gest that the optimization problem (3) can be trans-

formed into an equivalent matrix condition number op-

timization problem in the following way. First, we con-

sider bounds on the Rayleigh quotient (6). Matrix K is
symmetric and positive semi definite, since it is a ker-

nel matrix under the Mercer conditions. The Laplacian

matrix L of a graph is symmetric and positive semi-

definite as well. Therefore, we can write:

r(α,Σ) ≤
λmax(K(Σ)TLK(Σ))

λmin(K(Σ)TBK(Σ))
(10)

The above is straight forward if one considers the Rayleigh

quotient for the nominator and denominator separately.

Therefore, if we apply the Ostrowski Theorem to the

above equations we get:

r(α,Σ) ≤
λmax(K(Σ)TLK(Σ))

λmin(K(Σ)TBK(Σ))
=

=
θmax · λmax(L)

θmin · λmin(B)
(11)

Finally, based on the inequality of the Ostrowski theo-

rem, the fact thatK(Σ) is symmetric and the definition

of the matrix condition number we can write:

r(α,Σ) ≤ κ(K(Σ)K(Σ)T ) ·

·
λmax(L)

λmin(B)
(12)

Thus, the problem in (3) become:

P : argmin
Σ

κ(K(Σ)K(Σ)T ) ·

·
λmax(L)

λmin(B)
(13)

Since P is equivalent to (3), they share the same op-

timal solutions. Moreover, since P is only conditioned

on Σ, the solution for 1 α can be found if one substi-

tutes the optimal Σ to the generalized eigenvalue prob-
lems in (4). It is easy to prove that methods like the

one in [20] can be adapted to the proposed framework.

3 Matrix Condition Number Optimization and

Kernel Hyperparameters

There is a vast amount of research works on matrix con-

dition number optimization [9]. In our case, since K(Σ)

is conditioned with a variable we need to prove that the

solution of the matrix condition number minimization
may be extended to the matrix variable Σ. For simplic-

ity of the demonstration we set A = K(Σ). If we con-

sider a space of solutions Ω = {Q ∈ Sn| |Q−A| < η}
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the minimization problem of κ(A) has a solution for a

specific A∗ ∈ Ω where Sn the space of real symmetric

matrices under the following semidefinitie programming

problem (SDP).

min
s,t,A

s (14)

subject to ( Qij − η)t ≤ Aij ≤ (Qij + η)t

t ≥ 0, η > 0, In×n � A � s · In×n,

for a given matrix Q and an approximation variable η,

where A � B means that B − A is positive semidef-

inite. Although, in our case, this optimization prob-

lem fits well, other SDP optimization problems, which

provide a relaxed definition of the solution space can
be used. For instance, in [21], they propose that Ω =

conv{Q1,Q2, ..,Qm} where conv the convex hull of

these points in Sn and y ∈ Rm. In this case, the opti-

mization problem can be written as:

min
s,A

s (15)

subject to
∑m

i=1 Qiyi = A

In×n � A � s · In×n.

This approach is better suited in cases, where we can

assume that the optimal solution for kernel optimiza-
tion is a linear combination of several kernels [19]. The

handicap of this approach is that the optimization be-

comes intractable for even medium size problems (i.e.,

for kernel matrices corresponding to a few hundred data
samples).

As for the kernel hyper parameters, we must verify

that (14) can provide a solution for Σ as well. To do

so we need to prove that the solution of (14) can be

extended to Σ. Let us define the function f : T → R

as f(Σ) = κ(K(Σ)) where T ⊂ R
l with l = 1 for the

case of one σ and l > 1 for the other case.

Theorem 2 for f as defined above, the optimization

problem:

minimize f(Σ) (16)

subject to Σ ∈ T , (17)

has a solution in T .

Proof. Since λmax(K) is a convex function of K and
λmin(K) is concave function of K, both are Lipschitz

continuous functions of K. The continuous differentia-

bility ofK(Σ) implies that λmax(K(Σ)) and λmin(K(Σ))

are Lipschitz continuous functions on Σ. Moreover, if

the matrix K(Σ) has rank rank(K(Σ)) = N , we can
find positive constants M and m, such that:

m ≤ λmin(K(Σ)) and λmax(K(Σ)) ≤ M, (18)

Hence f is Lipschitz continuous and satisfies:

1 ≤ f(Σ) ≤
M

m
, ∀Σ ∈ T , (19)

The above suggest that (16) has a solution in T .

All the above suggest that if A∗ is a solution of

(14), then we can find Σ∗ after solving the system of

nonlinear equations:

K(Σ∗)K(Σ∗)T = A∗. (20)

Although the above analysis guarantees that such a Σ∗

exists, finding it can be a difficult task.

Depending on the kernel we choose, as well as on

the space of matrices Σ∗, the above equations can be
solved either analytically or numerically. In what fol-

lows, we shall provide a methodology for (20). The ma-

trix Σ may have several representations, depending on

the problem under consideration. We assume that Σ

contains variables controlling the influence region (i.e.
the spread) of a data point, as is the scale parameter σ

in the Gaussian distribution. If, for instance we assume

an identical spread for all data points, the matrix Σ

takes the form Σ = σ · 1N×N where 1N×N the all ones
N ×N matrix and σ the common spread. On the other

hand, if we assume that each data point has a differ-

ent scale parameter then Σ = σσ
T where σ the vector

whose each element σi is the spread parameter associ-

ated with each sample i. Finally, in the more general
case we can assume that each interconnection between

points has a different spread parameter: [Σ]ij = σij . Fi-

nally, we may consider other interpretations of the ma-

trixΣ depending on the problem. It would be beneficial
for instance under a class driven problem to consider Σ

block diagonal matrix in the following form:

Σ =









Σ1 0 ... 0

0 Σ2 ... 0

..... ...... ..... .....

0 0 ... ΣNc









(21)

where Nc the number of classes in the problem and

each block Σi for i = 1, .., Nc is of the form Σ = σi ·

1Ni×Ni
with σi a common spread within each class i

and Ni the cardinality of each class.

3.1 Different solutions for Different Variable σ cases

In the single variable σ case, the matrix Σ can be con-
sidered as a single variable σ and thus the equation (20)

takes the following form K(σ)K(σ)T = A∗. We define

the kernel function φ(σ) = exp(−
wij

2σ2 ), where wij is the
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Euclidean distance between 2 samples xi, xj . Thus, we

must solve φ(σ) =
√

A∗

ij for every i = 1, .., n, j = i, .., n

since K(σ) and A∗ are symmetric. Obviously, this sys-

tem does not possess a solution if for any different i,

j, k, l ∈ [1, .., n], A∗

ij 6= A∗

kl and wij 6= wkl. However,
we may approximate the solution using any of the well

known approximation algorithms for solving such sys-

tems, such as the Levenberg-Marquardt algorithm.

In the case of one σi per sample we define the vector-

valued functions φi(σ) as φij(σ) = exp(−
wij

2σiσj
). As

previously we must solve the equation exp(−
wij

2σiσj
) =

√

A∗

ij . Thid system of equations is overdetermined, since

we have N2

2 −N equations for N unknowns. As before,

we can find an approximate solution.

Finally, in the case where Σij = σij for each inter-

connection we have a different value σij and we define
the function φ(Σ) as φij(Σ) = exp(−

wij

σ2

ij

). This system

of equations can be solved analytically, since we need

to find one σij for each interconnection. Unfortunately,

this approach does not have a practical use in the case

of dimensionality reduction problems as we shall see in

the next Section.

4 Kernel Optimization in Dimensionality

Reduction

As briefly mentioned before, the graph embedding frame-

work can be used to provide solutions to dimensionality
reduction techniques. In [35], the authors have proven

that most of the well known dimensionality reduction

techniques, not only, fit in to the graph embedding

framework, but also they can be extended in view of dif-

ferent graph choices that are employed in the process.
The main idea behind dimensionality reduction within

the graph embedding framework is to create two graphs,

the intrinsic and the penalty. A list of graphs and the

corresponding dimensionality reduction techniques can
be found in [35].

In our case, we can apply kernel optimization tech-

nique described above in all methods which use the ker-

nel version of the graph embedding framework. Thus,

we can optimize the kernel hyperparameters in various

dimensionality reduction techniques. To the best of au-
thors knowledge, such a generalized technique for kernel

optimization does not exist. Most of the techniques for

kernel optimization are either supervised (learning the

kernel from the data) or are based on the well known
Fisher discrimination ratio [27]. As for the later, it is

much closer to our work since it is a a special case of

the proposed framework.

4.1 Kernel Principal Components Analysis (KPCA)

KPCA is a well know dimensionality reduction tech-

nique [29]. In the graph embedding framework, the in-

trinsic graph for PCA is the N -clique graph with equal

and normalized weights 1
N
, while the penalty graph is

defined as the non-edge N graph. These two graphs cor-
respond to the weight matrices W and B respectively,

where Wij = 1
N

and B = IN×N . Following the same

definitions as previously for the Laplacian matrix of a

graph, KPCA corresponds to the optimization problem
(13). Thus, in the case of KPCA the optimal kernel

may be found by minimizing the kernel condition num-

ber. One might expect that, in the KPCA case, the

optimized scale parameter should be trivial. Although

this is true, in the optimization problem in (14) there
is a non-singularity constraint inherited from Ostrowski

theorem, which makes the problem bounded on the ma-

trix rank. Thus the scale parameter, must not exceed a

certain value to degenerate the matrix rank. Moreover,
in the case of Gaussian kernels the matrix is always full

rank [27]. This strongly supports the applicability of

the Ostrowski theorem in the case of KPCA.
4.2 Kernel Discriminant Analysis KDA

In the case of KDA, the intrinsic graph is the one where
all vertices of the same class are connected with an

equal weight 1
Nc

where Nc is the number of samples

in class c and the penalty graph is the intrinsic graph

used in PCA. In this case, the similarity matrix W

is block diagonal matrix, where each block represents

one class. In the case of KDA the minimization of the

K(Σ)K(Σ)T matrix condition number must be per-

formed, using the SDP in (14), a solution can be found.

Moreover, since matrix K(Σ) is symmetric, it is easy
to calculate the optimized kernel.
4.3 Out of sample extension

When a new test sample arrives we need to test it

against the database, we project the test sample to the
space formed by the new kernel. To do so, we need to

calculate first the projection matrix. The matrix Q in

(14) is invertible and thus the projection matrix can

be approximated by a linear transform. Let Z be the

projection matrix taking Q to the optimal A∗ then
Z = Q−1A∗. Therefore, it is easy to transform the

calculated test kernel (in the Q sense) and therefore

apply the transformation to take this kernel to the op-

timal space. Thus, the test kernel is projected through
Z before testing.

5 Experimental Results

We have performed several experiments in order to pro-

vide evidence that the proposed method performs ef-
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Table 1 classification accuracies of the UCI database for simple
KPCA, KDA and optimized kernel matrix versions.

KPCA KDA optimized
KPCA

optimized
KDA

iris 77.3% 82.2% 79.6% 84.7%

wine 86.3% 91.2% 90.2% 94%

heart dis-
ease

37.8% 51.3% 49.3% 61.4%

ficiently in several image analysis tasks. The dimen-
sionality reduction is tested in classification tasks in-

cluding general classification problems, facial expres-

sion and face recognition. We have used 2 databases for

face recognition (Yale [2] and ORL [26]), 1 for facial

expression recognition (Cohn-Kanade [17]) and several
dataset from the University of California Irvin repos-

itory [12] for data classification. All the optimization

problems described above have been solved using the

CVX optimization package for Matlab [15,14], which is
very efficient in the case of SDP problems. Moreover,

in all our experiments, we have used Gaussian kernels

although any other Mercer kernel can be used as ex-

plained earlier.

In all our test, we compare our approach to KDA

and KPCA with heuristically calculated spread param-

eters. The heuristics used are the ones mentioned in
[35]. Moreover, for the classification task, we have used

the k-nn classifier.

5.1 UCI Repository

We have used 3 different dataset from the UCI database:
the iris database, the wine database and the heart data-

base. The wine dataset consists of 178 samples of di-

mension 13 and 3 different classes of wines. The iris

dataset has 150 samples of dimension 4 and 3 differ-
ent classes. Finally, the heart dataset contains 303 sam-

ples of 13 attributes and 5 different classes interpreted

as scale of severity for a heart disease(0/4 denoting

no/sever disease, respectively). Although most of the

experiments reported on the heart database focus on
distinguishing the no disease from the other 4 disease

classes, we conducted experiments for all five classes. A

five fold approach is used to evaluate the performance of

the classification based on the dimensionality reduction
optimization technique. In the base KPCA and KDA

algorithms, the parameter σ has been chosen based on

known heuristics like the ones reported in [35]. Tables

1-3, depicts classification accuracy results on all chosen

UCI databases.

As can be seen, the proposed method performs much

better in the case of vector variable σ version of the op-
timization and has a poor improvement with respect to

the simple KPCA and KDA, in the case of single vari-

able. This can be explained, since in the vector variable

Table 2 classification accuracies of the UCI database for simple
KPCA, KDA and optimized kernel function for single variable σ

versions.

KPCA KDA optimized
KPCA

optimized
KDA

iris 77.3% 82.2% 77.6% 82.8%

wine 86.3% 91.2% 87.4% 91.3%

heart dis-
ease

37.8% 51.3% 37.8% 51.6%

Table 3 classification accuracies of the UCI database for simple
KPCA, KDA and optimized kernel function for vector variable σ

versions.

KPCA KDA optimized
KPCA

optimized
KDA

iris 77.3% 82.2% 80.1% 84.8%

wine 86.3% 91.2% 91.1% 94.2%

heart dis-
ease

37.8% 51.3% 49.5% 61.2%

Table 4 Mean classification accuracies for Facial expression
recognition for simple KPCA, KDA and kernel matrix optimiza-
tion (KMO)versions.

KPCA KDA optimized
KPCA

optimized
KDA

KMO 49.1% 70.4 % 52.2% 72.4%

single σ 49.1% 70.4 % 49.5% 70.4%

vector σ 49.1% 70.4 % 52.7% 73.2%

matrix Σ 49.1% 70.4 % 52.3% 74%

case, we relax the constraint of the nonlinear equation
system problem, by introducing more free variables, to

the system. Thus, the optimization of σ converges bet-

ter than for the single variable case. As we shall see, the

same observation holds for the other datasets as well.

5.2 Facial Expression Recognition

We have performed facial expression recognition on the

Cohn-Kanade database [17], using the optimized kernel

and a k-nn classifier. We have extracted 407 different
facial expression images (with different number of en-

tries in each facial expression class) from 100 different

individuals. In this database, people vary in age, race

and sex. We have conducted a person-out based inverse

five fold cross validation. More specifically, we train
with 20% of the individuals present in these databases

and therefore we test the classifiers with the remaining

80% of the individuals. This is done mainly because

our method requires time consuming optimization pro-
cedures and our aim is to provide results on kernel op-

timization rather than on facial expression.

The initial dimensionality of the data is 30000 (i.e.,
150× 200 pixels). We perform simple KPCA and KDA

on the data and therefore we classify the different facial

expressions with a k-nn classifier. The same approach

is then applied with optimized KPCA and KDA. Re-
sults are depicted in Table 4. The percentages are the

averages over the 5 folds. As can be seen, depending on

the matrix variable choices, results varying as in the
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Table 5 Face Recognition database accuracies for simple KPCA
and KDA and optimized kernel matrix versions. Reported results
are mean values of the classification accuracies of the k-nn clas-

sification algorithm over the 50 random subsets.

KPCA
(90%)

KDA optimized
KPCA

optimized
KDA

Yale [2] 34.2% 78.8% 54.6% 79.4%

ORL [26] 36.8% 79.4% 57.2% 81.3%

Table 6 Face Recognition database accuracies for simple KPCA
and KDA and optimized kernel matrix versions. Reported results
are mean values of the classification accuracies of the k-nn clas-
sification algorithm over the 50 random subsets.

KPCA
(90%)

KDA optimized
KPCA

optimized
KDA

Yale [2] 34.2% 78.8% 54.6% 79.4%

ORL [26] 36.8% 79.4% 57.2% 81.3%

case of the UCI dataset. Moreover, in this case, we
have implemented the block diagonal matrix variable

version. It can be seen, that although in the case of

KDA, the recognition performance increases using the

block version this is not the case for KPCA. This can be

attributed to the fact that the block matrix version em-
ploys better the class information. Moreover, the small

performance degradation with respect to the vector case

may be explained in that, for KPCA, this block form

stands between the single and vector variable case.

5.3 Face Recognition

Two databases where used for face recognition. The

YALE database [2] contains 165 grayscale images in
GIF format of 15 individuals. There are 11 images per

subject, one per different facial expression or configu-

ration: center-light, w/glasses, happy, left-light, w/no

glasses, normal, right-light, sad, sleepy, surprised and

wink. We have used 2 images per person for training
and the rest for testing. The ORL [26] contains 10 dif-

ferent images for 40 distinct persons. For some subjects,

the images were taken at different times, with varying

illumination, facial expressions and props (glasses / no
glasses). In this test, we have taken 2 images per person

for training and the rest for testing. Moreover, we have

used the 50 random subsets collected by Deng Cai et al.

mentioned in [6]-[16]. We have used the k−nn algorithm

for classification after the dimensionality reduction. In
Tables 5-8, results for face recognition accuracies are

illustrated.

Same as before results are slightly better in the vec-
tor version. In Figure 1, the face recognition accuracies

for Yale in the kernel matrix optimization version of the

algorithm are depicted.

Table 7 Face Recognition database accuracies for simple KPCA
and KDA and optimized kernel function of single variable σ ver-
sions. Reported results are mean values of the classification ac-

curacies of the k-nn classification algorithm over the 50 random
subsets.

KPCA
(90%)

KDA optimized
KPCA

optimized
KDA

Yale [2] 34.2% 78.8% 50.2% 79.4%

ORL [26] 36.8% 79.4% 53.2% 80.6%

Table 8 Face Recognition database accuracies for simple KPCA
and KDA and optimized kernel function of vector variable σ ver-
sions. Reported results are mean values of the classification ac-
curacies of the k-nn classification algorithm over the 50 random
subsets.

KPCA
(90%)

KDA optimized
KPCA

optimized
KDA

Yale [2] 34.2% 78.8% 54.6% 80%

ORL [26] 36.8% 79.4% 57.2% 81.6%

0 5 10 15 20 25 30 35 40 45 50
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

50 different subsets

F
ac

e 
re

co
gn

iti
on

 A
cc

ur
ac

ie
s

Kernel Matrix Optimization version

Fig. 1 Comparison of KDA and Optimal KDA. In red the op-
timal version, while in blue the original version of KDA with
heuristic definition of the Gaussian scale.

6 Conclusions And Future Work

In this paper we propose a novel technique for ker-
nel optimization. The proposed method is novel in two

aspects. First we provide a framework through graph

embedding for a general kernel optimization technique,

with respect to any dimensionality reduction technique.
Under the assumptions defined in this paper for the ker-

nel matrix or the kernel function (i.e., the Mercer condi-

tions) this framework may be applied to any dimension-

ality reduction technique that can be formulated as the

kernel version of the graph embedding framework [35].
Moreover, as we have proven, the optimal solution of

the minimization problem may be extended to the ker-

nel function hyperparameters under strong mathemat-

ical assumptions. The main drawback of the proposed
method is the use of highly expensive optimization pro-

cedures,which limits the applicability of the proposed

method for data-bases of less than thousand of sam-

ples.
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