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Abstract

The efficient search and retrieval of the increasing volume of stereo videos drives the

need for the semantic description of its content. The analysis and description of the

disparity (depth) data available on such videos, offers extra information, either for

developing better video content search algorithms, or for improving the 3D viewing

experience. Taking the above into account, the purpose of this paper is twofold. First,

to provide a mathematical analysis of the relation of object motion between world and

display space and on how disparity changes affect the 3D viewing experience. Second,

to propose algorithms for semantically characterizing the motion of an object or ob-

ject ensembles along any of the X , Y , Z axis. Experimental results of the proposed

algorithms for semantic motion description in stereo video content are given.

Keywords: Motion analysis, motion characterization, stereo video, semantic labelling.

1. Introduction

In recent years, the production of 3D movies and 3D video has been growing sig-

nificantly. A large number of 3D movies have been released and some of them, e.g.

Avatar [1] had great success. These box-office successes have boosted a) the delivery

of 3D productions, such as movies and documentaries, to home or to cinema theaters5

through 3D display technologies [2] and b) the 3DTV broadcasting of various events,

such as sports [3], [4], for high a quality 3D viewing experience. Furthermore, virtual
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reality systems for computer graphics, entertainment and education, which use stereo

video technology, have been developed [5], [6], [7]. 3D video devices such us laptops,

cameras, mobile phones, TV, projectors are now widely available for professional and10

non-professional users [1]. Because of the 3D movie success, several tools have been

developed for the production and editing of 3D content [8, 9].

Since 3DTV content is now widely available, it must be semantically described to-

wards fast 3D video content search and retrieval. Analysis of stereoscopic video has

the advantage of deriving information that cannot be inferred from single-view video,15

such as 3D object position through depth/disparity information. Depth information can

also be obtained from multiple synchronized video streams [10, 11, 12]. MPEG-4 of-

fers a set of motion descriptors for the representation of motion of a trajectory [13].

3D motion descriptors include the world coordinates and time information. In this pa-

per, we propose the adoption such 3D descriptors for the extraction semantic labels20

such as ”an object approaches the camera” or ”two objects approach each other”. Such

semantic description is only possible using 3D descriptors instead of 2D descriptors.

In this paper, we concentrate on 3D object motion description in stereo video content.

Various algorithms for semantic labelling of human, object or object ensemble motion

are proposed. We utilize the depth information, which is implicitly available through25

disparity estimation between the left and right views, to examine various cases, where

camera calibration information and/or viewing parameters may or may not be avail-

able, assuming that there are no camera motion and fixed intrinsic parameters. For

example, we can characterize video segments, where an object approaches the camera

or where two objects approach each other in the real world. It should be noted that30

the proposed algorithms can be applied in the case of an calibrated Kinect camera as

well [14]. Indeed, a lot of works investigate the 3D reconstruction of object trajecto-

ries [15, 16, 17]. The novelty of the proposed algorithms is the object motion analysis

providing semantic labels. Such semantic stereo video content description is very use-

ful in various applications, varying from video surveillance and 3D video annotations35

archiving, indexing and retrieval to implementation of better audiovisual editing tools

and intelligent content manipulation. Such characterization is not possible in classi-

cal single view video, without knowing depth information to get 3D position/motion
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clues [8]. Furthermore, such characterizations can be used for detecting various stereo

quality effects [8]. For example, if an object having strong negative disparity has been40

labelled as moving along the x axis towards the left/right image border, then it is likely

that a left/right stereo window violation may arise. The distance between foreground

objects and the background influences the entire amount of depth information (depth

budget) of the scene during display.

Furthermore, we examine how the viewer perceives object motion during stereo45

display. Typically, stereo video is shot with a stereo camera to display objects residing

and moving in the world space (Xw, Yw, Zw). The acquired stereo video depends on

the stereo camera parameters, e.g., focal length and the baseline distance [8]. When

displayed, the perceived object position and motion occurs in the display (theater) space

(Xd, Yd, Zd). The perceived video content depends on the viewing parameters, e.g., the50

screen size and the viewing distance. The real and the perceived object motion may

differ, depending on the camera and viewing parameters, as well as on stereo content

manipulations [8]. Specifically, we assume that an object is moving with a known

motion type (e.g., constant speed motion along the Zw axis) and we determine what

motion is perceived by the viewer. We examine various simple motion types, such as55

motion with constant velocity or constant acceleration along axes Xw, Yw or Zw. This

analysis is very useful for avoiding cases where excessive motion particularly along

the Zw axis can cause viewing discomfort [18]. In addition, we elaborate on how

disparity modifications affect the perceived position of the object in the theater space

with respect to the viewer. This is very important in the stereo video post-production,60

when the scene depth is adapted for visually stressing important scenes or for ensuring

visual comfort [8]. In this respect, the relationship between the viewer’s angular eye

velocity and object motion in the world space is very important.

The main novel contributions of this paper are:

1. we study (Section 3) object motion in stereo video content by providing a novel65

mathematical analysis. The object position, velocity and acceleration are ex-

amined in various simple motion types. In addition, we study the relationship

between the viewers angular eye velocity and object motion, in order to examine
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how the viewer perceives object motion during stereo display. In the same theo-

retical context, we elaborate on how disparity modifications affect the perceived70

position of the object in the theater space.

2. We provide (Section 4) novel algorithms for the semantic description/characterization

of object motion in stereo video content along the horizontal, vertical and depth

axis, as well as characterizations of relative motion of pairs of objects (whether

the objects approach each other or move away).75

These two contributions (theoretical, algorithmic) refer to different motion character-

istics and thus are not related.

The paper extends the work in [19] and [20] by including (a) the study of object

motion in stereo video content providing a novel mathematical analysis and (b) the

assessment of the robustness of the presented motion labelling methods in challenging80

scenes recorded outdoors in realistic conditions.

The rest of the paper is organized as follows. In section 2, the geometry of the

stereo camera and of the display system is discussed. The transformations between the

different coordinate systems of the world, stereo camera, screen and display (theater)

space are given for two stereo camera setups, the parallel and converging ones. Sec-85

tion 3 contains the mathematical analysis for the relation between world and display

system, the impact of screen disparity modifications on object position during display

and the relation between object and viewer’s eye motion. In section 4, algorithms for

characterizing object and object ensemble motion are proposed. In section 5, experi-

mental results for motion characterization are presented. Finally, concluding remarks90

are given in section 6.

2. Stereo Video Acquisition and Display Geometry

In stereo video, a 3D scene is captured by a stereo camera (a video camera pair),

as shown in Figure1(a). A point of interest Pw = [Xw, Yw, Zw]
ᵀ in the 3D world

space is projected on the left and right image plane positions plc =
[
xlc, y

l
c

]ᵀ
and prc =95

[xrc , y
r
c ]

ᵀ, respectively. For stereo video display, both images are projected (mapped) on

the display screen plane locations pls =
[
xls, y

l
s

]ᵀ
and prs = [xrs, y

r
s ]

ᵀ, respectively, as

4



shown in Figure1(b). During display, the point Pd = [Xd, Yd, Zd]
ᵀ which corresponds

to Pw is perceived by the viewer in front of, on or behind the screen in the display

(theater) space, as shown in Figure1(b), if the disparity d = xrs − xls is negative or100

positive, respectively.

(a) (b)

Figure 1: a) stereo video capture and b) display.

In this section, we describe in more detail the geometrical relations between the

world and theater space coordinates for two types of stereo camera setups, the parallel

[21], which is the most common case, and the converging one [22].

2.1. Parallel Stereo Camera Setup105

The geometry of a stereo camera with parallel optical axes is shown in Figure 2.

The centers of projection and the projection planes of the left and right camera are de-

noted by the points Ol, Or and Tl, Tr, respectively. The distances between the two

camera centers and between the camera center of projection and the projection plane

are the baseline distance Tc and the camera focal length f . The midpoint Oc of the

baseline is the center of the world coordinate system (Xw, Yw, Zw). The world coordi-

nate axis Xw can be transformed into the left/right camera axes X l
w, Xr

w by a transla-

tion by±Tc/2. A point of interest Pw = [Xw, Yw, Zw]
ᵀ in the world space is projected

on the left and right image planes at the points plc =
[
xlc, y

l
c

]ᵀ
and prc = [xrc , y

r
c ]

ᵀ re-

spectively, while the points Plw =
[
X l
w, Y

l
w, Z

l
w

]ᵀ
and Prw = [Xr

w, Y
r
w , Z

r
w]

ᵀ refer to

the same point Pw with respect to the left and right camera coordinate systems, re-

spectively. The projections plc and prc are related with the 3D points Plw and Prw using
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perspective projection [21]:

xlc = f
X l
w

Zlw
, ylc = f

Y lw
Zlw

, xrc = f
Xr
w

Zrw
, yrc = f

Y rw
Zrw

. (1)

Figure 2: Parallel stereo camera geometry.

Thus, the following equations give us the transform from the world space to the camera

system coordinates:

xlc = f
Xw + Tc

2

Zw
, ylc = f

Yw
Zw

, xrc = f
Xw − Tc

2

Zw
, yrc = f

Yw
Zw

. (2)

It is well known that the Pw world space coordinates can be recovered from the plc,p
r
c

projections, as follows [21]:

Zw = −fTc
dc

, Xw = −Tc(x
l
c + xrc)

2dc
, Yw = −Tcy

l
c

dc
= −Tcy

r
c

dc
, (3)

where dc = xrc − xlc is the stereo disparity. In the case of the parallel camera setup, we

always have negative disparities:

dc = −f
Tc
Zw

< 0. (4)

The geometry of the display (theater) space is shown in Figure 3. Te is the distance

between the left/right eyes (typically, 60 mm) [23]. The distance from the viewer’s eye

pupil centers (el and er, respectively) to the screen is denoted by Td. The origin Od
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screen plane

(a)

screen plane

(b)

Figure 3: Stereo display system geometry for a) negative and b) positive screen disparity.

of the display coordinate system (Xd, Yd, Zd) is placed at the midpoint between the

eyes. The Xd axis is parallel to the eye baseline. The Zd, Yd axes are perpendicular to

the screen and XdZd planes, respectively. During stereo image display, the mapping

of the projections plc and prc to the screen plane pls =
[
xls, y

l
s

]ᵀ
and prs = [xrs, y

r
s ]

ᵀ is

achieved by scaling using a factor m = ws/wc, where ws is the width of the screen

and wc the width of the camera sensor,

xls = mxlc, yls = mylc, xrs = mxrc , yrs = myrc , (5)

that magnifies the image, according to the screen size, while the screen center coordi-

nate (xs, ys) coincides with the shifted by Tc left/right image plane coordinate
(
xlc, y

l
c

)
, (xrc , y

r
c ) centers, so that they coincide. Here, the distance of xls and xrs, ds = xrs−xls,

is the screen disparity. The resulting perceived object position is in front of, on and be-

hind the screen for negative, zero and positive screen disparity, respectively, as shown

in Figure 3a,b. The perceived location Pd(Xd, Yd, Zd) of the point Pw can be found

using triangle (plsPdp
r
s), (elPder) similarities [22]:

Zd =
TdTe
Te − ds

, (6)

Xd =
Te(x

l
s + xrs)

2(Te − ds)
, Yd =

Te(y
l
s + yrs)

2(Te − ds)
. (7)
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Since in the parallel camera setup we always have negative disparities dc and thus

Te−ds > Te, all objects appear in front of the screen Zd < Td. It can be easily proven

that the coordinate transformation from the camera image plane to display space is110

given by:

Xd =
mTe(x

l
c + xrc)

2(Te −mdc)
, Yd =

mTe(y
l
c + yrc )

2(Te −mdc)
, Zd =

TdTe
Te −mdc

. (8)

Finally, we can compute the overall coordinate transformation from world space to

display space

Xd =
mfTeXw

mfTc + TeZw
,Yd =

mfTeYw
mfTc + TeZw

,Zd =
TdTeZw

mfTc + TeZw
. (9)

The display geometry shown in Figure 3 describes well stereo projection in the-

ater, TV, computer and mobile phone screens, but not in virtual reality systems (head-

mounted displays) [24].

2.2. Converging Stereo Camera Setup115

In this case, the optical axes of the left and right camera form an angle θ with the

coordinate axis Zw, as shown in Figure 4. The origin Oc of the world space coordinate

system is placed at the midpoint between the left and right camera centers. The two

camera axes converge on the point Oz at distance Tz along the Zw axis. A point of

interest Pw = [Xw, Yw, Zw]
ᵀ in the world space, which is projected on the left and

right image planes at the points plc =
[
xlc, y

l
c

]ᵀ
and prc = [xrc , y

r
c ]

ᵀ, respectively, can

be transformed into the left or right camera system by a translation by Tc/2 or −Tc/2,

respectively, followed by a rotation by angle −θ or θ about the Yw axis, respectively:
X l
w

Y lw

Zlw

 =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



Xw + Tc

2

Yw

Zw

 , (10)


Xr
w

Y rw

Zrw

 =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



Xw − Tc

2

Yw

Zw

 . (11)
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Figure 4: Converging stereo camera setup geometry.

Using (1), the following equations transform the world space coordinates to the

left/right camera coordinates:

xlc = f

(
Xw + Tc

2

)
cos θ − Zw sin θ(

Xw + Tc

2

)
sin θ + Zw cos θ

= f tan

(
arctan

(
Xw + Tc

2

Zw

)
− θ

)
(12)

ylc = f
Yw(

Xw + Tc

2

)
sin θ + Zw cos θ

, (13)

xrc = f

(
Xw − Tc

2

)
cos θ + Zw sin θ

−
(
Xw − Tc

2

)
sin θ + Zw cos θ

= −f tan

(
arctan

(
−Xw + Tc

2

Zw

)
− θ

)
, (14)

yrc = f
Yw

−
(
Xw − Tc

2

)
sin θ + Zw cos θ

. (15)

For very small angles θ (12)-(15) can be simplified using cos θ ' 1, sin θ ' θ rad.

When θ = 0, then equations (12)-(15) collapse to (8)-(9). As proven in the Appendix

A, the following equations can be used, in order to revert from the left/right camera120
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coordinates into the world space coordinates:

Xw = Tc

xlc + tan θ

(
f +

xlcx
r
c

f
+ xrc tan θ

)
xlc − xrc + tan θ

(
2f + 2

xlcx
r
c

f
− xlc tan θ + xrc tan θ

)
−Tc

2
, (16)

Yw = Tc
ylc
f

cos

(
arctan

(
xlc
f

)
+ θ

)
cos

(
arctan

(
xlc
f

))
sin

(
arctan

(
xlc
f

)
+ arctan

(
xrc
f

)
+ 2θ

) , (17)

Zw = Tc

f −
(
xlc − xrc +

xlcx
r
c

f
tan θ

)
tan θ

xlc − xrc + tan θ

(
2f + 2

xlcx
r
c

f
− xlc tan θ + xrc tan θ

) . (18)

Following the same methodology as in the parallel setup, the transformations from

camera plane to the 3D display space are given by (5), (6) and (7), respectively. For the

case ofXw = 0, it can easily be proven that, when Zw > Tz , the object appears behind

the screen (Zd > Td), while for Zw < Tz , the object appears in front of the screen, as125

exemplified in Figure 3a. This is the primary reason for using the converging camera

setup in 3D cinematography. However, only smalls θs are used, because otherwise the

so-called keystroke effect is very visible [8].

Finally, the overall coordinate transformation from world space to display space is

given [22] by the equations (19)-(21).130

Xd =

mfTe

(
tan

(
arctan

(
Xw + Tc

2

Zw

)
− θ

)
− tan

(
arctan

(
−Xw + Tc

2

Zw

)
− θ

))

2Te + 2mf

(
tan

(
arctan

(
−Xw + Tc

2

Zw

)
− θ

)
+ tan

(
arctan

(
Xw + Tc

2

Zw

)
− θ

)) ,(19)

Yd =

mTe

(
f

Yw(
Xw + Tc

2

)
sin θ + Zw cos θ

+ f
Yw

−
(
Xw − Tc

2

)
sin θ + Zw cos θ

)

2Te + 2mf

(
tan

(
arctan

(
−Xw + Tc

2

Zw

)
− θ

)
+ tan

(
arctan

(
Xw + Tc

2

Zw

)
− θ

)) ,(20)

Zd =
TdTe

Te +mf

(
tan

(
arctan

(
−Xw + Tc

2

Zw

)
− θ

)
+ tan

(
arctan

(
Xw + Tc

2

Zw

)
− θ

)) .(21)
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When θ = 0, (16) - (18) and (19) - (21) collapse to the parallel setup equations (3)

and (9).

3. Mathematical Object Motion Analysis

In this section, the 3D object motion in stereo vision is mathematically treated. No

such treatment exists in the literature, at least to the authors’ knowledge. In subsection135

3.1, we examine the true 3D object motion compared to the perceived 3D motion of

the displayed object in the display space. In subsection 3.2, we elaborate on how the

change of screen projections affects stereo video content display. Finally, the effect of

the perceived object motion on visual comfort is presented in subsection 3.3.

3.1. Motion mapping between World and Display Space140

In this section, we analyse the perceived object motion during stereo video acquisi-
tion and display, assuming that the object motion trajectory in world space [Xw (t) , Yw (t) , Zw (t)]

ᵀ

is known. We consider the parallel camera setup geometry. The perceived motion speed
and acceleration can be derived by differentiating (9):

vZd
(t) =

TeTdTcfmZ′
w (t)

(mfTc + TeZw (t))2
, (22)

aZd
(t) = −

TeTdTcfm
(
−2TeZ′

w (t)2 + (Tcmf + TeZw (t))Z′′
w (t)

)
(mfTc + TeZw (t))3

, (23)

vXd
(t) =

mfTe ((mfTc + TeZw (t))X′
w (t)− TeXw (t)Z′

w (t))

(mfTc + TeZw (t))2
, (24)

aXd
(t) =

mfTe ((mfTc + TeZw (t))X′′
w (t)− TeXw (t)Z′′

w (t))

(mfTc + TeZw (t))2

−
2mfT 2

e Z
′
w (t) ((mfTc + TeZw (t))X′

w (t)− TeXw (t)Z′
w (t))

(mfTc + TeZw (t))3
. (25)

Similar equations can be derived for motion speed and acceleration along the Yd axis.

The following two cases are of special interest:

a) If the object is moving along the Zw world axis with constant velocity Zw (t) =

Zw0 + vZw t, its perceived motion along the Zd axis has no constant velocity anymore:
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Zd(t) =
TeTd (Zw0

+ vZw
t)

mfTc + Te (Zw0
+ vZw

t)
, (26)

vZd
(t) =

TeTdTcfmvZw

(mfTc + Te (Zw0 + vZw t))
2
, (27)

aZd
(t) = −

2TcT
2
e Tdfmv

2
Zw

(mfTc + Te (Zw0 + vZw t))
3
. (28)

b) If the object is moving along the Zw world axis with constant acceleration Zw (t) =145

Zw0
+

1

2
aZw

t2, the perceived motion along the Zd axis is even more complicated:

Zd(t) =
TeTd

(
aZw t

2 + 2Zw0

)
2mfTc + Te (aZw t

2 + 2Zw0)
, (29)

vZd(t) =
4TeTdmfTcaZw t

(2mfTc + Te (aZw t
2 + 2Zw0))

2 , (30)

aZd(t) = −
mfTeTdTc

(
12TeaZw t

2 − 8mfTc − 8TeZw0

)
aZw

(2mfTc + Te (aZw t
2 + 2Zw0))

3 . (31)

In both cases the perceived velocity and acceleration are not constant. Additionally,

under certain conditions an accelerating object may be perceived as a decelerating one.

If the object is moving along the Xw world axis with constant velocity Xw (t) =

Xw0 + vXw t and is stationary along the Zw world axis Zw (t) = Zw0 , the perceived150

motion along axis the Xd axis has constant velocity:

Xd(t) =
mfTe

mfTc + TeZw0

(Xw0 + vXw t) , (32)

vXd
(t) =

mfTe
mfTc + TeZw0

vXw , (33)

aXd
(t) = 0. (34)

If the object is moving along the Xw world axis with constant acceleration Xw (t) =

Xw0
+

1

2
aXw

t2 and is stationary along the Zw world axis, Zw (t) = Zw0
, the same

motion pattern applies to the perceived motion in the theater space:
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Xd(t) =
mfTe

mfTc + TeZw0

(
Xw0

+
1

2
aXw

t2
)
, (35)

vXd
(t) =

mfTe
mfTc + TeZw0

aXw
t, (36)

aXd
(t) =

mfTe
mfTc + TeZw0

aXw
. (37)

In both cases the perceived velocity and acceleration are the actual world ones, scaled155

by a constant factor. If the object is moving along the Xw and Zw world axes with

constant velocities Xw (t) = Xw0 + vXw t , Zw (t) = Zw0 + vZw t, the perceived

motion pattern is very complicated.

Xd(t) =
mfTe

mfTc + Te (Zw0 + vZw t)
(Xw0 + vXw t) , (38)

vXd(t) =
mfTe (mfTcvXw − TevZwXw0 + TevXwZw0)

(mfTc + Te (Zw0 + vZw t))
2

, (39)

aXd(t) = −2mfT 2
e vXw (mfTcvXw − TevZwXw0 + TevXwZw0)

(mfTc + Te (Zw0 + vZw t))
3

, (40)

The case of motion along the Yw world axis is similar to the one along the Xw axis.

For the case of constant velocities along both the Xw and Zw world axes, it is apparent160

that
vXw

vXd

6= vZw

vZd

. Thus the perceived moving object trajectory is different than the

respective linear trajectory in the world space. It is clearly seen that special care should

be taken when trying to display 3D moving objects, especially when the motion along

the Zw is quite irregular.

3.2. The Effects of Screen Disparity Manipulations165

Let us assume that the position of the projections pls =
[
xls, y

l
s

]ᵀ
and prs =

[xrs, y
r
s ]

ᵀ of a point Pw on the screen can move with constant velocity. Assuming

that there is no vertical disparity, we examine only x coordinates change at constant

velocities uxl, uxr:

xls(t) = xls0 + vxlt, (41)

xrs(t) = xrs0 + vxrt, (42)
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where xls0 and xrs0 are the initial object positions on the screen plane and vxl and

vxr indicate the corresponding velocities, having left and right direction respectively.

Correspondingly, the screen disparity changes:

ds(t) = xrs0 − xls0 + (vxr − vxl)t. (43)

Based on the equations (6) and (7), which compute the Xd, Yd and Zd coordinates170

of Pd during display with respect to screen coordinates, the following equations give

the Pd position and velocity:

Zd(t) =
TdTe

Te − ds(0)− (vxr − vxl) t
, (44)

dZd(t)

dt
=

TdTe (vxr − vxl)
(Te − ds(0)− (vxr − vxl) t)2

, (45)

Yd(t) =
Te(y

l
s + yrs)

2(Te − ds(0)− (vxr − vxl)t)
, (46)

dYd(t)

dt
=

Te(y
l
s + yrs) (vxr − vxl)

2 (Te − ds(0)− (vxr − vxl) t)2
, (47)

Xd(t) =
Te(x

r
s0 + vxrt+ xls0 + vxlt)

2 (Te − ds(0)− (vxr − vxl) t)
, (48)

dXd(t)

dt
=

T 2
e (vxr + vxl) + 2Te

(
vxrx

l
s0 − vxlxrs0

)
)

2 (Te − ds(0)− (vxr − vxl) t)2
. (49)

As expected, according to the (45) the object appears moving away from the viewer,

when vxr > vxl, and approaching the viewer, when vxr < vxl. In the case of vxr = vxl,

the value ofZd does not change. Similarly, though the vertical disparity is zero, accord-175

ing to (47), the object appears moving downwards/upwards, when vxr is bigger/smaller

than vxl, respectively, while in case of vxr = vxl, the value of Yd does not change. Fi-

nally, according to (49), the cases where Xd increases, decreases and does not change

are illustrated in the Figure 5.

Therefore, disparity manipulations (e.g., increase/decrease) during post-production180

can create significant changes in the perceived object position and motion in the display

space. These effects should be better understood, in order to perform effective 3D

movie post-production. It should be noted that viewing experience is also affected by

motion cues and the display settings [25].
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Figure 5: The cases where Xd increases, decreases and does not change.

3.3. Angular Eye Motion185

When eyes view a point on the screen, they converge to the position dictated by its

disparity, as shown in Figure 3. The eye convergence angles φlx , φrx are given by the

15



following equations:

φlx = arctan

xls + Te
2

Td

 , (50)

φrx = arctan

xrs − Te
2

Td

 . (51)

The angle φy formed between the eye axis and the horizontal plane is given by:

φy = arctan

(
yls
Td

)
= arctan

(
yrs
Td

)
. (52)

If the camera parameters are unknown, the angular eye velocities can be derived by

differentiating (50), (51) and (52):190

dφlx (t)

dt
=

4Td
dxl

s(t)
dt

4T 2
d + T 2

e + 4Texls (t) + 4xls (t)
2 , (53)

dφrx (t)

dt
=

4Td
dxr

s(t)
dt

4T 2
d + T 2

e − 4Texrs (t) + 4xrs (t)
2 , (54)

dφy (t)

dt
=

Td
dys(t)
dt

T 2
d + ys (t)

2 . (55)

If the camera parameters are known and the position of a moving object in the world

space is given by Pw (t) = [Xw (t) , Yw (t) , Zw (t)]
ᵀ, (2) and (5) can be used to derive,

the angular eye positions over time:

φlx (t) = arctan

(
mfTc + 2mfXw (t) + TeZw (t)

2TdZw (t)

)
, (56)

φrx (t) = arctan

(
−mfTc + 2mfXw (t)− TeZw (t)

2TdZw (t)

)
, (57)

φy (t) = arctan

(
mfYw (t)

TdZw (t)

)
. (58)

The angular eye velocities can be derived by differentiating (56), (57) and (58) as

given by (59)-(61):195

dφlx (t)

dt
=

2mfTd (2Zw (t)X ′
w (t)− (Tc + 2Xw (t))Z ′

w (t))

m2f2T 2
c + 4m2f2Xw (t)

2
+ 2mfTeTcZw (t) + (4T 2

d + T 2
e )Zw (t)

2
+ 4mfXw (t) (mfTc + TeZw (t))

,

(59)
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dφrx (t)

dt
=

−2mfTd (2Zw (t)X ′
w (t) + (Tc − 2Xw (t))Z ′

w (t))

m2f2T 2
c + 4m2f2Xw (t)

2
+ 2mfTeTcZw (t) + (4T 2

d + T 2
e )Zw (t)

2 − 4mfXw (t) (mfTc + TeZw (t))
,

(60)

dφy (t)

dt
=
mfTd (Zw (t)Y ′

w (t)− Yw (t)Z ′
w (t))

m2f2Yw (t)
2
+ T 2

dZw (t)
2 . (61)

A few simple cases follow. If the object is moving along the Zw axis and it is stationary

with respect to the other axes, Zw (t) = Zw + vwzt , Xw (t) = 0 Yw (t) = 0 as given

by (62)-(64):

dφlx (t)

dt
= − 2mfTdTcvzw

m2f2T 2
c + 2mfTeTc (Zw + vzwt) + (4T 2

d + T 2
e ) (Zw + vzwt)

2 ,(62)

dφrx (t)

dt
=

2mfTcTdvzw

m2f2T 2
c + 2mfTeTc (Zwvzwt) + (4T 2

d + T 2
e ) (Zw + vzwt)

2 , (63)

dφy (t)

dt
= 0. (64)

If the object is moving along the Xw axis and it is stationary with respect to the

other axes, Zw (t) = Zw, Xw (t) = vxwt, Yw (t) = 0, the following angular eye200

velocities result as given by (65)-(67):

dφlx (t)

dt
=

4mfTdvxwZw
m2f2T 2

c + 4m2f2v2xwt
2 + 2mfTeTcZw + (4T 2

d + T 2
e )Z

2
w + 4mfvxwt (mfTc + TeZw)

,

(65)

dφrx (t)

dt
=

4mfTdvxwZw
m2f2T 2

c + 4m2f2v2xwt
2 + 2mfTeTcZw + (4T 2

d + T 2
e )Z

2
w − 4mfvxwt (mfTc + TeZw)

,

(66)

dφy (t)

dt
= 0. (67)

If the object is moving along the Yw axis and it is stationary with respect to the other

two axes, Zw (t) = Zw, Xw (t) = 0, Yw (t) = vywt, we have the following angular

eye velocities:
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dφlx (t)

dt
= 0, (68)

dφrx (t)

dt
= 0, (69)

dφy (t)

dt
=

mfTdvywZw
m2f2v2ywt

2 + T 2
dZ

2
w

. (70)

This analysis is important for determining the maximal object speed in the world205

coordinates or the maximal allowable disparity change, when capturing a fast moving

object. If certain angular velocity limits (e.g., 20 deg/sec for φx [26]) are violated

viewer’s eyes cannot converge fast enough to follow it, therefore causing visual fatigue.

In addition, there are also limits (e.g., 80 deg/sec [27]) for the cases of smooth pursuit

(65),(66) and (70) that must not be violated either.210

4. Semantic 3D Object Motion Description

In this section, we will present a set of methods for characterizing 3D object motion

in stereo video. In our approach, an object (e.g., an actor’s face in a movie or the

ball in a football game), is represented by a region of interest (ROI), which can be

used to refer to an important semantic description regarding object position and motion215

characterization. It must be noted that, in most cases, neither camera nor viewing

parameters are known. In such cases, object motion characterization is based only on

object ROI position and motion in the left and right image planes.

Object ROI detection and tracking is overviewed in subsection 4.1. In subsections

4.2 and 4.3, object motion description algorithms are presented, which describe the220

object motion direction in an object trajectory and the relative motion of two objects,

respectively.

4.1. Object Detection and Tracking

We consider that an object is described by a ROI within a video frame or by a ROI

sequence, over a number of consecutive frames. These ROIs may be generated by a225

combination of object detection (or manual initialization) and tracking [28]. Stereo

tracking can be performed as well for improved tracking performance [29]. In its
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simplest form, a rectangular ROI (bounding box) can be represented by two points

p1 = [xleft, ytop]
ᵀ and p2 = [xright, ybottom]

ᵀ, where the xleft, ytop, xright and

ybottom are the left, right, top and bottom ROI bounds, respectively. Such ROIs can230

be found on both the left and right object views. In the case of stereo video, ob-

ject disparity can be found inside the ROI by disparity estimation [21]. This proce-

dure produces dense or sparse disparity maps [30]. Such maps can be used to ob-

tain an ’average’ object disparity, e.g., by averaging the disparity over the object ROI

[19]. Alternatively, gross object disparity estimation can be a by-product of the stereo235

video tracking algorithm, based, e.g., on left/right view SIFT point matching within

the left/right object ROIs [31]. In the proposed object motion characterization algo-

rithms, a ROI is represented by its center coordinates xcenter = (xleft + xright) /2 ,

ycenter = (ytop + ybottom) /2 along x and y axis, its width and height (if needed) and

an overall (’average’) disparity value.240

In order to better evaluate an overall object disparity value for the object ROI, we

first use a pixel trimming process [32], in order to discard pixels that do not belong

to the object, since the ROI may contain, apart from the object, background pixels.

First, the mean disparity d using all pixels inside a central region within the ROI. A

pixel within the ROI is retained only when its disparity value is in the range [d-a,d+a],245

where a is an appropriately chosen threshold. Then, the trimmed mean disparity value

dα of the retained pixels is computed [19, 32].

4.2. Object motion characterization

In order to characterize object motion, when not knowing the camera and display

parameters, we examine the motion separately on x and y axes in the image plane and250

in the depth space, using object disparities. Specifically, we use the x and y ROI cen-

ter coordinates [xcenter (t) , ycenter (t)]
ᵀ in both left/right channels and (3) or (7) for

characterizing the horizontal and vertical object motion. We can also use the trimmed

mean disparity value dα and (3) or (6) for labelling object motion along the depth axis

over a number of consecutive video frames. In any case, the unknown parameters are255

ignored. An example of a dα signal (time series), where t indicates the video frame

number is shown in Figure 6. In this particular case, in the theater space the object
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first stays at a constant depth Zd from the viewer, then it moves away and finally it

moves closer the viewer. When dα (t) = 0, the object is exactly on screen (Zd = Td).

To perform motion characterization, we use first a moving average filter of appropriate260

length, in order to smooth such a signal over time [33]. Then, the filtered signal can be

approximated, using, e.g., a linear piece-wise approximation method [34]. The output

of the above process is a sequence of linear segments, where the slope of each linear

segment indicates the respective object motion type. The motion duration is defined by

the respective linear segment duration. Depending on whether the slope has a negative,265

positive or close to zero value, respective movement labels can be assigned for each

movement, as shown in Table 1. If too short linear segments are found and their slopes

are small/moderate, the respective motion characterization can be discarded.

(a) (b)

Figure 6: a) Stereo left/right video frame pairs at times t=100,200,300, b) time series of the trimmed mean

object disparity

Table 1: Labels characterizing movement of an object.

Slope value negative positive close to zero

Horizontal movement left right still horizontal

Vertical movement up down still vertical

Movement along the depth axis backward forward still depth

If the stereo camera parameters are known, then the true 3D object position of the

left/right ROI center in the world coordinates can be found, using (3) or (16) - (18) for270
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the object ROI center for the parallel and converging stereo camera setups, respectively.

In the uncalibrated case, there are cases where the true 3D object position can be also

recovered [35]. The same can be done for the display space, if we know the display

parameters m, Td, Te, using the ROI center coordinates. Therefore, the movement la-

bels of Table 1 can be used for both world space and display space, following exactly275

the same procedure for characterizing object motion in the world and display spaces,

by using the vector signals [Xw (t) , Yw (t) , Zw (t)]
ᵀ and [Xd (t) , Yd (t) , Zd (t)]

ᵀ, re-

spectively.

In such cases, characterizations of the form ’object moving away/approaching the

camera or the viewer’ have an exact meaning. Values of Zd (t) outside the comfort280

zone [8] indicate stereo visual quality problems. Large slope of Zd (t) over time, i.e.,

its derivative exceeding an acceptable threshold Z ′
d (t) > ud, can also indicate stereo

quality, e.g., eyes convergence problems.

4.3. Motion characterization of object ensembles

Two (or more) objects or persons may approach to (or distance from) each other.285

For such motion characterizations of object ensembles, we shall examine two differ-

ent cases, depending on whether camera calibration or display parameters are known

or not. If such parameters are not available, 3D world or display coordinates can not

computed. Thus, object ensemble motion can be labelled independently along the spa-

tial (image) x, y axes and along the ’depth’ axis (using the trimmed average disparity290

values), only for the parallel camera setup and display. For a number of consecutive

video frames, the ROI center coordinates of the left and right video channels are com-

bined into Xi
center =

xilcenter + xircenter
2
(
Te− dαi

) and Y icenter =
yicenter
Te− dαi

(a typical value

for Te is used) using (7) or Xi
center =

xilcenter + xircenter
2dαi

and Y icenter =
yicenter
dαi

using (3), for the display or parallel camera, respectively, in all cases the unknown295

parameters are ignored. The Euclidean distances between pi =
[
Xi
center, Y

i
center

]ᵀ
and pj =

[
Xj
center, Y

j
center

]ᵀ
and the respective disparity values dαi and dαj of two
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objects i, j are computed as follows:

Dxy =

√
(Xi

center −X
j
center)

2 + (Y icenter − Y
j
center)

2, (71)

Dd =

√
(dαi − dαj)2. (72)

The resulting two signals are filtered and approximated by linear segments, as de-

scribed in the previous subsection. Similarly, depending on whether the linear segment300

slope has a negative, positive or close to zero value, the corresponding motion label can

be assigned, as shown in Table 2. Even in the absence of camera and display param-

eters, disparity information can help in inferring the relative motion of two objects: if

both Dxy and Dd decrease, the objects come closer in the 3D space. However, in such

a case no Euclidean distance (e.g., in meters) can be found.305

Table 2: Labels characterizing the 3D motion of object ensembles without using calibration/viewing param-

eters.

Slope value negative positive close to zero

xy movement approaching xy moving away xy equidistant xy

Depth movement approaching depth moving away depth equidistant depth

The same procedure can be extended to the case of more than two objects: we can

characterize whether their geometrical positions converge or diverge. To do so, we can

find the dispersion of their positions vs their center of gravity in the xy domain and in

the ’depth’ domain:

Dxy =

√√√√ N∑
i=1

[
(Xi

center −Xcenter)2 + (Y icenter − Y center)2
]
, (73)

Dd =

√√√√ N∑
i=1

(dαi − dα)2. (74)

and then perform the above mentioned smoothing and linear piece-wise approximation.310

When camera calibration parameters are available, the world coordinates [Xw, Yw, Zw]
ᵀ

of an object, which is described by the respective ROI center [xcenter, ycenter]
ᵀ and

trimmed mean disparity value dα, can be computed by the equations using (3) and (16),
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(17), (18) for the parallel and converging camera setup, respectively. Consequently, the

actual distance between two objects, which are represented by the two points P1 and315

P2, can be calculated by using the Euclidean distance ‖P1 − P2‖2 in the 3D space.

Then, the same approach using smoothing and linear piece-wise approximation can

be used for characterizing the motion of two objects.The same procedure can be ap-

plied for characterizing their motion in the display space, if the display parameters are

known.320

5. Experimental Results

5.1. Indoor Scenes

5.1.1. Stereo Dataset Description

For evaluating and assessment the proposed motion labelling methods, we created

a set of stereo videos recorded indoors with a stereo camera with known calibration325

parameters. Specifically, the stereo camera has parallel geometry with a focal length of

34.4 mm and baseline equal to 140 mm. In each video, two persons move along mo-

tion trajectories belonging to three different categories. In the first video category the

subjects stand facing each other and start walking parallel to the camera, approaching

one another up to the middle of the path and then moving away. Figure 7 displays three330

representative frames of such a stereo video and a diagram (top view), which shows

the persons’ motion trajectories on the XwZw plane. In the second video category

(Figure 8), the persons walk diagonally, following X-shaped paths. Again, the two

subjects approach one another during their way up to the middle of the path and then

start moving away. In the third video category, the two subjects follow each other on an335

elliptical path, as depicted in Figure 9. In the beginning, they stand at each end of the

major ellipse axis and then start moving clockwise. For a small number of frames their

distance is almost constant and their movement can be considered as equidistant. Then,

when they come close to the minor ellipse axis, they approach one another and, after-

wards, they start moving away again. When reaching again the major ellipse axis, their340

distance remains almost constant again for a small time period and their movement can
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(a) Frame 1 (b) Frame 45

(c) Frame 80 (d) Persons’ trajectories. The num-

bers indicate frames.

Figure 7: Example video frames and respective person’s trajectories for the first video category.

again be considered equidistant. Continuing their movement, they start approaching

and then moving away, until they reach their initial positions.

5.1.2. Preprocessing Phase

Before executing the proposed algorithms, a preprocessing step was necessary.345

First, the disparity maps for each video were extracted. A typical example of a left

and right video frame with the respective disparity maps is presented in Figure 10.

Next, the ROI trajectories of the two persons were computed. The heads of the two

persons were manually initialized at the first frame for each video and were tracked by

using the tracking algorithm described in [28]. This process was applied separately on350

each stereo video channel and the results were copied on the corresponding disparity

channels. An example of the tracked person is presented in Figure 11. Finally, for each

ROI, the corresponding ROI center coordinates and trimmed average disparity value

dα were computed, as described in subsection 4.1.

5.1.3. Movement Description Examples355

For the three videos depicted in Figures 7-9, the algorithm for movement character-

ization described in 4.2 was performed. In Table 3, the generated video segments with
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(a) Frame 1 (b) Frame 65

(c) Frame 95 (d) Persons’ trajectories. The num-

bers indicate frames.

Figure 8: Example video frames and respective person’s trajectories for the second video category.

the corresponding horizontal motion label of the man and woman are shown. The ROI

center x coordinates of the man and woman and the output of the linear approximation

process for the video depicted in Figure 9 are shown in Figures 12 and 13 respectively.360

If no disparity is used, it seems that the persons meet twice approximately at video

frames 60 and 210. This is not the case, since their disparities differ at the respective

times, as shown in Figure 13.

The output of the proposed algorithm for characterizing the relative motion be-

tween two objects, with known calibration parameters, for the three videos shown in365

Figures 7 , 8 and 11, are depicted in Figures 14, 15 and 16, respectively. Distance are

now measured in meters in the world space. As shown in Figure 14, two subjects are

approaching in the video frame interval [1,48], are equidistant in the interval [49,56]

and are moving away in the interval [57,90]. Similarly, the result of algorithm for the

video depicted in Figure 8 and shown in Figure 15 is that two subjects approach in370

the frame interval [1,71], are equidistant in the interval [72,75] and move away in the

interval [76,105]. The generated labels for the last video are shown in Table 4, the two

subjects are equidistant in the interval [1,7], are approaching in the interval [8,61] and

are moving away in the interval [62,93]. The same motion pattern is repeated in the
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(a) Frame 10 (b) Frame 65

(c) Frame 185 (d) Persons’ trajectories. The num-

bers indicate frames.

Figure 9: Example video frames and respective person’s trajectories for the third video category.

(a) Left frame (b) Right frame

(c) Left disparity map (d) Right disparity map

Figure 10: Sample video frames with their disparity maps.

frame intervals [94,152], [153,216], [217,261]. Finally, the two subjects are equidistant375

again in [262,285].
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(a) Left frame (b) Right frame

Figure 11: Sample video frames with ROIs.
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Figure 12: a) x coordinate of the ROI center of woman and man for the video depicted in Figure 9 and (b)

the result of linear approximation.

5.2. Outdoor/challenging scenes and quantitative performance evaluation

In order to assess the robustness of the presented motion labelling methods in real380

conditions, we created a set of videos recorded outdoors with the same stereo camera

in realistic conditions. These videos depict walking humans and moving cars. As

shown in Figure 17, where some representative frames are displayed, the background

is quite complex and lighting conditions are far from being ideal. The type of motion

of the tracked object(s) was manually labelled on these videos so as to create ground-385

truth labels. The number of the instances for each different motion type appearing in

these videos are given in Table 5. As in previous section, the disparity maps were

extracted, while the ROI trajectories of the various subjects, namely humans and cars,

were computed by a combination of manual initialization and automatic tracking.

The algorithms for movement characterization and for characterizing the relative390

motion between two objects on videos captured with known calibration parameters

(Subsection 5.1.1) were applied on these videos. Table 6 shows the mean temporal
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Table 3: The generated man/woman labels.

Video type Person Start frame End frame Label

a man 1 90 right

b man 1 105 right

c man 1 17 still horizontal

c man 18 116 left

c man 117 266 right

c man 267 287 still horizontal

a woman 1 90 left

b woman 1 105 left

c woman 1 150 right

c woman 151 166 still horizontal

c woman 167 265 left

c woman 266 287 still horizontal

The generated labels for motion characterization

for the videos shown in Figure 7 (a), Figure 8 (b) and Figure 9 (c).

overlap between the predicted labels (each corresponding to a motion segment i.e. a

number of frames) and ground-truth labelled motion segments for each different motion

type. As can be seen, a high accuracy is achieved for most motion types, proving the395

effectiveness and robustness of the proposed method in real world stereo videos. For

example, an accuracy bigger that 91% was achieved in the case of motion types/labels

“left”, “right”, “still horizontal”, “still depth”, “still vertical”, “approaching”, “moving

away” and “equidistant”. On the other hand, smaller but still fairly good accuracies can

be noted for other motion types/labels related to motion along depth and the vertical di-400

rection, namely “forward”, “backward”, “up”, “down”. For the “forward”/“backward”

motion, this can be explained by the fact that disparity is not very accurate especially

in image parts with big depth. For the motion along the vertical axis (“up”/“down”)

errors can be explained by the fact that in these instances the subject is mainly moving

along the depth axis, and only slightly in the vertical axis. Thus, the corresponding po-405
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Figure 13: a) Trimmed average disparity of the woman and man ROI for the video depicted in Figure 9, b)

the result of linear approximation.

(a) (b)

Figure 14: a) Person distances (in meters) calculated in the 3D space, b) the result of linear approximation

of the distance signal for the video depicted in Figure 7.

(a) (b)

Figure 15: a) Person distances (in meters) calculated in the 3D space, b) the result of linear approximation

of the distance signal for the video depicted in Figure 8.

sition signal has a small slope resulting in some cases false predicted labels, i.e. “still

vertical” instead of “up”/“down”.

Finally, Figure 18 exemplifies the importance of applying an appropriate filter to

the signal representing the position of an object or the distance between two objects
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(a) (b)

Figure 16: a) Person distances (in meters) calculated in the 3D space, b) the result of linear approximation

of the distance signal for the video depicted in Figure 9.

Table 4: The generated motion labels for the video depicted in Figure 9.

Start frame End frame Label

1 7 equidistant

8 61 approaching

62 93 moving away

94 152 equidistant

153 216 approaching

217 261 moving away

262 285 equidistant

over time, towards overcoming possible tracking failures caused e.g., by occlusion.410

Figure 18(b) shows the predicted labels of the position along depth of a face tracked

over time with and without filtering, where for some frames (Figure 18(a)) the face has

been mis-tracked due to occlusion by another face. As can be seen, the predicted labels

when applying filtering are in agreement with the ground-truth ones, In contrast, when

no filtering is applied, two small segments are given false labels.415

6. Conclusion

In this paper, 3D object motion mapping from the world space to the image space

and to the display (theater) space is first analysed in a novel way. The effect of screen

disparity changes on the viewing experience is presented. Then new algorithms are

presented that characterize object motion in stereo video content along the horizontal,420
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(a) (b)

(c) (d)

Figure 17: Example video frames.

Table 5: Number of instances for each different motion type (label).

Motion label # Motion label #

left 25 up 4

right 14 down 5

still horizontal 6 still vertical 24

forward 5 approaching 12

backward 6 moving away 15

still depth 29 equidistant 6

vertical and depth axis and assign labels depending on whether two objects approach

each other or move away. On the other hand, a mathematical analysis is presented

about the relation of object motion in world coordinates compared to their perceived

motion in the display (theater) space. Finally, we examine whether and how the view-

ing experience is affected by disparity manipulations.425
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Table 6: Mean overlap (%) for each different motion type.

Motion label # Motion label #

left 94.73 up 75.98

right 94.74 down 78.63

still horizontal 100.00 still vertical 99.20

forward 70.58 approaching 97.50

backward 73.92 moving away 93.32

still depth 99.93 equidistant 90.91

… … 

(a) Face ROIs on sample frames

ground truth 

without filtering 

with filtering 

time 

forward 

backward 

still depth 

(b) predicted labels

Figure 18: The effect of filtering on a trajectory where occlusion occurs.

(3DTVS). This publication reflects only the author’s views. The European Union is not

liable for any use that may be made of the information contained therein.430
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Appendix A. Calculation of World Coordinates in Converging Camera Setup Ge-

ometry

The auxiliary angles, which are shown in Figure A.19, can be expressed as:

ψl = arctan

(
xlc
f

)
, (A.1)

ψr = arctan

(
xrc
f

)
, (A.2)

φl =
π

2
− ψl − θ, (A.3)

φr =
π

2
− ψr − θ, (A.4)

ω = π − φl − φr = ψl + ψr + 2θ. (A.5)

Figure A.19: Converging stereo camera setup geometry.

The law of sines in the triangle (ÔlPwOr) gives us:

Tc
sinω

=
(PwOl)

sinφr
=

(PwOr)

sinφl
. (A.6)

Thus, Zw can be expressed as:

Zw = (PwOl) sinφl = (PwOr) sinφr = Tc
sin (φl) sin (φr)

sinω
. (A.7)
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After replacing ω, φl and φr, (A.7) is simplified as follows:

Zw = Tc
sin

(
π
2
− ψl − θ

)
sin

(
π
2
− ψr − θ

)
sin (ψl + ψr + 2θ)

=

= Tc

f −
(
xlc − xrc +

xlcx
r
c

f
tan θ

)
tan θ

xlc − xrc +

(
2f + 2

xlcx
r
c

f
− xlc tan θ + xrc tan θ

)
tan θ

(A.8)

The equations (16) and (17) can be proved with the same methodology:

Xw = PwOlcosφl −
Tc
2
. (A.9)

Yw can be obtained by projecting Pw on the left optical axis and then using triangle

similarities:

Yw =
PwOly

l
c

f
cosψl. (A.10)
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