
1

Sparse Extreme Learning Machine classifier
exploiting Intrinsic Graphs
Alexandros Iosifidis, Anastasios Tefas and Ioannis Pitas

Abstract— This paper presents an analysis of the recently pro-
posed sparse Extreme Learning Machine (S-ELM) classifier and
describes an optimization scheme that can be used to calculate
the network output weights. This optimization scheme exploits
intrinsic graph structures in order to describe geometric data
relationships in the so-called ELM space. Kernel formulations of
the approach operating in ELM spaces of arbitrary dimensions
are also provided. It is shown that the application of the opti-
mization scheme exploiting geometric data relationships in the
original ELM space is equivalent to the application of the original
S-ELM to a transformed ELM space. The experimental results
show that the incorporation of geometric data relationships in
S-ELM can lead to enhanced performance.

Index Terms— Sparse Extreme Learning Machine, Intrinsic
Graphs.

I. INTRODUCTION

In the training of Extreme Learning Machine (ELM)-based
single hidden layer feedforward neural (SLFN) networks, the
network hidden layer parameters are randomly assigned while
the network output parameters are, subsequently, analytically
calculated. Similar approaches have been also shown to be
efficient in several neural network training methods ([1], [2],
[3], [4], [5]), as well as in other learning processes ([6]).
Algorithms following this approach assume that the learning
processes used to determine the hidden layer and the output
weights need not be connected. In addition, it is assumed that
the network hidden layer weights can be randomly assigned,
therefore defining a random (nonlinear) mapping of the input
space to a new (usually high-dimensional) feature space.
The problem to be solved can be transformed to a linear
problem in the new feature space by using a large number
of (independent) hidden layer weights; thus, linear techniques
such as mean square estimation can be used to determine
the network’s output weights. The fact that the network’s
hidden and output weights are determined independently has a
number of advantages that can be exploited, for example, for
facilitating the implementation of parallel/distributed systems.
In addition, it has been shown to perform well in many
classification problems.

In the original ELM algorithm ([7]), the trained network
tends to reach not only the smallest training error but also
the smallest output weight norm. For networks reaching small
training errors, smaller output weight norms indicate better
generalization performance ([8]). Since its first proposal ([7]),
several optimization schemes have been proposed to calculate
the network output parameters, each highlighting different

A. Iosifidis, A. Tefas and I. Pitas are with the Department of Infor-
matics, Aristotle Unviersity of Thessaloniki, Greece. e-mail: {aiosif, tefas,
pitas}@aiia.csd.auth.gr

properties of the ELM networks ([9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19]). Although the determination
of the hidden layer network outputs is based on randomly
assigned input parameters, it has been shown that SLFN
networks trained by the ELM algorithm have the properties
of global approximators ([11], [20], [21]). In addition, it has
been shown that ELM networks are able to outperform other
sophisticated classification schemes, such as the support Vector
Machine classifier ([16], [18], [22]).

Recently, an optimization scheme exploiting the hinge loss
of the training error for calculating the network output weights
has been proposed ([18]). It exploits the fact that the network
output weights can be expressed as a sparse representation
of the training data representations in the feature space deter-
mined by the hidden network outputs. Thus, testing in both the
original and kernel ELM formulations exploiting the hinge loss
of the training error is faster than the calculation of the network
output weights exploiting the squared loss of the training error.
In order to speed up the training process of the so-called sparse
ELM (S-ELM) networks, a sequential minimal optimization
(SMO)-based optimization algorithm has also been proposed
by [18]. By exploiting such an optimization approach, it
has been shown that S-ELM is both effective and efficient.
Experimental results show that it is able to outperform ELM
formulations by exploiting the squared loss of the training
error, while its training and test computational costs are lower
than those of ELMs and SVMs ([18]).

In this paper, we describe an optimization scheme for S-
ELM-based SLFN network training, which exploits intrinsic
graph structures expressing class geometric relationships of the
training data in the feature space determined by the network
hidden layer outputs, noted as ELM space hereafter. This
optimization scheme is also extended to exploiting intrinsic
graph structures that express class geometric relationships of
the training data in arbitrary-dimensional ELM spaces used in
kernel ELM formulations ([18], [23]). Intrinsic graphs have
also been exploited in SVM-based classification ([24], [25])
and ELM networks using the squared loss of the training
error ([17], [19]). Here, the use of such an approach for S-
ELM network training is also shown. It is shown that S-ELM
networks trained by applying the adopted optimization scheme
achieve better classification performance compared with S-
ELM networks trained by applying the original optimization
scheme, as described by [18]. In addition, in order to exploit
fast optimization algorithms like those proposed by [18] and
[26], the application of the adopted optimization scheme on
the original (kernel) ELM space is shown to be equivalent to
the application of the original S-ELM optimization scheme to
a transformed (kernel) ELM space.



2

The rest of the paper is structured as follows: In Section II,
an overview of the S-ELM algorithm is provided. In Section
III, an optimization scheme is described for S-ELM-based
network training, which exploits geometric data information
described in intrinsic graphs. Experiments comparing the
performance of S-ELM with that of our optimization scheme
are described in Section V. Finally, conclusions are drawn in
Section VI.

II. OVERVIEW OF S-ELM NETWORKS

Let us denote by {xi, li}i=1,...,N a set of N vectors xi ∈

RD and the corresponding class labels li ∈ {1, . . . , C}. We
would like to employ {xi, li}i=1,...,N in order to train a SLFN
network using the S-ELM algorithm ([18]). Such a network
consists of D input (equal to the dimensionality of xi), L
hidden, and C output (equal to the number of classes involved
in the classification problem) neurons. The number of hidden
layer neurons L is a parameter of the S-ELM algorithm, and
it is usually set to be much greater than the number of classes
C, that is, L ≫ C. The elements of the network target vectors
ti = [ti1, ..., tiC ]

T , each corresponding to a training vector
xi, are set to tik = 1 for vectors belonging to class k, that
is, when li = k, and to tik = −1 when li ̸= k. In S-ELMs,
the network input weights Win ∈ RD×L and the hidden layer
bias values b ∈ RL are randomly assigned, while the network
output weights Wout ∈ RL×C are analytically calculated, as
subsequently described.

Given an activation function Φ(·) for the network hidden
layer and using a linear activation function for the network
output layer, the response oi = [oi1, . . . , oiC ]

T of the network
corresponding to xi is calculated by

oik =
L∑

j=1

wkj Φ(vj , bj ,xi), k = 1, ..., C, (1)

where vj is the j-th column of Win, wk is the k-th column of
Wout, and wkj is the j-th element of wk. It has been shown
that almost any nonlinear piecewise continuous activation
functions Φ(·) can be used to calculate the network hidden
layer outputs, for example, the sigmoid, polynomial, Radial
Basis Fnction (RBF), RBF-χ2, and Fourier series ([11], [12],
[16], [17]). It has also been recently proven that S-ELMs
using polynomials, Nadaraya–Watson, and sigmoid functions
attain the theoretical generalization bound of feedforward
neural networks. For the remaining activation function choices,
the Tikhonov regularization can be applied to guarantee the
weak regularity of the hidden layer output matrix while not
sacrificing the network’s generalization capability ([20], [21]).

By storing the network hidden layer outputs ϕi ∈ RL

corresponding to all the training vectors xi, i = 1, . . . , N in
a matrix Φ = [ϕ1, . . . ,ϕN ], the network response for all the
training data O ∈ RC×N can be expressed in a matrix form
as follows:

O = WT
outΦ. (2)

S-ELM is essentially a one-versus-rest classification
scheme. For the two-class problem discriminating class k from
the remaining ones, the following optimization problem is

solved for the calculation of the network output weight vector
wk:

min: Jk =
1

2
∥wk∥22 + c

N∑
i=1

ξik, (3)

s.t.: tikw
T
k ϕi ≥ 1− ξik, i = 1, ..., N, (4)

ξik ≥ 0, i = 1, ..., N. (5)

The previous optimization problem is solved for all the
classes k = 1, . . . , C when the classification problem involves
multiple classes, that is, when C > 2. By considering the
Lagrangian of (3) with respect to the constraints in (4) and (5),
and determining its saddle points with respect to wk and ξij ,
Jk is transformed to the following dual quadratic optimization
problem:

min: LD,k =
1

2

N∑
i=1

N∑
j=1

αikαjktiktjkϕ
T
i ϕj −

N∑
i=1

αik, (6)

s.t.: 0 ≤ αik ≤ c, i = 1, ..., N. (7)

For S-ELMs using random hidden layer parameters, the net-
work output weights Wout = [w1, . . . ,wC ] are obtained by

wk =

N∑
i=1

αikϕi, k = 1, . . . , C (8)

and the network output ot for a test vector xt ∈ RD is given
by

ot = WT
outϕt. (9)

In order to exploit kernel formulations, LD,k in (6) can be
written in the form

min: LD,k =
1

2
(αk ◦ tk)TK(αk ◦ tk) + 1Tαk, (10)

s.t.: 0 ≤ αik ≤ c, i = 1, ..., N, (11)

where αk ∈ RN and tk ∈ RN are the Lagrange multipliers
and the target vector for the two-class classification problem
k, 1 ∈ RN is a vector of ones, and ◦ denotes the Hadamard
(element-wise) product operator. K = ΦTΦ is the so-called
ELM kernel matrix ([16]).

Therefore, the output ot = [ot1, . . . , otC ]
T of S-ELM for a

test vector xt ∈ RD is given by

otk = wT
k ϕt =

N∑
i=1

αiktikϕ
T
i ϕt = (αk ◦ tk)Tkt, (12)

where kt ∈ RN is a vector with its elements equal to
kti = ϕT

i ϕt, i = 1, . . . , N . An advantage of calculating
the network output vector ot through (33) is that, as most
of the Lagrange multipliers αik = 0, lesser computations are
required, compared with (9).

III. S-ELM EXPLOITING INTRINSIC GRAPHS

In this section, an optimization scheme for SLFN network
training that exploits intrinsic graph structures is described.
Similar to S-ELM, we perform a one-versus-rest classification.
For the two-class problem discriminating class k from the



3

remaining ones, the following optimization problem is solved
for the calculation of the network output weight vector wk:

min: J̃k =
1

2
wT

k Swk + c
N∑
i=1

ξik, (13)

s.t.: tikw
T
k ϕi ≥ 1− ξik, i = 1, ..., N, (14)

ξik ≥ 0, i = 1, ..., N, (15)

where S ∈ RL×L is a matrix expressing geometric rela-
tionships of the training data in the ELM space. Following
the Graph Embedding approach ([27]), we assume that the
network hidden layer output vectors ϕi corresponding to the
training data xi, i = 1, . . . , N are used in order to form the
vertex set of a graph G = {Φ,V}, where V ∈ RN×N is a sim-
ilarity matrix whose elements denote geometric relationships
between the graph vertices ϕi. S can be defined by

S = ΦLΦT , (16)

where L ∈ RN×N is the graph Laplacian matrix defined by
L = D −V, with D being the diagonal degree matrix of G
having elements Dii =

∑N
j=1 Vij . It should be noted here that

the calculation of S in the ELM space RL, rather than in the
input space RD, has the advantage of nonlinear relationships
between the input data xi can be better expressed. Using (16),
geometric data relationships used in several subspace learning
techniques can be exploited. For example, the graph Laplacian
matrices used in order to express the total scatter and the
within-class scatter of the data in the ELM space are defined
as follows:

LT =
1

N

(
I− 1

N
11T

)
, (17)

Lw = I−
Nc∑
c=1

1

Nc
1c1

T
c (18)

where 1 ∈ RN is a vector of ones, 1c ∈ RN is a vector
with elements 1c,i = 1 if li = c and 1c,i = 0 if li ̸=
c, and Nc denotes the cardinality of class c. In order to
exploit class geometric information, graphs describing class
data relationships can be used to define appropriate graph
weight matrix V elements as follows:

V
(w)
ij =

{ sij
Nci

, if lj = li,

0, otherwise,
(19)

where sij is a measure of similarity between ϕi and ϕj , like
the heat kernel function:

sij = exp

(
−
∥ϕi − ϕj∥22

2σ2

)
. (20)

σ is a parameter used to scale the Euclidean distance between
ϕi and ϕj . Here, we should note that one can exploit different
similarity measures in order to exploit a priori information
related to the problem at hand. However, the heat kernel
is usually used to this end. Finally, kNN graphs describing
local class data relationships can be exploited by defining
appropriate graph weight matrix V elements as follows:

Vij =

 1, if li = lj and j ∈ Ni,
1, if li = lj and i ∈ Nj ,
0, otherwise,

(21)

where Ni denotes the neighborhood of ϕi. In all our experi-
ments, 5NN graphs have been used.

By taking the Lagrangian of (13) with respect to the
constraints in (14) and (15), we obtain

L̃D,k =
1

2
wT

k Swk + c
N∑
i=1

ξik −
N∑
i=1

βikξik

−
N∑
i=1

αik

(
tikw

T
k ϕi − 1 + ξik

)
, (22)

where αik and βik are the Lagrange multipliers corresponding
to the constraints (14) and (15), respectively.

By determining the saddle points of L̃D,k with respect to
wk and ξij we obtain

wk = S−1
N∑
i=1

αiktikϕi (23)

and
c = αik + βik. (24)

In order to avoid singularity issues of S (S will be singular
when L > N ), a regularized version of S is exploited, that is,

S̃ = S+ rI = ΦLΦT + rI, (25)

where r > 0 is a regularization parameter used in order to ex-
ploit the strictly diagonally dominant criterion of nonsingular
matrices.

By substituting (23) and (24) in (22), and using (25), J̃k is
transformed to the following quadratic optimization problem:

min: L̃D,k =
1

2

N∑
i=1

N∑
j=1

αikαjktiktjkϕ
T
i S̃

−1ϕj −
N∑
i=1

αik,(26)

s.t.: 0 ≤ αik ≤ c, i = 1, ..., N. (27)

In the case of random hidden layer parameters, the network
output weights Wout = [w1, . . . ,wC ] are obtained by

wk = S̃−1
N∑
i=1

αikϕi, k = 1, . . . , C (28)

and the network output ot for a test vector xt ∈ RD is given
by

ot = WT
outϕt. (29)

In order to exploit kernel formulations, wk, k = 1, . . . , C
is expressed as a linear combination of the training data in the
ELM space, that is, wk = Φgk, where gk ∈ RN is a vector
containing the reconstruction weights of wk with respect to
Φ. L̃D in (22) becomes

L̃D,k =
1

2
gT
k (KLK+ rI)gk + c

N∑
i=1

ξik −
N∑
i=1

βikξik

−
N∑
i=1

αik

(
tikg

T
k ki − 1 + ξik

)
. (30)



4

By determining the saddle points of L̃D,k with respect to
gk and ξik, L̃D is transformed to the following equivalent dual
optimization problem:

min: L̃D =
1

2
(ak ◦ tk)T K̃(ak ◦ tk) + 1Tak, (31)

s.t.: 0 ≤ gik ≤ c, i = 1, ..., N. (32)

where K̃ = K(KLK+ rK)−1K.
The output ot = [ot1, . . . , otC ]

T of the network for a test
vector xt ∈ RD is given by

otk = wT
k ϕt =

N∑
i=1

αiktikϕ
T
i Φ(KLK+ rK)−1ΦTϕt

= (αk ◦ tk)TK(KLK+ rK)−1kt, (33)

where kt ∈ RN is a vector with its elements equal to kti =
ϕT

i ϕt, i = 1, . . . , N .

IV. DISCUSSION

By observing (6), (26), and (10), (31), it can be seen that
the optimization problems solved by the two approaches in
both the original and kernel formulations are similar. In this
section, the application of the optimization scheme described
in Section III in the original ELM space is shown to be
equivalent to the application of the S-ELM algorithm ([18])
in a transformed ELM space, for both the original and kernel
S-ELM formulations.

For the optimization scheme exploiting random hidden
layer parameters, we work as follows. The singular value
decomposition of S̃ is denoted by

S̃ = UΛUT (34)

where U ∈ RL×L is an orthonormal matrix containing the
singular vectors of S̃ corresponding to its singular values
λj , j = 1, . . . , L, stored in the diagonal matrix Λ ∈ RL×L.
Using (34), S̃−1 = UΛ−1UT . The following projection can
be defined:

ϕ̃i = Λ− 1
2UTϕi, (35)

where

ϕ̃i

T
ϕ̃j = ϕT

i UΛ−1UTϕj = ϕT
i S̃

−1ϕj . (36)

Thus, when random hidden layer parameters are employed,
the application of S-ELM ([18]) to ϕ̃i is equivalent to the
application of the alternative optimization scheme to ϕi.

For the optimization scheme used in the kernel formulation
of our approach, we work as follows. By analyzing the matrix
K̃, we obtain

K̃ = K(KLK+ rK)−1K

= K

[
1

r
K−1 − 1

r2

(
L−1 +

1

r
K

)−1
]
K

=
1

r

[
I−

(
L+ rK−1

)−1
L
]
K, (37)

where K was assumed to be invertible. Thus, when kernel
formulations are exploited, the application of S-ELM ([18])
using the kernel matrix K̃ = 1

r

[
I−

(
L+ rK−1

)−1
L
]
K is

equivalent to the application of our optimization scheme using
the kernel matrix K.

It should be noted here that, although this paper focuses
on the S-ELM algorithm proposed by [18], the equivalence
of the original ELM space and the transformed ELM space
obtained by following the process described earlier is related to
the optimization scheme used to calculate the network output
weights and not the process used to calculate the network’s
hidden layer outputs. Thus, the transformed feature space can
be exploited in any algorithm that uses a predefined data
mapping from the input space to the hidden layer space (e.g.,
[2], [28]).

TABLE I
DATASET DETAILS.

Dataset Samples Dimensions (D) Classes (C)
Abalone 4177 8 3
Australian 690 14 2
Column 310 6 3
German 1000 24 2
Glass 241 9 6
Heart 270 13 2
Indians 768 8 2
Ionosphere 351 34 2
Iris 150 4 3
Madelon 2600 500 2
Spect 267 22 2
Spectf 267 44 2

V. EXPERIMENTS

In this section, we present experiments conducted to com-
pare the performance of our method with that of S-ELM.
Twelve publicly available datasets were used from the machine
learning repository of the University of California Irvine (UCI)
([29]) to this end. Table I provides information concerning the
datasets used in our experiments. The datasets were normal-
ized so as to have zero mean and unit standard deviation.

As there is no widely adopted experimental protocol for
these datasets, the fivefold cross-validation procedure is per-
formed ([30]), by taking into account the class labels of
the data. That is, the data belonging to each class in five
sets were randomly set, and four sets of all classes were
used for training and the remaining ones for testing. This
process was performed five times, one for each test set in
order to complete an experiment. The performance of each
algorithm in one experiment was measured by calculating
the mean classification rate over all folds. Ten experiments
were performed and the performance of each algorithm was
measured by calculating the mean classification rate and the
observed standard deviation over all experiments.

In all the experiments, we compare the performance of S-
ELM ([18]) with that of our optimization scheme exploiting
intrinsic graphs. We employed the RBF kernel function:

KRBF (xi,xj , σ) = exp

(
−∥xi − xj∥22

2σ2

)
, (38)

where the value σ is set equal to the mean Euclidean distance
between the training data, that is, the natural scaling factor
for each dataset. The optimal value for the regularization



5

TABLE II
PERFORMANCE (%) ON STANDARD CLASSIFICATION PROBLEMS.

Dataset S-ELM S-ELM (18) S-ELM (17) S-ELM (21) S-ELM (19)
Australian 83.19(±0.39) 85.29(±0.49) 85.31(±0.37) 85.41(±0.39) 85.25(±0.41)
Abalone 52.7(±0.01) 52.85(±0.18) 52.72(±0.01) 53.09(±0.26) 53.08(±0.14)
Column 77.87(±0.7) 78.9(±0.67) 79(±0.84) 78.74(±0.81) 79(±0.47)
German 71.46(±0.17) 71.51(±0.2) 71.53(±0.18) 72.02(±0.27) 71.71(±0.44)
Glass 51.81(±1.14) 52.43(±1.23) 52.61(±1.27) 52.09(±1.09) 52.1(±1.19)
Heart 83.18(±1.13) 83.74(±0.98) 83.7(±0.96) 83.63(±1.06) 83.81(±0.87)
Indians 74.04(±0.3) 76.16(±0.33) 76.09(±0.31) 76.12(±0.32) 76.12(±0.35)
Ionosphere 64.1(±0.01) 68.24(±1.24) 64.25(±0.31) 68.95(±2.4) 67.61(±1.02)
Iris 88.67(±0.89) 90.8(±1.8) 89.73(±1) 89.13(±0.77) 91.93(±1.9)
Madelon 59.85(±0.43) 59.97(±0.44) 59.95(±0.39) 60.02(±0.47) 59.92(±0.42)
Spect 82.4(±0.53) 83.48(±0.78) 82.44(±0.6) 82.55(±0.59) 83.07(±0.77)
Spectf 81.31(±0.52) 82.91(±0.44) 81.91(±0.48) 81.65(±0.66) 82.13(±0.64)

parameters c, r has been determined by applying grid search
using the values c = 10l, l = −5, . . . , 5 and r = 10q, q =
−5, . . . , 5.

Table II illustrates the mean classification rates and the ob-
served standard deviation values obtained by applying S-ELM
and our S-ELM formulation exploiting the intrinsic graphs
described in (17), (18), (19), and (21). We can observe that
the exploitation of geometric data information in the S-ELM
optimization process can enhance the network’s performance
in general. By exploiting the data dispersion in the ELM space,
S-ELM with the graph described in (17) outperforms S-ELM
in most cases. The exploitation of geometric class information
in the ELM space also enhances classification performance, as
S-ELM exploiting graphs that express intrinsic class geometric
information described in (18), (19), and (21) outperform S-
ELM in most cases.

VI. CONCLUSIONS

In this paper, we described an optimization scheme to
calculate the output weights of a SLFN network using the S-
ELM classification scheme. This optimization scheme exploits
data relationships in the ELM space in order to incorporate
geometric information in the derived decision function. By
following this approach, it is expected that better generaliza-
tion performance can be achieved, when compared with the
solutions obtained by applying the S-ELM algorithm. We have
experimentally evaluated the effect of adopting global and
local geometric information described in the within-class/total
scatter and kNN graphs, respectively. The experimental results
confirm our assumptions. The kernel formulations of our
method operating in ELM spaces of arbitrary dimensions have
also been provided. We have shown that the application of the
optimization scheme that exploits geometric data relationships
in the original ELM space is equivalent to the application of
the original S-ELM to a transformed ELM space, for both the
original and kernel formulations. This fact can be exploited in
order to use efficient existing implementations.

VII. ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 316564 (IM-
PART).

REFERENCES

[1] D. Broomhead and D. Lowe, “Multivariable functional interpolation and
adaptive networks,” Complex Systems, vol. 2, pp. 321–355, 1988.

[2] W. Schmidt, M. Kraaijveld, and R. Duin, “Feedforward neural networks
with random weights,” International Conference on Pattern Recognition,
1992.

[3] Y. Pao, G. Park, and D. Sobajic, “Learning and generalization charac-
teristics of random vector functional-link net,” Neurocomputing, vol. 6,
pp. 163–180, 1994.

[4] C. Chen, “A rapid supervised learning neural network for function inter-
polation and approximation,” IEEE Transactions on Neural Networks,
vol. 7, no. 5, pp. 1220–1230, 1996.

[5] B. Widrow, A. Greenblatt, Y. Kim, and D. Park, “The no-prop algorithm:
A new learning algorithm for multilayer neural networks,” Neural
Networks, vol. 37, pp. 182–188, 2013.

[6] A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks:
Replacing minimization with randomization in learning,” Advances in
Neural Information Processing Systems, 2008.

[7] G. Huang, Q. Zhu, and C. Siew, “Extreme Learning Machine: a new
learning scheme of feedforward neural networks,” IEEE International
Joint Conference on Neural Networks, 2004. Proceedings, vol. 2, pp.
985–990, 2004.

[8] P. Bartlett, “The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size of the
network,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp.
525–536, 1998.

[9] M. Li, G. Huang, P. Saratchandran, and N. Sundararajan, “Fully complex
Extreme Learning Machine,” Neurocomputing, vol. 68, no. 13, pp. 306–
314, 2005.

[10] N. Liang, G. Huang, P. Saratchandran, and N. Sundararajan, “A fast
and accurate on-line sequantial learning algorithm for feedforward
networks,” IEEE Transactions on Neural Networks, vol. 17, no. 6, pp.
1411–1423, 2006.

[11] G. Huang, L. Chen, and C. Siew, “Universal approximation using
incremental constructive feedforward networks with random hidden
nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879–
892, 2006.

[12] G. Huang and L. Chen, “Convex incremental Extreme Learning Ma-
chine,” Neurocomputing, vol. 70, no. 16, pp. 3056–3062, 2008.

[13] G. Feng, G. Huang, Q. Lin, and R. Gay, “Error minimized Extreme
Learning Machine with growth of hidden nodes and incremental learn-
ing,” IEEE Transactions on Neural Networks, vol. 20, no. 8, pp. 1352–
1357, 2009.

[14] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse,
“OP-ELM: Optimally Pruned Extreme Learning Machine,” IEEE Trans-
actions on Neural Networks, vol. 21, no. 1, pp. 158–162, 2010.

[15] Y. Wang, F. Cao, and Y. Yuan, “A study on effectiveness of Extreme
Learning Machine,” Neurocomputing, vol. 74, no. 16, pp. 2483–2490,
2011.

[16] G. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme Learning Machine
for regression and multiclass classification,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 2,
pp. 513–529, 2012.

[17] A. Iosifidis, A. Tefas, and I. Pitas, “Minimum Class Variance Extreme
Learning Machine for human action recognition,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 23, no. 11, pp. 1968–
1979, 2013.



6

[18] Z. Bai, G. Huang, W. Wang, H. Wang, and M. Westover, “Sparse
Extreme Learning Machine for classification,” IEEE Transactions on
Cybernetics, vol. 44, no. 10, pp. 1858–1870, 2014.

[19] A. Iosifidis, A. Tefas, and I. Pitas, “Regularized Extreme Learning
Machine for multi-view semi-supervised action recognition,” Neurocom-
puting, vol. 145, pp. 250–262, 2014.

[20] X. Liu, S. Lin, J. Fang, and Z. Xu, “Is Extreme Learning Machine
feasible? a theoretical assessment (Part I),” IEEE Transactions on Neural
Networks and Learning Systems, vol. 26, no. 1, pp. 7–20, 2015.

[21] ——, “Is Extreme Learning Machine feasible? a theoretical assessment
(Part II),” IEEE Transactions on Neural Networks and Learning Systems,
vol. 26, no. 1, pp. 21–34, 2015.

[22] G. Huang, “An insight into extreme learning machines: Random neurons,
random features and kernels,” Cognitive Computation, vol. 6, pp. 376–
390, 2014.

[23] A. Iosifidis, A. Tefas, and I. Pitas, “On the kernel Extreme Learning
Machine classifier,” Pattern Recognition Letters, vol. 54, pp. 11–17,
2015.

[24] G. Orphanidis and A. Tefas, “Exploiting subclass information in support
vector machines,” International Conference on Pattern Recognition,
2012.

[25] G. Arvanitidis and A. Tefas, “Exploiting graph embedding in support
vector machines,” IEEE International Workshop on Machine Learning
for Signal Processing, 2012.

[26] F. Sha, Y. Lin, L. Saul, and D. Lee, “Multiplicative updates for nonneg-
ative quadratic programming,” Neural Computation, vol. 19, no. 8, pp.
2004–2031, 2007.

[27] S. Yan, D. Xu, B. Zhang, and H. Zhang, “Graph Embedding and
extensions: A general framework for dimensionality reduction,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 29,
no. 1, pp. 40–51, 2007.

[28] J. Luo, C. Vong, and P. Wong, “Sparse Bayesian Extreme Learning Ma-
chine for multi-classification,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 25, no. 4, pp. 836–843, 2014.

[29] A. Frank and A. Asuncion, “Uci machine learning repository,” 2010.
[30] P. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach.

Prentice-Hall, 1982.


