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Abstract— In this paper, we discuss the connection of the kernel
versions of the ELM classifier with infinite Single-hidden Layer
Feedforward Neural networks and show that the original ELM
kernel definition can be adopted for the calculation of the ELM
kernel matrix for two of the most common activation functions,
i.e., the RBF and the sigmoid functions. In addition, we show
that a low-rank decomposition of the kernel matrix defined on
the input training data can be exploited in order to determine an
appropriate ELM space for input data mapping. The ELM space
determined from this process can be subsequently used for net-
work training using the original ELM formulation. Experimental
results denote that the adoption of the low-rank decomposition-
based ELM space determination leads to enhanced performance,
when compared to the standard choice, i.e., random input weights
generation.

Index Terms— Extreme Learning Machine,
Layer Networks, Infinite Networks.

Single-hidden

I. INTRODUCTION

Extreme Learning Machine (ELM) is an algorithm for
Single-hidden Layer Feedforward Neural (SLFN) networks
training ([1], [2]) that leads to fast network training requiring
low human supervision. The main idea in ELM is that the
network hidden layer parameters need not to be learned, but
can be randomly assigned. The network output parameters can
be, subsequently, analytically calculated. Despite the fact that
the determination of the network hidden layer outputs is based
on randomly assigned input weights, it has been proven that
SLFN networks trained by using the ELM algorithm have the
properties of global approximators ([2], [3]). In the original
ELM algorithm ([1]), the trained network not only tends to
reach the smallest training error, but also the smallest output
weight norm, which indicates good generalization performance
([4]). In addition, several optimization schemes have been
proposed in the literature for the calculation of the network
output parameters, each highlighting different properties of the
ELM networks ([5], [6], [2], [7], [8], [9], [10], [11], [12]),
while it has been recently shown that ELM networks are able
to outperform other state-of-the-art classifiers, like Support
Vector Machine (SVM) ([11], [13]). Due to its effectiveness
and its fast learning process, the ELM network has been
adopted in many classification problems ([14], [15], [16], [17],
[18], [19], [20], [21]).

As has been pointed out in ([12]), the ELM algorithm
can be considered to be a learning process formed by two
processing steps. The first step corresponds to a (usually
nonlinear) mapping process of the input space R” to a
(usually) high-dimensional feature space R” (noted as ELM
space), preserving some properties of interest for the training
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data. In the second step, an optimization scheme is employed
for the determination of a linear projection of the high-
dimensional data to a low-dimensional feature space R,
where classification is performed by a linear classifier. In the
above-described process, the dimensionality L of the ELM
space is usually empirically chosen. In order to find the
optimal ELM space dimensionality several methods have been
proposed ([9], [7]). Such methods either start by using a large
number of hidden neurons and iteratively decrease it as long
as the classification residual error remains above a pre-defined
threshold, or start by using a small number of hidden neurons
and iteratively increase it in order to achieve an adequate
training performance.

In order to avoid the application of time-consuming algo-
rithms for the determination of the ELM space dimensionality,
kernel versions of the ELM classifier have been recently
proposed ([11], [22]). The idea in these ELM variants is that
the network hidden layer outputs need not to be calculated, but
they can be inherently encoded in the so-called ELM kernel
matrix defined by K = ®7®, where ® ¢ RLXN refers
to the training data representations in the ELM space and
N is the number of training data. That is, the ELM kernel
matrix is defined on the network hidden layer outputs ¢;, ¢ =
1,..., N and not on the original D-dimensional training data
x;. This contradicts with the common strategy followed in
the literature that adopts the standard kernel approach for the
calculation of K ([11], [22]), since in the standard kernel
approach the corresponding kernel matrix is a function of
the input data x;. In order to avoid this contradiction, the
Cholesky decomposition of the kernel matrix defined on the
input training data x; has been employed in ([23]), in order
to calculate an appropriate matrix ® € RV*N_ While this
process leads to correctly defined network hidden layer outputs
for the training data, it has the following drawbacks: 1) the
use of Cholesky decomposition sets the restriction that the
dimensionality of the obtained ELM space must be equal to
N and 2) since the obtained matrix ® is a lower triangular
matrix, each training sample is (actually) mapped to an ELM
space of different dimensions.

In this paper, we show that for two types of network hidden
layer activation functions, the original ELM matrix definition
can be exploited for ELM networks training. To this end,
we discuss the connection of the kernel ELM networks to
infinite SLFN networks ([24], [25]). In addition, we show
that a low-rank decomposition of the kernel matrix defined on
the input training data can be employed for the determination
of an appropriate ELM space that overcomes the drawbacks
of the Cholesky decomposition used in ([23]). Finally, we
experimentally compare the performance of ELM networks
exploiting randomly assigned hidden layer parameters with
the performance of ELM networks trained by using a low-



rank decomposition of the kernel matrix for the determination
of the hidden layer outputs. Experimental results show that,
for the same ELM space dimensionality, the latter choice leads
to enhance classification performance.

The rest of the paper is structured as follows. Section II
provides an overview of the ELM algorithm. In Section V, we
discuss the connection ELMs with infinite networks. In Section
IV, we show that a low-rank decomposition of the kernel
matrix defined on the input training data can be employed for
the determination of an appropriate ELM space. Experiments
conducted in real datasets are provided in Section VI. Finally,
conclusions are drawn in Section VII.

II. OVERVIEW OF ELM NETWORKS

Let us denote by {x;,/;};=1,.. n a set of N vectors x; €
RP and the corresponding class labels I; € {1,...,C} that
can be used to train a SLFN network consisting of D input
(equal to the dimensionality of x;), L hidden and C output
(equal to the number of classes involved in the classification
problem) neurons. The elements of the network target vectors
t; = [tiy ey tic}T, each corresponding to a training vector x;,
are set to t;; = 1 for vectors belonging to class k, i.e., when
l; =k, and to t;;, = —1, otherwise. The network input weights
Wi, € RP*L and the hidden layer bias values b € R are
randomly assigned, while the network output weights W, €
RE*C are analytically calculated, as subsequently described.

Given an activation function ®(-) for the network hidden
layer and using a linear activation function for the network
output layer, the response 0; = [0;1, - .-, 0;c]T of the network
corresponding to x; is calculated by:

L
Oik = Zwkj q)(vjaijxi)a k=1,..,C, (D
j=1

where v is the j-th column of W, and wy, is the k-th column
of W ;. By storing the network hidden layer outputs ¢; € R”
corresponding to all the training vectors x;, ¢ = 1,..., N in
a matrix ® = [¢q, ..., @], the network response for all the
training data O € RE*" can be expressed in a matrix form
as:

0=Wg,® )

The original ELM algorithm ([1]) assumes zero training
error. That is, it is assumed that o, =t;, ¢ = 1,..., N, or by
using a matrix notation O = T, where T = [t,...,ty] is a
matrix containing the network target vectors. By using (2), the
network output weights W,,; can be analytically calculated
by:

Wou = (837) " @ T7 = &1 T7. 3)

In the case where L > N, the calculation of the network
output weights W,,; through (3) is inaccurate, since the
matrix ®®7 is singular. A regularized version of the ELM
algorithm that allows small training errors and tries to mini-
mize the norm of the network output weights W,,,; has been
proposed in ([11]). In this case, the network output weights

are calculated by solving the following optimization problem:
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Subject to: W o, =t;— &, i=1

where &, € R is the error vector corresponding to x; and A
is a parameter denoting the importance of the training error
in the optimization problem, satisfying A > 0. By substituting
the constraints (5) in (4) and determining the saddle point of
JrEeLm With respect to W ¢, the network output weights are
obtained by:

1 —1
Wy = <<I»¢>T + AI> o (6)
or
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where I € REXE s the identity matrix.
In the latter case, after the calculation of the network output
weights W,,,;, the network response for a given vector x; €
RP is given by:

-1 -1
oo=W. ¢, =T (K + il) ®Tp, =T (K + iI) ki,
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where k; is the ELM kernel vector for x;.

Recently, an optimization scheme leading to sparse ELM
solution has been proposed in ([22]). This ELM variant solves
the following optimization problem for the calculation of the
the network output weights:

N
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Subject to: tywig, >1—€&,, i=1,.. N,(10)
&r>0, i=1,..,N. (11)

The above optimization problem is solved for all the classes
k = 1,...,C in an One-Versus-Rest manner for the calcu-

lation of W, in the case of multiple classes. By taking
the Lagrangian of (9) with respect to the constraints in
(10) and (11), and determining its saddle point, Js_grns
is transformed to the following dual quadratic optimization
problem:

N N N
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Subject to: 0 < qa;, <¢, ¢=1,...,N.
Therefore the output o; = [0;1,. .., 0;c] of the sparse ELM

for a given vector x; € R? is given by:

N N
o = Wiy =Y cutikd] ¢ = > itk k=1,...,C.

i=1 i=1 (14)
An advantage of the solution in (14), when compared to the
one in (8), is that (usually) most of the values in oy, are equal
to zero, thus, leading to faster computation of o;.



III. CONNECTION OF ELM TO INFINITE SLFNS

As has been described above, in ELMs the network outputs
can be obtained by exploiting only dot products of the data
representations in the ELM space, as detailed in (8) and
(14) for the ELM and Sparse ELM cases, respectively. By
expressing such dot products using the ELM kernel matrix
K, the number of hidden layer neurons needs not to be
determined. That is, the network hidden layer may consist of
arbitrary (even infinite) number of neurons. As has been shown
in ([23]), an ELM network consisting of a sufficiently large
number of hidden layer neurons operates as an approximation
of an infinite SLFN network ([24], [25]).

In ([24], [25]), it has been proven that infinite SLFN net-
works employing a linear activation function for the network
output layer (which is the case of ELMs) can be modeled
as Gaussian processes. Specifically, by letting the number of
hidden layer neurons go to infinity and setting a Gaussian
prior to the hidden layer weights vy, k =1, ..., L, L — oo, the
evaluation of Ey[¢;, ¢;] for all 4, j in the training and test sets
leads to the determination of the covariance function needed
to describe the SLFN network as a Gaussian process. These
expectations are obtained by integrating over the relevant
probability distributions of the biases and the input weights
V.

For a Gaussian prior over the distribution of v, so that vy, ~
N(0,021), the adoption of an RBF hidden layer activation

o — 2 .
function ¢(x;,vy) = exp (—%) leads to a covariance
function of the form:
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where 07 = (07 + 07)/(0v0y), 02 = 207 + 0,/0z and
0k, = 207 4 05 If 07 — oo, we find that C(x;,%;)
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e:z:p( , 1.e. the RBF kernel function defined on
the training (Sand test) data x;.

For the case of sigmoid hidden layer activation function, by
making the assumption that vi, K = 1,..., L are drawn from
a zero-mean Gaussian distribution with covariance matrix X,
i.e., vi ~ N(0,02%), the corresponding covariance function
is given by ([25]):

~T 3.
C(x;,x;) = —sin~ " X; 2%, ,
T SRR (14 %] D,

(16)

where %; is the augmented input vector X; = [1,x7]7.

From the above, it can be seen that by adopting the covari-
ance functions determined for the RBF or the sigmoid hidden
layer activation functions for the determination of K, k;, ELM
networks are approximations of infinite SLFN networks. Thus,
it can be seen that the adoption of the RBF kernel function
(defined over the input data x;) corresponds to the case of
RBF hidden layer activation function under the assumption of
Gaussian distribution for the randomly sampled input weights
W,,, N(0,02I) using 02 — oo. It should be noted though

that, the adoption of the sigmoid kernel for the calculation of

the ELM kernel matrix K (defined over the input data x;) does
not correspond to the case of sigmoid hidden layer activation
function (in this case the covariance function in (16) should be
used). This is also the case for most of the kernel functions
defined on the input data x;, where appropriate covariance
functions should be defined and used. However, as will be
discussed in the next Section, appropriate ELM spaces can
be obtained by employing a low-rank decomposition of the
standard kernel matrix K defined on the input data.

IV. ELM SPACE DETERMINATION BASED ON LOW-RANK
DECOMPOSITION OF K

By exploiting the fact that the ELM kernel is defined by
K = ®7® and that the maximal dimensionality of the
manifold where the training data belong to is equal to N,
a low-rank decomposition of the kernel matrix defined on the
input training data can be employed for the determination of
an appropriate ELM space. Let us denote by U, V e RV*V
two orthogonal matrices and S € RV*Y a diagonal matrix
obtained by applying Singular Value Decomposition (SVD)
on K, i.e.:

K =USsVT, (17)

where we assume that the singular values appearing in S are
sorted in descending order. U, V are sorted accordingly. Since
K is symmetric and positive semi-definite, U = V and, thus,
K = USU7. We can define the hidden layer outputs for the
training data x;, ¢ = 1,..., N to be equal to ® = S:UT.

In the case where we assume that the network hidden layer
consists of 7 < N neurons, we can keep only 7 of the leading
singular values (and the corresponding singular vectors), in

(15) order to determine a low-rank approximation of K, i.e.:

K = USU”, (18)
where U € RVX" and S € R ". In this case, ® =
S:07, leading to the determination of an ELM space having
dimensionality equal to » < N. In both cases, a test sample
x; can be mapped to the previously determined ELM space
by applying:

¢, = ®K (19)

and the network response can be obtained by using (8), (14)
for the ELM and S-ELM algorithms, respectively. It should be
noted here that, similar low-rank approximations have been
found to be effective in other classification schemes where
they have been used for regularization ([26], [27], [28]).

V. TIME COMPLEXITY ANALYSIS

In the following, we provide a time complexity analysis
for networks trained using the ELM algorithm exploiting
random hidden weights, the KELM and the proposed method
exploiting low-rank approximation of the kernel ELM matrix.

The ELM algorithm exploiting random hidden weights
requires the following processing steps:

o Calculation of the hidden layer output matrix ® having
time complexity equal to O(NLD).



o Calculation of the network output weight matrix W,
through (6), having time complexity equal to O(L3® +
L?N + LNC).

The KELM algorithm requires the following processing steps:

o Calculation of the kernel matrix K having time complex-
ity equal to O(N2D).

o Calculation of the network output weight matrix W,
through (7) having time complexity equal to O(2N?3 +
CN?).

Finally, the proposed method requires the following processing
steps:

o Calculation of the kernel matrix K having time complex-
ity equal to O(N2D).

o Calculation of the SVD approximation of K having time
complexity equal to O(N3).

o Solution of the problem in (6) having time complexity
equal to O(r3 +r>N +rNC).

From the above, the time complexity of KELM is equal
to O(2N? + (C + D)N?), while the time complexity of the
proposed method is equal to O(N3+DN?+73+r2N+rNC).
As will be shown in the experimental section, the proposed
method achieves satisfactory performance for values r << N
and, thus, the terms involving r in its time complexity are
not significant, when compared to the terms involving N3.
Thus, we can conclude that the computational complexity of
the proposed method is the same with that of the KELM
algorithm, i.e. O(N3).

The time complexity of the ELM exploiting random hidden
weights is equal to O(L3 + L?N + (C 4+ D)LN) ~ O(L? +
L?N). In the case where the number of hidden layer neurons is
selected to be much lower than the number of training data, i.e.
L << N, the time complexity of KELM and of the proposed
method is higher than the one of the ELM exploiting random
hidden weights. However, as will be seen in the experimental
section, in order to achieve performance comparable to that
of the KELM and the proposed method, the ELM exploiting
random hidden weights requires a high number of hidden
layer neurons (L o« N). In that case, its time complexity is
comparable with that of KELM and the proposed method.

VI. EXPERIMENTS

In this Section, we present experiments conducted in order
to illustrate that the adoption of a low-rank decomposition
of the kernel matrix for the determination of the hidden
layer outputs (generally) outperforms the random assignment
choice.

We have employed twelve publicly available datasets to this
end: six from the machine learning repository of University of
California Irvine (UCI) ([29]) and six facial image datasets,
namely the AR, ORL and Extended YALE-B (designed for
face recognition) and the BU, COHN-KANADE and JAFFE
(designed for facial expression recognition) datasets. Table I
provides information concerning the UCI data sets used, while
a brief description of the facial image datasets is provided in
the following subsections. Experimental results are provided
in subsection VI-C.

TABLE I
UCI DATA SETS DETAILS.

Data set Samples | Dimensions | Classes
Libras 360 90 15
Madelon 2600 500 2
Opt. Digits 5620 64 10
Segmentation 2310 19 7
Synth. Control 600 60 6
Tic-tac-toe 958 9 2

In all the experiments we apply the regularized ELM (6)
and the sparse ELM (14) algorithms for different ELM space
dimensionalities. In the case of random hidden layer neuron
parameter assignment, we have employed the RBF activation
function:

- lel%)

202 ’
where the value o is set equal to the mean Euclidean distance
between the training data x; and the network input weights v,
which is the natural scaling factor for the Euclidean distances
between x; and v;. In the case of low-rank decomposition-
based ELM space determination, we employed the RBF kernel
function:

Prpr(xi,vj,0) = e:vp( (20)

X - Xj||3>

202 ’
where the value o is set equal to the mean Euclidean distance
between the training data. The optimal value for the regular-
ization parameter A has been determined by applying linear
search using the values A = 10", r = —3,...,3.

Krpr(xi,xj,0) = efﬂp( (20

A. Face recognition datasets

The AR dataset ([30]) consists of over 4000 facial images
depicting 70 male and 56 female faces. In our experiments, we
have used the preprocessed (cropped) facial images provided
by the database, depicting 100 persons (50 males and 50 fe-
males) having a frontal facial pose, performing several expres-
sions (anger, smiling and screaming), in different illumination
conditions (left and/or right light) and with some occlusions
(sun glasses and scarf). Each person was recorded in two
sessions, separated by an interval of two weeks. Example
images of the dataset are illustrated in Figure 1.
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Fig. 1. Facial images depicting a person of the AR dataset.

The ORL dataset ([31]) consists of 400 facial images
depicting 40 persons (10 images each). The images were
captured at different times and with different conditions, in
terms of lighting, facial expressions (smiling/not smiling) and
facial details (open/closed eyes, with/without glasses). Facial
images were taken in frontal position with a tolerance for face
rotation and tilting of up to 20 degrees. Example images of
the dataset are illustrated in Figure 2.

The Extended YALE-B dataset ([32]) consists of facial
images depicting 38 persons in 9 poses, under 64 illumination
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Fig. 2. Facial images depicting a person of the ORL dataset.

conditions. In our experiments, we have used the frontal
cropped images provided by the database. Example images
of the dataset are illustrated in Figure 3.
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Fig. 3. Facial images depicting a person of the Extended YALE-B dataset.

B. Facial expression recognition datasets

The BU dataset ([33]) consists of facial images depicting
over 100 persons (60% feamale and 40% male) with a variety
of ethnic/racial background, including White, Black, East-
Asian, Middle-East Asian, Hispanic Latino and other types of
persons. All expressions, except the neutral one, are expressed
at four intensity levels. In our experiments, we have employed
the images depicting the most expressive intensity of each
facial expression. Example images of the dataset are illustrated
in Figure 4.
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Fig. 4.  Facial images depicting a person of the BU dataset. From left to
right: neutral, anger, disgust, fear, happy, sad and surprise.

The COHN-KANADE dataset ([34]) consists of facial im-
ages depicting 210 persons of age between 18 and 50 (69%
female, 31% male, 81% Euro-American, 13% Afro-American
and 6% other groups). We have randomly selected 35 images
for each facial expression, i.e., anger, disgust, fear, happyness,
sadness, surprise and neutral ones. Example images of the
dataset are illustrated in Figure 5.
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Fig. 5. Facial images from the COHN-KANADE dataset. From left to right:
neutral, anger, disgust, fear, happy, sad and surprise.

The JAFFE dataset ([35]) consists of 210 facial images
depicting 10 Japanese female persons. Each expression is
depicted in 3 images for each person. Example images of the
dataset are illustrated in Figure 6.

C. Experimental Results

In our first set of experiments, we have applied the algo-
rithms on the UCI datasets. Since there is no widely adopted
experimental protocol for these datasets, we perform the five-
fold cross-validation procedure ([36]), by taking into account
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Fig. 6.  Facial images depicting a person of the JAFFE dataset. From left
to right: neutral, anger, disgust, fear, happy, sad and surprise.

the class labels of the data. That is, we randomly split the
data belonging to each class in five sets and we use four
sets of all classes for training and the remaining ones for
testing. This process is performed five times, one for each test
set in order to complete an experiment. The performance of
each algorithm in one experiment is measured by calculating
the mean classification rate over all folds. We perform 10
experiments and measure the performance of each algorithm
by calculating the mean classification rate and the observed
standard deviation over all experiments.

Table II illustrates the performance of the ELM and S-
ELM algorithms for different hidden layer dimensionalities
L for the cases of random input weights assignment and low-
rank decomposition of the kernel matrix K. As can be seen
in this Table, the adoption of low-rank decomposition of K
generally provides enhanced performance, when compared to
the random assignment choice for both the ELM and S-ELM
algorithms. In addition, ELM and S-ELM networks trained
by using the low-rank decomposition choice for input weights
determination seem to be more robust, since the corresponding
standard deviations over all the experiments for different ELM
dimensionalities are smaller.

In our second set of experiments, we have applied the
algorithms on the facial image datasets. Grayscale facial
images with intensity values in (0,1) have been employed
to this end. Since there is no widely adopted experimental
protocol for these datasets too, we also perform the five-fold
cross-validation procedure ([36]), by taking into account the
class labels of the data (similar to the experiments conducted
on the UCI datasets).

Tables IIT and IV illustrate the performance of the ELM and
S-ELM algorithms for different hidden layer dimensionalities
L for the cases of random input weights assignment and
low-rank decomposition of the kernel matrix K on the face
recognition and facial expression recognition datasets, respec-
tively. Similar to the results obtained for the UCI datasets, the
adoption of low-rank decomposition of K for input weight
determination generally provides enhanced performance, when
compared to the random assignment choice, for both the ELM
and S-ELM algorithms.

VII. CONCLUSIONS

In this paper, we discussed the connection of the kernel ver-
sions of the ELM classifier with infinite Single-hidden Layer
Feedforward Neural networks and showed that the original
ELM kernel definition can be adopted for the calculation of
the ELM kernel matrix for the RBF and sigmoid hidden layer
activation functions. In addition, we showed that a low-rank
decomposition of the kernel matrix defined on the input train-
ing data can be exploited in order to determine an appropriate



TABLE I

EXPERIMENTAL RESULTS ON UCI DATASETS.

ELM S-ELM
L Random Low-rank Random Low-rank
Libras 50 66.8 (£1.69) 76.77 (+1.68) 76.88 (£1.72) | 85.66 (+0.52)
100 70.5 (£1.54) 82.49 (+0.91) 78.38 (£1.33) | 86.17 (£0.82)
250 75.2 (£1.9) 86.34 (+0.54) 78.93 (£1.41) | 86.49 (£0.64)
500 77.21 (£1.6) 86.32 (+0.52) 79.24 (£1.64) | 86.52 (£0.69)
1000 | 78.4 (£1.08) - 79.35 (£1.35) -
Madelon 50 53.87 (£0.94) | 60.34 (+0.33) 53.39 (£1.02) | 60.32 (£0.29)
100 55.4 (£0.97) 60.04 (+0.35) 54.75 (£0.86) | 59.79 (£0.43)
250 | 56.96 (£0.82) | 59.85(£0.38) 56.11 (£0.92) | 58.83 (£0.44)
500 | 57.87 (£0.53) | 59.43 (£0.47) 56.61 (£0.31) | 58.44 (£0.85)
1000 | 58.54 (£0.44) | 59.45(£0.43) 57.98 (£0.48) | 58.33 (£0.74)
Opt. Digits 50 92.02 (£0.27) | 98.21(£0.04) 96.92 (+£0.27) | 94.12 (+0.09)
100 | 94.51 (£0.23) 98.5 (£0.13) 97.34 (£0.23) | 96.51 (£0.09)
250 | 97.16 (£0.19) 98.75 (£0.1) 97.45 (£0.19) | 98.42 (£0.09)
500 | 98.08 (£0.15) 98.8 (£0.09) 97.68 (£0.15) | 98.81 (+0.07)
1000 | 98.54 (£0.13) 98.83 (+0.1) 97.89 (£0.13) | 99.01 (£0.06)
Segmentation 50 90.19 (£0.42) | 96.47 (+0.14) 95.85 (£0.23) | 96.47 (+0.21)
100 91.79 (£0.3) 96.63 (+0.16) 95.9 (£0.28) 96.63 (+0.21)
250 | 93.09 (£0.13) | 96.67 (£0.22) 96.2 (£0.2) 96.67 (+£0.12)
500 | 93.55 (£0.12) 96.68 (+0.2) 96.39 (£0.24) | 96.68 (£0.14)
1000 | 93.77 (£0.15) | 96.68 (£0.19) 96.52 (£0.18) | 96.68 (£0.14)
Synth. Control 50 84.3 (£1.34) 97.78 (+0.45) 97.05 (£0.96) | 98.92 (£0.24)
100 92.7 (£1.23) 97.43 (+0.39) 97.63 (£0.8) 98.9 (£0.2)
250 | 96.03 (£0.61) | 97.55 (+0.36) 98.08 (£0.48) | 98.97 (£0.21)
500 | 96.27 (£0.34) | 97.55(£0.33) 98.1 (£0.29) 98.97 (+0.21)
1000 | 96.33 (£0.53) - 98.28 (£0.26) -
Tic-tac-toe 50 80.05 (£2.09) | 82.24 (+0.59) 90.85 (+5.22) | 82.24 (+0.59)
100 88.11 (£1.34) | 87.96 (£0.71) 93.12 (£4.07) | 87.96 (£0.71)
250 | 96.49 (£0.69) | 98.81 (£0.28) 93.45 (£2.42) | 98.81 (£0.28)
500 | 98.35 (£0.01) | 98.81 (£0.32) 97.93 (£0.19) | 98.81 (£0.32)
1000 | 98.33 (£0.01) | 98.82 (£0.36) 98.33 (£0.01) | 98.82 (£0.36)
TABLE III
EXPERIMENTAL RESULTS ON THE FACE RECOGNITION DATASETS.
ELM S-ELM
L Random Low-rank Random Low-rank
AR 50 73.45 (+1.19) | 64.99 (£0.82) || 48.64 (+2.58) | 84.23 (+0.48)
100 90.11 (£0.69) | 85.44 (£0.42) 77.32 (£1.19) | 90.28 (£0.41)
250 97.05 (£0.29) | 96.79 (£0.24) 93.95(£0.37) | 93.21 (£0.38)
500 | 98.36 (£0.17) | 98.92 (+0.16) 96.53 (£0.39) | 93.94 (£0.38)
1000 | 98.77 (£0.13) | 99.31 (£0.12) 97.03 (£0.25) | 94.32 (£0.34)
ORL 50 88.83 (£1.14) | 95.37 (+0.65) 58.1 (£2.28) 97.5 (£0.54)
100 93.8 (£1.19) 97.97 (+0.3) 75.88 (£1.42) | 97.58 (£0.49)
250 95.63 (£0.8) 98.23 (+0.34) 84 (£0.93) 97.65 (+0.49)
500 | 96.38 (£0.59) | 98.27 (+0.36) 84.95 (£1.38) | 97.65 (+£0.47)
1000 | 96.5 (£0.53) - 85.28 (£1.2) -
YALE 50 69.42 (+1.09) 69.2 (£0.59) 73.27 (£1.44) 88.5 (+0.18)
100 | 82.24 (£0.73) | 83.59 (£0.48) 86.11 (£0.59) | 91.06 (£0.26)
250 | 91.73 (£0.41) | 94.57 (£0.32) 92.27 (£0.28) | 92.75 (£0.29)
500 | 95.51 (£0.28) | 97.59 (£0.15) 93.09 (£0.44) | 93.35(+0.26)
1000 | 97.04 (£0.15) 98.28 (£+0.1) 93.52 (£0.36) | 93.56 (£0.31)




TABLE IV

EXPERIMENTAL RESULTS ON THE FACIAL EXPRESSION RECOGNITION DATASETS.

ELM S-ELM
L Random Low-rank Random Low-rank

BU 50 48.91 (£1.88) | 57.06 (£1.11) 44.87 (£1.5 56.17 (+0.9)
100 | 55.09 (£1.27) | 58.99 (£1.08) 50.97 (£1.47) | 57.71 (£1.05)
250 | 60.93 (£1.02) | 60.99 (£1.06) 57.8 (£1.94) 59.09 (+0.54)
500 62.6 (£1.12) 61.73 (£0.79) 61.17 (£1.25) | 59.61 (£0.94)
1000 | 62.91 (£+1.21) 62.1 (£0.79) 61.61 (£1.17) | 59.74 (£0.95)
KANADE 50 54.98 (£2.18) | 59.76 (+£2.74) 42.33 (£2.75) | 59.96 (+2.23)
100 | 59.55 (+£2.47) | 63.39 (+1.44) 52.24 (£2.92) | 62.57 (+1.96)
250 | 63.88 (£1.61) | 64.41 (£2.69) 58.41 (£2.45) | 62.82 (£2.05)

500 | 66.65 (£1.76) - 62.16 (£2.55) -

1000 | 68.69 (£1.95) - 63.51 (£1.57) -
JAFFE 50 52.1 (£2.25) 74.1 (£1.44) 36.95 (£3.02) 81.1 (£2.46)
100 | 62.81 (£1.66) | 83.67 (£1.35) 48.05 (£2.79) | 82.71 (£2.39)
250 | 73.62 (£2.42) | 87.38 (£1.65) 63.81 (£2.12) | 84.76 (£2.21)

500 | 79.57 (£1.41) - 73.33 (£2.55) -

1000 | 83.38 (£1.86) - 80.24 (£2.26) -

ELM space for input data mapping, which can be subsequently
used for ELM network training. Experimental results denote
that the adoption of the low-rank decomposition-based ELM
space determination generally leads to enhanced performance,
when compared to the standard choice, i.e., random input
weights generation.
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