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Abstract

In this paper we propose a novel framework for human action recognition based
on Bag of Words (BoWs) action representation, that unifies discriminative code-
book generation and discriminant subspace learning. The proposed framework is
able to, naturally, incorporate several (linear or non-linear) discrimination crite-
ria for discriminant BoWs-based action representation. An iterative optimization
scheme is proposed for sequential discriminant BoWs-based action representation
and codebook adaptation based on action discrimination in a reduced dimension-
ality feature space where action classes are better discriminated. Experiments on
five publicly available data sets aiming at different application scenarios demon-
strate that the proposed unified approach increases the codebook discriminative
ability providing enhanced action classification performance.

Keywords: Bag of Words, Discriminant Learning, Codebook Learning

1. Introduction

Human action recognition from videos has been intensively studied in the last
two decades due to its importance in a wide range of applications, like human-
computer interaction (HCI), content-based video retrieval and augmented reality,
to name a few. It is, still, an active research field due to its difficulty, which is,
mainly, caused because there is not a formal description of actions. Action ex-
ecution style variations and changes in human body sizes among individuals, as
well as different camera observation angles are some of the reasons that lead to
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high intra-class and, possibly, small inter-class variations of action classes. Re-
cently, several action descriptors aiming at action recognition in unconstrained
environments have been proposed, including local sparse and dense space-time
features ([23, 45, 10, 20, 34, 35]). Such descriptors capture information appear-
ing in video frame locations that either correspond to video frame interest points
which are tracked during action execution, or that are subject to abrupt intensity
value variations and, thus, contain information regarding motion speed and/or ac-
celeration, which is of interest for the description of actions. These local video
frame descriptors are calculated by using the color (grayscale) video frames and,
thus, video frame segmentation is not required.

After describing actions, videos depicting actions, called action videos here-
after, are usually represented by fixed size vectors. Several feature coding ap-
proaches have been proposed in order to determine compact (vectorial) represen-
tations ([14]), including Sparse Coding ([42]), Fisher Vector ([28]), Local Tangent
coding ([47]) and Salience-based coding ([13]). Perhaps the most well studied
and successful approach for action representation is based on the Bag of Words
(BoWs) model ([4]). According to this model, each action video is represented
by a vector obtained by applying (hard or soft) quantization on the features de-
scribing it and using a set of feature prototypes forming the so-called codebook.
This codebook is determined by clustering the features describing training action
videos. The BoWs-based action representation has been combined with several
classifiers, like Support Vector Machines, Artificial Neural Networks and Dis-
criminant Analysis based classification schemes, providing high action classifi-
cation performance on publicly available data sets aiming at different application
scenarios. However, due to the fact that the calculation of the adopted codebook
is based on an unsupervised process, the discriminative ability of the BoWs-based
action representation is limited.

In order to increase the quality of the adopted codebook, codebook adaptation
processes have been proposed which adopt a generative approach. That is, the
initial codebook generated by clustering the features describing training videos
is adapted so as to reduce the reconstruction error of the resulted video repre-
sentation ([37]). However, since this generative adaptation process does not take
into account the class labels that are available for the training action videos, the
discriminative ability of the optimized codebook is not necessarily increased. In
order to increase the discriminative ability of the adopted codebook, researchers
have begun to introduce discriminative codebook learning processes ([40, 29]).
However, since the codebook calculation process is, still, disconnected from the
adopted classification scheme, the obtained codebook may not be the one that is
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best suited for the task under consideration, i.e., the classification of actions in our
case.

A method aiming at simultaneously learning both a discriminative codebook
and a classifier is proposed in ([43]) for image classification. This method consists
of two iteratively repeated steps. The first one involves training images represen-
tation by a set of class-specific histograms of visual words at the bit level and mul-
tiple binary classifiers, one for each image category, training by using the obtained
histograms. Based on the performance of each classifier, the set of training his-
tograms is updated in the second step. While this approach has lead to increased
image classification performance, its extension in other classification tasks, e.g.,
action recognition, is not straightforward. Another approach has been proposed
in ([25]), where a two-class linear SVM-based codebook adaptation scheme is
formulated. The adoption of a two class formulation generates the drawback that
C(C − 1)/2 two-class codebooks have to be learned (C being the number of
classes) and used in the test phase along with an appropriate fusion strategy. In
addition, such an approach is not able to exploit inter-class correlation information
appearing in multi-class problems, which may facilitate class discrimination.

In this paper, we build on the BoWs-based action video representation by in-
troducing discriminative criteria on the codebook learning process. The proposed
approach integrates codebook learning and action class discrimination in a multi-
class optimization process in order to produce a discriminant BoWs-based action
video representation. Two processing steps are iteratively repeated to this end.
The first one, involves the calculation of BoWs-based representation of the train-
ing action videos using a codebook of representative features and learning of an
optimal mapping of the obtained BoWs-based action video representations to a
discriminant feature space where action classes are better discriminated. In the
second step, based on an action class discrimination criterion in the obtained fea-
ture space, the adopted codebook is adapted in order to increase action classes
discrimination. In order to classify a new, unknown, action video, it is repre-
sented by employing the optimized codebook and the obtained BoWs-based ac-
tion video representation is mapped to the discriminant feature space determined
in the training phase. In this discriminant space, classification can be performed
by employing several classifiers, like K-Nearest Neighbors (K-NN), Support Vec-
tor Machine (SVM) or Artificial Neural Networks (ANN). Here it should be noted
that the proposed approach is not aiming at increasing the representation power
of the adopted codebook. Instead, it aims at increasing its discrimination power
for the classification task under consideration, i.e., the discrimination of the action
classes involved in the classification problem at hand.
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The rest of the paper is structured as follows. The proposed approach for inte-
grated discriminant codebook and discriminant BoWs-based action representation
learning is described in Section 2. Experiments conducted on publicly available
data sets aiming at different application scenarios are illustrated in Section 3. Fi-
nally, conclusions are drawn in Section 4.

2. Discriminant Codebook Learning for BoWs-based Action Representation

In this section we describe in detail the proposed integrated optimization scheme
for discriminant BoWs-based action representation. Let U be a video database
containing NT action videos followed by action class labels li, i = 1, . . . , NT ap-
pearing in an action class set A = {α}Cα=1. Let us assume that each action video
i is described by Ni feature vectors pij,∈ RD, i = 1, . . . , NT , j = 1, . . . , Ni,
which are normalized in order to have unit l2 norm. We employ the feature vec-
tors pij and the action class labels li in order to represent each action video i by
two discriminant feature vectors si ∈ RD and zi ∈ Rd, d < D, in the feature space
determined by the adopted codebook and the discriminant space, respectively.

2.1. Standard BoWs-based action representation
Let us denote by V ∈ RD×K a codebook formed by codebook vectors vk ∈

RD, k = 1, . . . , K. This codebook is calculated by clustering the feature vec-
tors pij, i = 1, . . . , NT , j = 1, . . . , Ni without exploiting the available labeling
information for the training action videos. Several clustering techniques can be
employed to this end. K-Means has been widely adopted for its simplicity and
fast operation. The codebook vectors vk are, usually, determined to be the clus-
ter mean vectors. After determining the codebook V, the standard BoWs-based
action representation of action video i is obtained by applying hard or soft vec-
tor quantization on the feature vectors pij, j = 1, . . . , Ni. In the first case, the
BoWs-based representation of action video i is a histogram of features, calculated
by assigning each feature vector pij to the cluster of the closest codebook vector
vk. In the second case, a distance function, usually the Euclidean one, is used
in order to determine Ni distance vectors, each denoting the similarity of feature
vector pij to all the codebook vectors vk, and the BoWs-based representation of
action video i is determined to be the mean normalized distance vector ([15]).

2.2. Discriminant BoWs-based action representation
The proposed discriminant BoWs-based representation exploits a generaliza-

tion of the Euclidean distance, i.e.,:

4



dijk = ∥vk − pij∥−g
2 . (1)

The use of a parameter value g = 1.0 leads to a BoWs-based representation based
on soft vector quantization, while a parameter value g ≫ 1.0 leads to a BoWs-
based representation based on hard vector quantization. By using the above dis-
tance function, each feature vector pij is mapped to the so-called membership
vector uij ∈ RK , encoding the similarity of pij to all the codebook vectors vk.
Membership vectors uij ∈ RK are obtained by normalizing the distance vectors
dij = [dij1 . . . dijK ]

T in order to have unit l1 norm, i.e.:

uij =
dij

∥dij∥1
. (2)

The BoWs-based representation of action video i is obtained by calculating the
mean membership vector:

qi =
1

Ni

Ni∑
j=1

uij. (3)

Finally, the mean membership vectors qi are normalized in order to produce the
so-called action vectors:

si =
qi

∥qi∥2
. (4)

The adopted similarity function as well as the mean similarity to codebook vectors
for action video representation allow for better diffusion of the similarity along the
codebook vectors. This is more effective, especially for small feature sets, where
the resulting standard BoW-based representations are rather sparse, as is the case
of STIP-based extracted features.

After calculating the action vectors representing all the action videos, they are
normalized in order to have zero mean and unit standard deviation, resulting to the
normalized action vectors xi ∈ RK . In order to map the normalized action vectors
xi to a new feature space in which action classes are better discriminated, an opti-
mal linear transformation W∗ is obtained by solving the trace ratio optimization
problem:

W∗ = argmin
W

trace{WTAW}
trace{WTBW}

, (5)

where A, B are matrices encoding properties of interest for the training normal-
ized action vectors xi, i = 1, . . . , NT . That is, they are functions of the training
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normalized action vectors, i.e., A(xi), B(xi). Finally, the discriminant action
vectors zi, i = 1, . . . , NT are obtained by:

zi = W∗Txi. (6)

The optimization problem in (5) is, usually, approximated by solving the ratio
trace optimization problem Aw = λBw, λ ̸= 0 ([36]), which can be solved by
performing eigenanalysis to the matrix B−1A in the case where B is invertible, or
A−1B in the case where A is invertible. In the case where both A, B are singular,
i.e., when NT < K, the strictly diagonally dominant criterion for nonsingular
matrices is exploited and a regularized version of Ã = A+ rI is employed ([26]),
where r is a small positive value. However, as has been shown in ([36, 17]), the
original trace ratio problem can directly be solved by solving the equivalent trace
difference optimization problem:

W∗ = argmax
WTW=I

Tr
[
WT (B− λ∗A)W

]
, (7)

where λ∗ ≥ 0 is the trace ratio λ∗ = Tr(WTBW)
Tr(WTAW)

. The trace ratio value λ∗ can
be calculated by using an efficient algorithm based on Newton-Raphson method
([17]). After determining λ∗, the trace difference optimization problem is solved
by performing eigenanalysis to the matrix S = B − λ∗A. The optimal transfor-
mation matrix W∗ is formed by the eigenvectors corresponding to the non zero
eigenvalues of S.

By following the above described procedure for discriminant action vectors
calculation, several discriminant spaces can be obtained for action representation.
As has been shown in ([41]), a wide range of (linear and non-linear) discrimi-
nant learning techniques can be obtained by solving the trace ratio optimization
problem (5) and employing the graph embedding framework, including Principal
Components Analysis (PCA) ([6]), Linear Discriminant Analysis (LDA) ([6]),
ISOMAP ([33]), Locally Linear Embedding (LLE) ([3]) and Laplacian Eigen-
maps (LE) ([1]).

After determining the above described discriminant action video representa-
tion, a codebook adaptation process is performed in order to increase the codebook
discriminative ability based on action class discrimination in the obtained discrim-
inant space. The procedure followed to this end is described in the following.

2.3. Codebook Adaptation
By observing that the normalized action vectors xi are functions of the adopted

codebook V, as described in subsection 2.2, it can be seen that the optimization
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problem (5) is a function of both the transformation matrix W and the codebook
V. Based on this observation, we propose to minimize the trace ratio criterion
with respect to both W and V, in order to simultaneously increase the codebook
discriminative ability and to obtain the optimal transformation matrix for action
classes discrimination:

J (W,V) =
trace{WTA(V)W}
trace{WTB(V)W}

(8)

Since the minimization of (8), for given V, can be readily computed by solv-
ing the trace ratio problem ([17]), we propose an iterative optimization scheme
consisting of two steps. In the first step, for a given codebook, training normal-
ized action vectors xi are employed in order to determine the optimal projection
matrix W∗

t by solving the trace ratio problem (8). In the second step, codebook
vectors vk,t are adapted, in the direction of the gradient of (8), by using the ob-
tained W∗

t . Here, we have introduced the index t denoting the iteration of the
iterative optimization process. The adaptation of vk,t is performed by following
the gradient of J with respect to vk,t:

vk,t+1 = vk,t − η
∂Jt

∂vk,t

(9)

∂Jt

∂vk,t

=
∂Jt

∂xik,t

∂xik,t

∂qik,t

∂qik,t
∂dijk,t

∂dijk,t
∂vk,t

(10)

where η is an update rate parameter. In order to avoid scaling issues, codebook
vectors of both the initial and the updated codebooks, vk,0, vk,t respectively, are
normalized to have unit l2 norm.

The two above described optimization steps are performed until (Jt−Jt+1)/Jt <
ϵ, where ϵ is a small positive value (equal to ϵ = 10−6 in our experiments). Since
LDA is the most widely adopted discriminant learning technique, due to its ef-
fectiveness in many classification problems, we provide the update rule obtained
by employing the LDA discrimination criterion in the following. The derivation
of codebook adaptation processes exploiting different discrimination criteria is
straightforward.

LDA determines an optimal discriminant space for data projection in which
classes are better discriminated. The adopted criterion is the ratio of the within-
class scatter to the between-class scatter in the projection space. LDA solves the
optimization problem (8) by using the matrices:

At =
C∑

α=1

NT∑
i=1

bαi (xi,t − x̄α
t ) (xi,t − x̄α

t )
T , (11)
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Bt =
C∑

α=1

(x̄α
t − x̄t) (x̄

α
t − x̄t)

T , (12)

where At, Bt are the within-class and between-class scatter matrices obtained by
using Vt, respectively. bαi is an index denoting if the normalized action vector xi,t

belongs to action class α, i.e., bαi = 1 if li = α and bαi = 0 otherwise. x̄α
t is the

mean vector of action class α and x̄t is the mean normalized action vector of the
entire training set.

By using (11), (12), the gradient (10) is given by:
∂Jt

∂vk,t

=
(
aW̃t(i,:)(xi,t − x̄α

t )− cW̃t(i,:)x̄
α
t )
)

·

(
1

s̃k,t
− sik,t − s̄k,t

s̃3k,t

)(
1

∥qi,t∥2
−

q2ik,t
∥qi,t∥32

)
· NT − 1

NTNi

(
1

∥dij,t∥1
− dijk,t

∥dij,t∥21

)
· −g∥vk,t − pij∥−(g+2)

2 (vk,t − pij) , (13)

where a =
2bαi

trace(WT
t BtWt)

, c =
2bαi trace(W

T
t AtWt)

trace(WT
t BtWt)2

, W̃t(i,:) is the i-th row of the

matrix W̃t = WtW
T
t and s̄k,t, s̃k,t are the mean and standard deviation of the

training action vectors in dimension k, respectively.
The update rate parameter value η in (9) can either be set to a fixed value,

e.g., η = 0.01, or be dynamically determined. In order to accelerate the code-
book adaptation process and (possibly) to avoid convergence on local minima, in
our experiments we have employed a (dynamic) line search strategy. That is, in
each iteration of the codebook adaptation process, the trace ratio criterion (8) was
evaluated by using (9) and η0 = 0.1. In the case where Jt+1 < Jt, the trace ratio
criterion was evaluated by using a codebook update parameter value ηn = 2ηn−1.
This process is followed until Jt+1 > Jt and the codebook update parameter value
providing the highest J decrease was employed for codebook adaptation. In the
case where, by using a codebook update parameter value η0 = 0.1, Jt+1 > Jt, the
trace ratio criterion was evaluated by using a codebook update parameter value
ηn = ηn−1/2. This process is followed until Jt+1 < Jt and the codebook update
parameter value providing J decrease was employed for codebook adaptation.

2.4. Action Recognition (Test Phase)
Let us denote by Vopt, W∗

opt the codebook and the corresponding projection
matrix obtained by applying the above described optimization process employing
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the feature vectors pij describing the training action videos and the corresponding
action class labels. Let ptj ∈ RD, j = 1, . . . , Nt be feature vectors describing a
test action video. ptj are employed in order to calculate the corresponding nor-
malized action vector xt ∈ RK using Vopt. xt can be either classified in this
space, or be mapped to the discriminant space, determined in the training phase,
by applying zt = W∗T

optxt. In either cases, action classification is performed by
employing any, linear or non-linear, classifier, like K-NN, SVM and ANNs.

3. Experimental Evaluation

In this Section we present experiments conducted in order to evaluate the pro-
posed discriminant codebook learning technique and the obtained discriminant
BoWs-based action representation. In all the experiments we have employed the
Harris3D detector ([21]) followed by HOG/HOF descriptors ([35]) calculation for
action video description. We should note here that the proposed optimization
framework for discriminant BoWs-based representation can be combined with
any descriptor proposed for BoWs-based representation. The optimal values of
parameters K and g have been determined by applying grid search using values
50 < K < 500 and g = [1, 2, 5, 10, 20], respectively. In order to limit the com-
plexity, we cluster a subset of 100k randomly selected HOG/HOF descriptors for
initial codebook calculation. To increase precision of the initial codebook, we
initialize K-Means 10 times and keep the codebook providing the smallest error.
In the test phase, classification is performed by employing a Single-hidden Layer
Feedforward Neural Network trained by applying the recently proposed Extreme
Learning Machine algorithm ([12]).

We have used five publicly available data sets aiming at different application
scenarios, from single-view everyday actions, actions appearing in movies, com-
plex ballet movements, multi-view everyday actions and, even, facial expressions.
Comprehensive description of the data sets and information concerning the ex-
perimental setup used in each data set are provided in the following subsections.
In all the experiments we compare the performance of the standard BoWs-based
action video representation (BoWs), i.e., the BoWs-based action video represen-
tation adopting an unsupervised codebook, and the proposed discriminant BoWs-
based action representation (DBoWs), i.e., the discriminant BoWs-based action
representation obtained by applying the proposed supervised codebook learning
optimization scheme. Furthermore, we provide comparison results of the pro-
posed discriminant BoWs-based action video representation adopting the above
mentioned descriptor-classifier combination with some recently proposed state-
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of-the-art action recognition methods evaluating their performance on the adopted
action recognition data sets.

3.1. The KTH Data Set
The KTH data set ([32]) consists of 600 videos depicting twenty-five persons,

each performing six everyday actions: ‘walking’, ‘jogging’, ‘running’, ‘boxing’,
‘hand waving’ and ‘hand clapping’. Four different scenarios have been recorded:
(s1) outdoors, (s2) outdoors with scale variation, (s3) outdoors with different
clothes and (s4) indoors. The persons are free to change motion speed and di-
rection between different action realizations. Example video frames are illus-
trated in Figure 1. The most widely adopted experimental protocol in this data set
is based on a split (16 training and 9 test persons) that has been used in ([32]).
In order to limit the complexity of the proposed codebook adaptation process,
each action video has been represented by Nk = 500 vectors obtained by clus-
tering the HOG/HOF descriptors calculated on the detected STIP video locations.
This choice clearly accelerates the training process of the proposed method, since
codebook adaptation is performed by using only Nk vectors. However, such an
approach may decrease action recognition performance. In our preliminary exper-
iments we have not witnessed major performance drops by adopting this approach,
since the vectors obtained by applying clustering on the HOG/HOF descriptors of
a video can be considered to be representative of the video descriptors.

3.2. The Hollywood2 Data Set
The Hollywood2 data set ([27]) consists of 1707 videos collected from 69

Hollywood movies. The actions appearing in the data set are: ‘answering phone’,
‘driving car’, ‘eating’, ‘fighting’, ‘getting out of car’, ‘hand shaking’, ‘hugging’,
‘kissing’, ‘running’, ‘sitting down’, ‘sitting up’ and ‘standing up’. Example video
frames are illustrated in Figure 2. The most widely adopted experimental protocol
in this data set is based on a split (823 training and 884 test videos) that has
been used in ([32]). In order to limit the complexity of the proposed codebook
adaptation process, each action video has been represented by Nk = 1000 vectors
obtained by clustering the HOG/HOF descriptors calculated on the detected STIP
video locations.

3.3. The Ballet Data Set
The Ballet data set ([5]) consists of 44 real video sequences depicting three

actors performing eight ballet movements and has been collected from an instruc-
tional ballet DVD. The actions appearing in the data set are: ‘left-to-right hand
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Figure 1: Example video frames of the KTH data set depicting instances of all the six actions from
all the four experimental scenarios.

Figure 2: Example video frames of the Hollywood2 data set depicting instances of all the twelve
actions.

11



opening’, ‘right-to-left hand opening’, ‘standing hand opening’, ‘leg swinging’,
‘jumping’, ‘turning’, ‘hopping’ and ‘standing still’. Example video frames are
illustrated in Figure 3. The Leave-One-Video-Out cross-validation experimental
protocol is, typically, used for this data set.

Figure 3: Video frames of the Ballet data set depicting instances of all the eight actions.

3.4. The i3DPost Data Set
The i3DPost data set ([9]) consists of 512 videos depicting eight persons from

eight observation angles, each performing eight actions: ‘walk’, ‘run’, ‘jump
in place’, ‘jump forward’, ‘bend’, ‘fall down’, ‘sit on a chair’ and ‘wave one
hand’. Example video frames depicting a person walking from all the eight cam-
eras used in the data set are illustrated in Figure 4. The Leave-One-Person-Out
cross-validation experimental protocol is, typically, used for this data set. In or-
der to fuse the information coming from all available cameras, the action videos
depicting the same test action instance from different viewing angles have been
classified independently and the obtained action class labels were fused by using
a simple majority voting fusion scheme, similar to ([15]).

3.5. The Facial Expression Data Set
The facial expression data set ([5]) consists of 192 videos depicting two per-

sons expressing six different emotions under two lighting conditions. The expres-
sions appearing in the data set are: ‘anger’, ‘disgust’, ‘fear’, ‘joy’, ‘sadness’ and
‘surprise’. The persons always start with a neutral expression, show the emotion
and return to neutral. Example video frames depicting all the expressions appear-
ing in the data set are illustrated in Figure 5. Four experimental protocols have
been used for this data set: ‘Same person & lighting’ (SpSl), ‘Same person, Dif-
ferent lighting’ (SpDl), ‘Different person, Same lighting’ (DpSl) and ‘Different
person & lighting’ (DpDl).

12



Figure 4: Example video frames of the i3DPost data set depicting a person walking from eight
viewing angles.

Figure 5: Video frames of the facial expression data set depicting the emotion apex of all the six
emotions.
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3.6. Experimental Results
Tables 1 - 6 illustrate the performance obtained by using the proposed discrim-

inant BoWs-based action video representation on the KTH, Hollywood2, Ballet,
i3DPost and the facial expression data sets, respectively. As can be seen in these
Tables, the adoption of a supervised learning process on the codebook adaptation
enhances performance, when compared to the standard BoWs-based action video
representation. Table 1 illustrates the classification rates obtained by using differ-
ent values of Nk in KTH database. As can be seen, a value of Nk = 500 provides
satisfactory performance. In Tables 2 - 6 we, also, compare the performance of
the proposed action video recognition approach with that of some state-of-the-art
methods, recently proposed in the literature.

In the KTH data set, the use of the BoWs-based action video representation
led to a classification rate equal to 88.89%. By adopting the proposed DBoWs-
based action video representation, an increased action classification rate, equal to
92.13%, has been obtained. As can be seen in Table 2, the proposed method out-
performs other state-of-the-art methods employing low-level action video repre-
sentations. In this Table, we also provide the performance of some state-of-the-art
methods evaluating their performance on the KTH data set that exploit mid-level
and high-level action video representations. It can be seen that the proposed ap-
proach exploiting a low-level action video representation provides performance
comparable with that of the the two methods exploiting a mid-level action video
representation. In addition, its performance is comparable with that of one method
exploiting high-level action video representation, while it is inferior to that of the
remaining three methods exploiting high-level representations. However, the cal-
culation of high-level representations is computationally demanding, compared
to the calculation of low-level ones and, thus, a comparison between the two ap-
proaches in terms of only the obtained action recognition performance is not fair.

Table 1: Performance on KTH for different values of Nk.

200 300 400 500 600
BoWs 85.19% 86.11% 87.5% 88.89% 88.89%
DBoWs 87.96% 89.35% 90.74% 92.13% 92.13%

In the Hollywood2 data set, the use of the BoWs-based action video represen-
tation led to a performance equal to 41.5%. By adopting the proposed DBoWs-
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Table 2: Classification rates on the KTH data set.

Representation Performance
[46] low-level 82%
[19] low-level 84.3%
[44] low-level 87.3%
[18] low-level 90.57%
[30] low-level 91.1%
[22] low-level 91.8%
[7] mid-level 90.5%
[39] mid-level 92.4%
[48] high-level 93.25%
[24] high-level 93.9%
[8] high-level 94.5%
[20] high-level 94.5%
[31] high-level 98.9%
[16] high-level 99.54%
BoWs low-level 88.89%
DBoWs low-level 92.13%

based action video representation, a performance equal to 45.8% has been ob-
tained. As can be seen in Table 3, the methods evaluated on this data set can be
roughly divided based on the employed action video description. On the one hand,
methods employing densely sampled descriptors for action video representation,
i.e., Cuboids, Dense and Regions, have been shown to outperform the ones em-
ploying descriptors calculated on STIPs, i.e., Harris3D and Hessian. On the other
hand, it can be seen that the adoption of a higher number of descriptors, each
describing a different action property, enhances action classification performance.

As can be seen in Table 3, the best approach in this data set is that of ([34]),
which is based on an action video representation exploiting information appear-
ing on the trajectories of densely sampled video frame interest points and is de-
scribed by calculating multiple (five) descriptors, i.e., HOG, HOF, MBHx, MBHy
and Traj, along these trajectories. However, this approach has the following two
disadvantages: 1) It is very computationally demanding and 2) it requires mul-
tiple descriptors (as well as a good descriptor combination scheme) in order to
achieve better performance, when compared to action video representations ex-
ploiting STIP-based information. It can be seen in Table 3 that in the cases
where the Dense Trajectory-based and the Cuboid-based video descriptions ex-
ploit HOG/HOF descriptors, their performance is comparable with that of the
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proposed method exploiting STIP-based visual information. Taking into account
that STIP-based video representations are much faster, when compared to ones
exploiting densely-sampled visual information, we can see that a comparison be-
tween the two approaches, in terms of only the obtained performance, is not fair.

In ([34]), the adopted action video representation exploits the BoW model
for each of the five descriptor types (i.e., HOG, HOF, MBHx, MBHy and Traj)
and combines the obtained five (single-channel) action video representations on
the classification process by using a multi-channel kernel Support Vector Ma-
chine approach. Thus, the action video representation of ([34]) employs multiple
(five) codebooks (each calculated by applying K-Means clustering on the feature
vectors calculated for the training videos corresponding to one descriptor type).
From this, it can be seen that an extension of the proposed approach for unified
codebook adaptation, in the case where multiple descriptor types are exploited,
would probably enhance the performance of such methods. Overall, it can be seen
that the proposed DBoWs action representation provides comparable performance
with that of other state-of-the-art methods employing action video representations
evaluated on STIPs.

Table 3: Classification rates on the Hollywood2 data set.

Representation Performance
[27] Harris3D+HOG+HOF 32.4%
[27] Harris3D+HOG+HOF+SIFT 32.6%
[27] Harris3D+HOG+HOF+SIFT+Scene 35.5%
[35] Harris3D+HOG/HOF 45.2%
[35] Hessian+HOG/HOF 46%
[35] Cuboids+HOG/HOF 46.2%
[24] Cuboids+ISA 53.3%
[34] Dense+HOG 41.5%
[34] Dense+HOF 50.8%
[35] Dense+HOG/HOF 47.4%
[34] Dense+HOG+HOF+MBH+Traj 58.3%
[2] Regions+HOG+HOF+OF 41.34%

BoWs Harris3D+HOG/HOF 41.5%
DBoWs Harris3D+HOG/HOF 45.8%

In the Ballet data set, the use of the BoWs-based action video representa-
tion led to an action classification rate equal to 86.3%. The use of the proposed
DBoWs-based action video representation increased the action classification rate
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to 91.1%, which is comparable to the performance of the two competing methods
presented in Table 4.

Table 4: Classification rates on the Ballet data set.

[10] [38] BoWs DBoWs
91.1% 91.3% 86.3% 91.1%

In the i3DPost data set, the use of the BoWs-based action representation led to
an action classification rate equal to 95.31%, while the adoption of the proposed
DBoWs-based action video representation led to an action classification rate equal
to 98.44%, equal to that of ([11]). We should note here that the method in ([11])
employs a computationally expensive 4D optical flow-based action video repre-
sentation and, thus, its operation is slower compared with the proposed one in the
test phase.

Table 5: Classification rates on the i3DPost data set.

[15] [11] BoWs DBoWs
94.87% 98.44% 95.31% 98.44%

Finally, in the facial expression data set, it can be seen that the proposed
DBoWs-based action representation, clearly, outperforms the BoWs-based action
representation providing up to 5% increase on the classification performance. The
proposed method, clearly, outperforms the method in ([5]), while it provides com-
parable classification rates with that in ([10]). However, we should note that the
method in [10] involves an optimization process during testing and, thus, its oper-
ation is slower compared to the BoWs-based action classification approach.

4. Conclusions

In this paper we proposed a novel framework for human action recognition
unifying discriminative codebook generation and discriminant subspace learn-
ing. An iterative optimization scheme has been proposed for sequential discrim-
inant BoWs-based action video representation calculation and codebook adapta-
tion based on action classes discrimination. The proposed framework is able to,
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Table 6: Classification rates on the facial expression data set for different experimental protocols.

SpSl SpDl DpSl DpDl
[5] 97.9% 89.6% 75% 69.8%
[10] 100% 93.7% 91.7% 72.9%

BoWs 98.96% 87.5% 78.65% 73.44%
DBoWs 100% 92.71% 83.33% 77.6%

naturally, incorporate several (linear or non-linear) discrimination criteria for dis-
criminant BoWs-based action video representation. Experiments conducted by
employing the LDA criterion on five publicly available data sets aiming at differ-
ent application scenarios demonstrate that the proposed unified approach increases
the codebook discriminative ability providing enhanced performance.
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