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Abstract—Current discriminant Non-negative Matrix Factor- and ideally non overlapping. However, because the spassene
ization methods either do not guarantee convergence to a sta gchieved by the original NMF is somewhat of a side-effect
tionary limit point or assume a compact data distribution inside rather than a goal, caused by the imposed non-negativity
classes, thus ignoring intra class variances in extractingiscrimi- . . ’ .
nant data samples representation. To address both limitatins, we constraints, (jlfferent stgdles have atte_mptgd to contrel t
regard that data inside each class has a multimodal distribtion, ~degree to which the derived representation is sparse. @swar
forming various clusters and perform optimization using a this direction, Hoyer in [6], incorporated the notion of sfty
projected gradients framework to ensure limit point stationarity.  into the standard NMF decomposition function so as the
The proposed method combines appropriate clustering based g 5rseness of the representation can be better contnohéd,

discriminant criteria in the NMF decomposition cost function, Li et al. [7] introd dl lizati traints. leadi
in order to find discriminant projections that enhance class -' €t @ [7] introduced localization constraints, leaditga

separability in the reduced dimensional projection space tius, Parts-based representation.
improving classification performance. The developed algéthms Recently, numerous specialized NMF-based algorithms have
have been applied to facial expression, face and object regoition  pheen proposed and applied in various problems in diverse
and experimental results verified that they successfully ientified  fie|4s These algorithms modify the NMF decomposition cost
discriminant parts, thus enhancing recognition performarce. . . . " .
function, by incorporating additional penalty terms in erd
to fulfill specific requirements, arising in each applicatio
|. INTRODUCTION domain. In [8], Projective NMF (PNMF) was introduced,
T is common knowledge that the spatial image dimenvhich proved to generate a much sparser and near orthogonal
sionality is much higher than that exploited by manyprojection matrix compared to original NMF. An extension of
image analysis applications. This fact necessitates t& sé¥MF that is applicable on mixed sign data has been attempted
for efficient dimensionality reduction methods for appiatg in [9], where the non-negativity constraint on the basisges
image feature extraction, which will alleviate computatb has been relaxed, while the weights matrix remained pe$jtiv
complexity and boost the performance of succeeding preenstrained. Towards improving clustering performancai, C
cessing algorithms. Such a popular category of methods,eis al. [10], [11] recently proposed the Graph regularized
the subspace image representation algorithms which aimNWF (GNMF) that encodes the local data geometric structure
discover the latent image features by projecting lineanly considering a nearest neighbor graph in order to explodlloc
non-linearly an image to a low dimensional subspace, whegeometrical invariance between training samples wherethes
a certain criterion is optimized. are mapped from the initial data space to the projection
Non-negative Matrix Factorization (NMF) [1], is a populasubspace. Other approaches that exploit the data geometric
subspace learning algorithm widely used in image procgssistructure in order to extract discriminative informatioavi
It is an unsupervised data matrix decomposition method tHzgen also proposed in [12], [13]. Another notable variant of
requires both the matrix being decomposed and the derivdtlF which retains the manifold structure of facial space, is
factors to contain non-negative elements. The non-neagativthe Topology Preserving NMF (TPNMF) proposed by Zhang
constraint imposed by NMF on both the latent variables ard al. that is specialized for face representation and mtiog
the observations is meaningful, when we operate on image].
data exploiting their intensities, as the underlying feesutare ~ Focusing on applications operating on facial image data,
naturally non-negative. Moreover, the semantic integioéity numerous specialized NMF decomposition variants have been
of the non-negative subspace learning is enhanced, siice tiroposed for face recognition [7], [14], [15], face verifica
conforms nicely to identifying appropriate basic elemeots- [16] and facial expression recognition [17], [18]. In these
responding to the basis images, which are added to recehstapproaches the entire facial image is considered as a éeatur
the original data. This non-negativity limitation distinghes vector and NMF aims to find projections that optimize a given
NMF from many other traditional dimensionality reductiorcriterion. The resulting projections are then used in otder
methods, such as Principal Component Analysis (PCA) [Ziroject unknown test facial images from the original high
Independent Component Analysis (ICA) [3], [4] or Singuladimensional image space into a lower dimensional subspace
Value Decomposition (SVD) [5]. where the criterion under consideration is optimized. Ideor
One of the most useful properties of NMF-based methotts model properly the non-linearities that are present irstmo
is that they usually produce a sparse representation of tieal life applications, Polynomial NMF (PNMF) has been pro-
decomposed data. Sparse coding corresponds to a data rgpoeed in [19], which projects the original data into polynaim
sentation using few basic elements that are spatiallyiligerd spaces of arbitrary degree. An extension of PNMF has been



proposed in [20], that considers projection of the trainitada tion properties and proof of convergence are exhibited.

using arbitrary Mercer’s kernels. o The non-linear counterpart of SDNMF algorithm that
A supervised NMF learning method that aims to extract considers projections in high dimensional Hilbert spaces

discriminant facial parts appropriate for face verificatis is demonstrated.

the Discriminant NMF (DNMF) algorithm [16]. DNMF in- « A thorough experimental study on various image recog-

corporates a discriminant factor inspired by Linear Diseri nition problems is performed, comparing the proposed

inant Analysis (LDA) [21] in the NMF factorization and methods with current state-of-the-art linear and nondine

achieves a more efficient decomposition of the providedidata dimensionality reduction algorithms.

their discriminant parts, thus enhancing separabilityveen  The rest of the paper is organized as follows. The linear
classes. However, the considered discriminant factorgsses and non-linear NMF algorithms, as well as DNMF are re-
two certain deficiencies inherited from the LDA optimalityiewed in Section Il. Section IlI, introduces the CDA insgr
assumption. Firstly, it assumes that the sample vectors di§criminant criteria, the proposed SDNMF method and the
each class are generated from underlying multivariate abrngieveloped update rules considering two different optitinza
distributions of common covariance matrix but with diffete strategies. Moreover, the non-linear counterpart of SDNMF
means. Secondly, since this approach assumes that eash ¢falso demonstrated. Section IV presents the conducted ex-
is represented by a single compact data cluster, the problgatimental study and verifies the efficiency of our algorighm
of non-linearly separable classes cannot be treated eftizie for facial expression, face and object recognition. Fipall
Unfortunately, in real world applications, data distribatusu- concluding remarks are drawn in Section V. A preliminary
ally does not correspond to compact sets. This is common esgrsion of this paper can be found in [26], [27].

in facial expression recognition, since there is no uniqag w

that people form certain expressions and moreover, there ar I1. LINEAR AND NON-LINEAR NMF AND ITS

other factors, such as pose, texture and illumination tiaria DISCRIMINANT VARIANT

that lead to expression subclasses [22]. If this fact is notin this section, we briefly present the linear and non-
properly addressed, the performance of NMF-based methgig@ar NMF decomposition concept and also review DNMF
is significantly degraded [23]. algorithm. In the following, without loosing generality,ew

To overcome the aforementioned limitations we relax thghall assume that the decomposed data are images, although,

assumption that each class consists of a single compact dgt techniques that will be described can be applied to any
cluster and regard that they form various subclasses, Whgfigd of non-negative data.

each one is approximated by a Gaussian distribution. Conse-
qguently, we approximate the underlying distribution of raca. NMF Basics
class as a mixture of Gaussians and apply criteria inspiyed b

the Clustering based Discriminant Analysis (CDA) introddC , jinear combination of elements the so called basis images

in [22] aiming at better subclasses separation. Moreover, Wyat correspond to image parts. LEtbe an image database
extend NMF reformulating the cost function that drives th@omprised ofL, images belonging ta: different classes and
optimization process by embedding appropriate discrintin RFXL pe the data matrix whose columns afe

; ; +
constraints and propose a novel algorithm, called SUbCIaoﬁ%ensional feature vectors obtained by scanning row-wise

Disgriminant NMF (SDNMF), which _ﬁnd.s discriminant PrO-each image in the database.NMF considers factorizations of
jections that enhance class separability in the reduceernjimthe form:

sional space, by imposing discriminant criteria that assum X ~ ZH 1)
multimodality of the available training data. To solve the ’

SDNMF problem, we develop update rules that consider nehereZ e RY*M is a matrix containing the basis images,
only samples class origin but also subclasses formatigdenswhile matrix H € R}"*" contains the coefficients of the
each class. In addition, in order to exploit the well esgiigid linear combinations of the basis images required to recacist
optimization properties of [24], [25] that ensure statigtyeof —each original image in the database. Thus, after the NMF
the reached limit point, we solve SDNMF problem using aélecomposition thej-th image x; can be approximated by
iterative projected gradients optimization frameworkadfly, x; ~ Zh;, whereh; denotes thg-th weight column of matrix
we derive the non-linear counterpart of SDNMF that projecld. Useful factorizations appear when the linear transfoionat
training data to high dimensionality Hilbert spaces ancopse projects data from the original high dimensional space to a
a set of update rules that consider polynomial projecti@eep reduced dimensional subspace (i}é.< F).

The basic idea of NMF is to approximate an image by

of arbitrary degree. To measure the cost of the decomposition in (1), one popular
In summary, the novel contributions of this paper are th&pproach is to use the matrix Frobenius norm square. Thus the
following: NMF cost functionOr(X||ZH) can be measured as the sum

« Subclass discriminant constraints that assume multimo@éithe squared Euclidean distances between all originaj@sa
data distribution are incorporated in the NMF cost fundd the database and their respective reconstructed version
tion, resulting in a specialized NMF based method called L F

2
IX - ZH||F = > > (2 — [ZH]; )

[I>

Subclass Discriminant NMF. Or(X||ZH)
« To solve SDNMF, novel update rules under two different j=11i=1
optimization frameworks are proposed and their optimiza- (2)



where||.|| ¢ is the Frobenius norm. NMF algorithm factorizewariablesZ andH. Thus, the following multiplicative update
the data matrixX into ZH, by solving the following con- rules were proposed for minimizing (7):
strained optimization problem:

K(t—l)
. H® — gt © %% (10)
min Or(X||ZH) ) (Kg;nH(t_l))
subjectto: %z >0 ,hy; >0, Vi jk. o (t—1) S (1)
. . . - o 20 — g0 o XKaz g BT g
Using an appropriately designed auxiliary function, it bagn Zt-H QKD S

shown in [28] that the following multiplicative rules upe@at
hy,; andz; ;, resulting to the desired factors, while guaranteghereQ is a diagonal matrix, witH€2], ; = Z,i‘il hy; and
a non increasing behavior of the cost function: S is a normalization matrix, such that the columnsZt

sum up to one. MatriceKz,Z and KZ_,Z contain parts of the

t-1" .
B, = RV (til[)ZT (tflfqlz;fjfl) 7 (4) first order derivatives with respect tg ;, of the polynomial
7 vz ZU=DHV] kernels and are defined afK,.];; = d(x'z;)*! and
’ _ T d—
O [XH(t)T]i,k K. .]i; = d(zl'z;)?'. Operators» and/ denote element-

Zik = %ik [ZEDHOHO], (5) wise multiplication and division of matrices, respectjvel

B. Non-linear NMF C. Discriminant NMF

The problem of Non-linear NMF (NNMF) can be summa- DNMF [16] algorithm is an attempt to introduce discrim-
rized as follows: find a set of non-negative weights and nofpant constraints in the NMF decomposition cost function.
negative, non-linear basis vectors such that the non-ivegaflo derive these the well known Fisher discriminant criterio
non-linearly mapped training data can be approximated adias been exploited, which attempts to find a transformation
linear combination of the learned non-negative non_|it}earmatl’ix W that maximizes the ratio defined by the traces of the
mapped basis vectors. This can be formulated as follows. Lt;ﬁtweenTand within class scatter matri&gs= ¢S, ¥ and
¢(x;) : RY — H be a non-linear mapping function thatSw = ¥~ S,, ¥ evaluated over the projected data. DNMF cost
projects the input image; to an arbitrary dimensional Hilbert function incorporates a similar discriminant factor, remg

space{ where NNMF considers the following factorization:the dispersion of the projected samples that belong to the
X ~ Z°H same class around their corresponding mean to be as small

as possible, while at the same time the scatter of the mean
where X? = [(x;),...,0(xL)], Z° = [p(z1),...,d(zp)] Vectors of all classes around their global mean to be as large
and H ¢ RYM*L contains the coefficients of the lineardS Possible. Consequently, DNMF algorithm minimizes the
combinations of the mapped basis vectofs;) required to following cost function:

perform the approximation. The approximation error can be(’)DNMF(XHZH) — O (X||ZH) + aTr[Sw] _ BTr[Sb]

similarly measured using the Frobenius norm square: (12)
L1 L M ) where Tf.] is the matrix trace operator ard S are positive
Oy (X?||2°H) £ 3 D lo) =Y bz |7 constants.
j=1 k=1
1 & M I1l. SUBCLASS DISCRIMINANT NON-NEGATIVE MATRIX
T2 > ([K””*””]j’j =2 Kl FACTORIZATION
=1 k=1 . . . . .
MJ M In this section we first present the subclass-based discrim-
4 i ihy K )’ 7 !nant criteria and demc_;r_lstrate how th_ese are !ncorporated
ZZ bt Baalik % in the NMF decomposition cost function resulting in the

k=11=1

SDNMF problem. Next, we derive the proposed update rules
considering two different optimization strategies thatveo

Koal,;, = o(x:) " B(x;), K.:];; = o(z:)" (z;) SDNMF and also its non-linear counterpart.

K.ol,, = oz)"ox;), Ko.=KI,. (8)

2%

where the kernel matrices are defined as:

A. Subclass based Discriminant Analysis

Similar to LDA, CDA seeks to determine a transformation
min Oy (X?||Z*H) (9) matrix ¥ that enhances classes discrimination in the projection
Z.H . . .

subspace. To do so, CDA assumes a multimodal data distribu-
tion inside classes, where each class is composed of various
wherei = 1,...,F,j = 1,...,L andk = 1,...,M. In subclasses and attempts to enhance classes discrimination
[19], polynomial kernels of the formk(x;,x;) = (xI'x;)¢ by minimizing the scatter within every subclass, while well
were considered, wherédenotes the polynomial degree andeparating subclasses from each other class.
the respective solution was found using appropriate aryili To formulate the CDA criteria for then-class image
functions of the actually minimized cost function for bothdatabasé, let us denote the number of subclasses composing

Thus, NNMF solves the following optimization problem:

subjectto:  z, >0 ,hy; >0



the r-th class byC,., the total number of formed subclasses The trace of the within subclass scatter maffly, can be

in the database by’ = " C; and the number of imagesused as an appropriate indicator of the samples dispersion
belonging to thed-th subclass of the-th class byN, 4. Let inside subclasses. Minimizing its trace increases conatom

us also define the mean vector for #ih cluster of ther-th of samples around their subclass mean. Similarly >3
class byu™? = [M;"’...ug"]T, which is evaluated over theindicates the dispersion of the mean vectors between all
N,.» images, while vector’;? = [27] .. 27%]" corresponds subclasses that belong to different classes. Thus, maigniz

to the feature vector of thg-th image belonging to thé-th Tr[¥;] increases the difference between the means of every

cluster of ther-th class. Using the above notations we casubclass of a certain class to every subclass of each other

define the within subclass scatter mat8§” as: class.
n C, Nro . . . . .. .
N, ; i, ronT B. SDNMF Objective Function and its Multiplicative Update
SLPA= D> (=) (" =) (13) Ryles
reto=tet Since we desire in the projection subspace to simultangousl
and the between subclass scatter ma{j}°* as: minimize T{X,,] and maximize Ti&;], the cost function of
n om G C the SDNMF algorithm is formulated as follows:
CDA _ id _ 0 (i — 0\ 1
T g 22; (7 =) W =) O (XIZH) £ JIX - ZHIE + STAHL,H]

14
Considering that the columns of mat@# contain the(pr())-
jected M -dimensional fe_aturg vectors and in order to fa‘:i”tatﬁ/herea and 3 are positive constants, Whilé is used to
our subsequent analysis using more compact equation forgg, sjity subsequent mathematical derivations. Alteney
we express the CDA scatter matrices in a graph Laplacig, SDNMF cost function can be written using matrices trace

- gTr[HLbHT], (22)

form: form as follows:
LRSI T o X||ZH) = ~TrxX"] - Tr[ZHX" 23
Se 2 35 (- ) (b - p) sonur(X||ZH) = STrXX"]—Tr| ] (29)
r=10=1 j=1 1 TerT « B T
—Tr[ZHH" Z —TrHL,H" | — =TrlHL,H" |,
= HL,H” 15 2 | I+ 5T | = 5 TrHL,HT]
q where we have applied the matrix propertie§AIB] =
an Tr[BA], Tr[A] = Tr[AT] and||A||2 = Tr[AAT].
n o n G Cr Consequently, the minimization problem of SDNMF is
%7 T %7 roy T !
B, = Z Z ("7 = ) ("7 — ") formulated as:

1%11131 Ospnmr(X||ZH) (24)

subjectto:  z;, >0 ,hp; >0, Vi j k.

= HL,H', (16)

whereL,, andL;, are L x L symmetric positive semidefinite

matrices defined as: which requires the minimization of (23) subject to the non-
n C negativity constraints applied on the elements of bothofact
2 ~(_ 1 1 H andZ.
Ly = Ip- ZZ (Nr,9 e’“»"e“") (17) In order to solve the constrained optimization problem in
r:109:1 (24), we introduce Lagrange multipliegs € RZ*M = [¢; ;]
<~ C—C, : and e RY*L = [y ;] each associated with one of the
A T _ k,
Ly = 2(22 N20 €r,0€r.0 diag(e) non-negatithy constrainjtswg > 0, hx; > 0, respectively.
r=lg=1 7 Consequently, we formulate the Lagrangian functiBnas
Cr ro 1y o follows:
X |1-— e’ e, |diage) ). 1
[ ; " ] « )) (18) L = %Tr[XXT] — Tr[zHX"] + %Tr[ZHHTZT] + TrjyyH)
Here diade) denotes a function that converts vectointo a + %Tr[HLwHT] - gTr[HLbHT] + Trjgz"]. (25)

diagonal matrix containing its elements on the main diagonah o blem i ion (24) i valent
I, is an L x L identity matrix, 1 is an L x L matrix of The optimization problem in equation (24) is equivalenttte t

ones, whilee, 4, e, and e are L-dimensional vectors whose Minimization of the Lagrangian functiong min L. By setting
i-th element is defined as: the partial derivatives of with respect toz; ,, andhy, ; equal

1 if x. € 6-th cluster of ther-th class to zero and exploiting the KKT conditions, [29] we obtain the
lero]i = { 0 otherwise ,  following equalities::
(19) oL
] ,if x; € r-th class 20 Ol ; hij = [ZTZH] ke — 27Xk he
lerli =1 0 otherwise. (20) 7 L P
’ + a[HLw]k,Jh;w B[HLb]k,]hk,] =0(26)

1 oL T T
e . i = [ZHH |; pz;p — [ XH" |; pz;6 = 0. (27
[el: Cardinality of samplex; cluster (21) <azi,k) “ik [ Jikzin = Jiwzie 7)



The added discriminant factors in the SDNMF cost functioB. Dividing Classes into Subclasses

are totally independent from the basis image mattixConse-  Regarding the optimal division of each class into subcksse
quently, keeping variabl®l fixed and optimizing folZ results  yarious criteria have been proposed in the literature [33],
to the same optimization problem described in [28] and to thg4]. |n our implementation, we have considered the Nearest
update formulae in (5). This can be also verified by soIvingeighbor (NN) based clustering algorithm presented in [33]
(27) for z; . Thus, we can recall the convergence proof Qfhich is a good compromise between computation speed and
conventional NMF in [28] to show that (23) is non-increasing|ystering accuracy. Moreover, as it has been shown in [33]
under the update rule in (5). Solving (26) far,; we derive the yarious other clustering methods can be used but they do not
proposed multiplicative update rule shown in (28). A desil 5ifect the overall classification performance significarithis
proof regarding the non-increasing behavior of (23) untler tcan pe attributed to the fact that only first and second order
proposed update rules in (28) fdf can be found in the statistics of each cluster are used in the optimizatiorexdait
Appendix A. ) ~__and, thus, precise clustering is not crucial, as long as the
It should be noted that as in every NMF-based optimizatiQgcation and dispersion of each cluster is robustly estuhat
problem, the objective function in (23) is convex either in according to NN clustering, we first construct a sorted set
Z or H, but non-convex in both variables. Therefore, th X1, .., %, } for everyr-th class with itsN, training sam-
proposed iterative optimization algorithm reaches a chalp|e vectors arranged as follows: samptes andx,. . are the
optimal solution which is non-unique and is usually sewsiti tyyo most distant feature vectors of theh class in the initial
to the initialization point. Various initialization stegies have high dimensional image space, i.e., the two sample vedtats t
been proposed in the literature however, their efficacy j§aximize the Euclidean distanaegmax,  ||x;—x;||2. The
both data and application dependant, since the additiopgt of the samples are then ordered, stdggtis the sample
imposed constraints in the NMF decomposition cost functigfjgsest tox,.;, while x,. v, _1 is the sample closest to, ;.
also affect the starting factors suitability. Lee and Selliijg This procedure results in an ordered set, where the sample
exploited the random seeding approach which is computatiggnked in thej-th position is the(j — 1)-th closest sample
ally efficient and has been also adopted in this work. Othgy x,.1, and at the same time, theV, — j)-th more distant
computationally more complex approaches to initialize trgehmme to the other extremusy, v, . Subsequently, we divide
decomposition factors are based on K-means clustering [3ia samples belonging to theth class intoC, subclasses,

or SVD decomposition [31]. _ by partitioning the ordered set int6, equally sized subsets,
The optimization process successively updates varltie  thys optainingC, subclasses.

H until a stopping criterion is invoked. In this work we ter-
minate the optimization process when the improvement in the Projected Gradients Subclass Discriminant Non-negativ
cost function value between two successive iterationsss 1§ 4trix Factorization (PGSDNMF)

than10~3. Other similar stopping criteria based on monitoring

the objective function improvement have been proposed tiﬁThe derived multiplicative update rules for the evaluatién

the literature [32]. Finally, in order to compute the prdien e optimal factord andZ lack of convergence results [24],

to the lower dimensional feature space for an unknown té ] sw;cfe thﬁy oplyzgsuarar(;t((aje a nton—mcreattﬁlntg btt-:jha}vﬁc;r 0
samplex; and extract its discriminant representation we udge cost func lon n ( ) ) an do not ensure that optimization
the pseUdo-inversZT — (Z72)'Z" as:%; = Zix;. The converges to a limit point that is also stationary. In NMSéeh
iterative optimization process for the SSNMF pﬁoblem igptimization problems, stationarity is an important pnope
summarized in Algorithm 1 since it guarantees that the reached limit point after aesgcp!
) of iterations corresponds to a local minimum. Moreover,tas i
Algorithm 1 Algorithm outline for the optimization of SD- has been shown in [25], update rules derived using projected
NME gradients attain faster convergence compared to theiri-mult
: plicative counterparts. In order to exploit these efficierc
1: Input: Non-negative data matriX = [xi,x2,...,x;] We adopt such an optimization framework for the SDNMF
along with the class label and cluster orig{w;,c;} problem. Using the cost function in (23) we formulate two
subproblems, by keeping eith&ror H fixed and performing
_ o ) P M optimization for the other. Consequently, two cost funtsio
2: Ou_tput. The_ba5|s |5\n4a%es matrig, € R and the 01(Z) and O5(H) are derived wher®, (Z) assumedH is
weights matrixH € R} ™", kept fixed, whileO,(H) assumes a fixel:

- Initialize: Z(© F© - .
3: Initialize: ZY, H\Y) andt = 1. IrlziIlOl(Z) subject to: ziy >0, Vi, k (29)

associated with each training facial imagei = 1,..., L.

4: repeat min O(H) subject to: hy; >0, Vk,j.  (30)

5. Update H® given Z(¢~1 using (28). H '

6. Update Z(® given H® using (5). 1) Optimization ofZ solving the subproblem (29)The

7 pepa1 performed optimization is an iterative steepest descartqss

s until \O:DA;MF(XHZ“)H(”)  Osprae(X]|ZC-VHED)| < thatl_a'ija given iteration rountithe following update rule is
1073 applied:

/AQ. P[Z(t_l) — VO, (Z(t_l))]v (31)



T n r —Cr
20 Xy + BEOD TN 30 el geroli.

C,
H Vdiage) <1 -> eTTer> diag(e)]

hy = byt . (29

2" Z¢DH ) + o HO VL + 8

k,j

where operato].] = max][.,0] guarantees that no negative 2) Optimization of H solving the subproblem (30)in
values can be assigned to the updated elements of niatrivorder to find a stationary limit point fo©,(H), a similar
and oy is the learning step parameter for théh iteration. procedure is followed. Initially, the learning step paraeney,
The determination of a proper learning step parameter is determined and the weights matkikis updated as follows:
at each iterationt, is crucial, since not only it determines _ _
convergence speed, but also constitutes a time consuming op H = P[H(t Y- O‘NOQ(H(t 1))] (38)
eration. An efficient approach for setting an appropriatee/a until the function O,(H) is sufficiently decreased and the
to parameter, based on the Armijo rule [35] is presentedollowing inequality resulting by performing the expansio
in [25], which is also adopted in this work. According to thisiearH*~") considering up to quadratic terms holds:
strategy the learning step is computeda@as= (9, where
g: is the first non-negative integer value found, such that tHé — ) <V02(H(t71))7 H® — H(t71)> (39)
following inequality is satisfied:

01(ZW) — 01(2"7) < (VO (ZU71), 21 — Z07D),

(32) The update procedure is repeated, until the limit point ef th

where operator(.,.) is the Frobenius inner product, whichsequencé H¥)}<, becomes stationary. Consequently, similar

computes the sum of the entries of the Hadamard proddetthe stationarity control condition checked regarding th
between two matriced andB as: update ofZ, the following termination criterion is used:

(A,B) = ZAZ-JBZ-,J- = Tr[ATB]. (33) VP O,(HD)||p < en||[VEO,(HMD))||p. (40)

4,J

+ % <H<t> —HY, v2o,HY)m" - H(H))> <0.

] o The presented strategy generates a sequence of minimizers
Parameter$3 ando take values in rangé), 1), while inour (7 H®}, until the reached limit point is stationary.
experiments we have sgt = 0.1 ando = 0.01 which is  * The minimization of both subproblems in (29) and (30)
an efficient parameter selection, as has been verified i othg o ves the calculation of the first and second order gratdie
studies [25], [36]. of the two optimized function®; (Z) and O,(H). Usi
o . . 1 5 . Using the

(9?213 ggﬁtgléngilsgnlge(dzi)e;gul?d;gt;g|:gv\t,:rms i Thus, formulation of the subclass scatter matrices provided B) (1

! ' and (16), the partial derivatives are evaluated as follows:

T
01(2?) = 04(Z4 V) + (z“) - z“*”) VO.(Z4Y) (34)

VO,(Z) = ZHH? - XHT (41)

+ % (z“) - z‘H))T v20,(z¢Y) (z“) - z“*”) . v20,(z) = HHT (42)

By replacing (34) into (32), we derive the following ineqital VO:(H) = Z"ZH-7Z"X +oHL, - fHL, (43)

which is less computationally expensive: VZO0,(H) = Z'Z®1Ip+ ody @ Ly, — Iy @ Ly (44)
(1-o0) <V(91(Z(t*1>), yAQN. z<t*1>> (35) Wwhere ® denotes the Kronecker product operation. Con-

1 sequently, inequality (39) that drives the evaluation of th
+5 <Z(t> — 72079 20,2V (z® — Z(t*1>)> <0. optimum learning step parametef during the optimization

By iterating the update rule in (31), a sequence of mir(l)-f the weights matrixH can be rewritten as:

imizers {Z(M}2, of O1(Z) is generated and according to (1 — o)TVOEHNHTEH® - HE-))
Bertsekas [37], it is guaranteed that a stationary poirtusé 1 ) (t—1\T o2 (t—1)
among its limit points. Thus, in order to verify whether the + iveo(H —-H )V 0.(H )

currently reached limit point is stationary or not, a stasitty ~ vec(H(t) _ H(tfl)) <0 (45)
check step [36] is performed, which examines whether the o
following condition is satisfied: where ve¢.) denote; an operator that converts a matrix into a
vector by stacking its columns.
IVPOUZD)||F < eg]| VP OL(ZM)] |, (36)
whereV? 0, (Z®) is the projected gradient @, (Z(")), with E. Connections of SDNMF algorithm with the NPAF frame-
respect toZ, with its (i, k)-th element defined as: work

[VO1(ZD)]i & Jf 2z >0 In [13] a unified framework for various NMF-based methods

min (07 [VOI(Z(t))]i,k) Jf 2, =0 has been proposed, that uses a fast gradient descent opti-
7) mization algorithm. In order to exploit the merits of this

andez is a predefined stopping tolerance sekp= 10"2.  unified framework we adapt our SDNMF algorithm to NPAF

VPO (2] = {



by modifying appropriately the considered alignment nxatriorder partial derivatives of the cost function with resptrt
More precisely NPAF framework that exploits the KullbackH, keeping variabléZ fixed, are now evaluated as:
Leibler (KL) divergence metric [38] considers the followin

optimization problem: VO4 (X?||2°H) = K. .H - K. , + oHL,, — SHL,
(49)
A o T
Onpar(X||ZH) = Ok (X[|ZH) + §TY[HLH ], (46) V20¢ (X¢||Z¢H) =K..QIp +aly ®L, — Iy @ L.
(50)

where Ok 1(X||ZH) is the part of the NPAF cost function

that measures the reconstruction error dnds a symmetric ; e , .
positive semidefinite patch alignment matrix, different fo! '€ 1€arning step parametef is similarly determined using

each specialized NMF-based algorithm. To unify SDNMf#5) and a stationarity condition check step is performed as
algorithm in the NPAF framework we can rewrite its cosin (40), in order to verify that the projected gradient at the
function as follows: reached limit point is sufficiently close to zero.
. o 3 . Respectfully, optimization foZ is performed by iterating
OSDN]MF(XHZH):OKL(X||ZH)+§Tr[H(Lw__Lb)H ], the update rule in (31), while the optimal learning step
@ (47) parameter is now determined using (32) instead of (35)gesinc

which is equivalent to (46) with the alignment matiixthat the cost function for different Mercer’s kernels is no longe

o . B qguadratic in terms o% and thus inequality (35) is not valid.
encodes the discriminative information replacedhy— Ly. Considering polynomial kernel functions of arbitrary degr

Since matriced.,, andL;, are symmetric and positive semidefyne involved in (32) first order partial derivative with resp
inite SDNMF can be directly incorporated into the NPAKo Z, is evaluated as:

framework and optimized by the proposed in [13] generative -
multiplicative or fast gradient descent update rules. VO, (X“’HZ"’H) =7 (HHT ® Kz,z) -X (H O] K”)
(51)

F. Subclass Discriminant Kernel NMF Algorithm (SDKNMFg can e observed, all involved calculations can be perdrm

In order to model non-linearities in the extracted imagesing the so-called kernel trick. Thus, explicit computati
features we derive the non-linear counterpart of the preposof the mappingse(z;) and ¢(x;) is not required. Details
algorithm called SDKNMF. Here we shall only demonstrateegarding the derivation of the first order partial derivativith
the optimization of the SDKNMF problem, considering prorespect tdZ, when considering polynomial kernel functions for
jections of the available training data to polynomial featu the non-linear mapping are available in Appendix B.
spaces, exploiting arbitrary degree polynomial kernetfioms
of the formk(x;, x;) = (xiij)d. However, it is straightfor-
ward to extend SDKNMF, such as to exploit different Mercer’s

kernels, using the methodology presented in [20]. The probl v compare the performance of the proposed methods, con-
at hand can be summarized as follows: approximate a set

" ) - sﬂfering both optimization frameworks, with those of vaso
non-linear _non—negauve tralmng_samplt_e vectors mapped RIMF based algorithms, such as NMF, PGNMF [25], DNMF,
a polynpmlal fea_lture space, using a Ilnear_ comb|_nat|0n BokNME [20], NDLA [13] and GNMF [11]. Moreover, we
appropriately weighted non-linear non-negative basidorec 54 include in our experimental comparison linear subspac

mapped on the same polynomial feature space in a disc”r@arning methods such as CDA, LDA, PCA, LPP [39] and the

IV. EXPERIMENTAL STUDY

nant manner. S “Marginal Fisher Analysis (MFA) [40], which is an appropdat
Consequently, the optimization problem for the polynomiglpa yariant that overcomes the Gaussian distributed data sa

SDKNMF algorithm is formulated as follows: ples optimality assumption. For our experiments we comside
8 facial expression recognition on the Cohn-Kanade [41] &id t

. «
T Oy (X?||27H) + §Tr[HLwHT] - §Tr[HLbHT] (48)  Binghamton University 3D Facial Expression Database (BU-
subjectto: z, >0 and hy; >0 Vi jk 3DFE) [42], face recognition on the CMU-PIE dataset [43]

' i and object recognition on the ETH-80 [44] image set. Figure
which is solved using projected gradients in order to ensuteshows example images from the Cohn-Kanade dataset, de-
limit point stationarity. It should be noted that the previpicting the seven recognized facial expression classasged
ously presented methodology for the optimization of PG$a the following order: anger, fear, disgust, happinessneas,
DNMF algorithm is valid only for linear kernels of the formsurprise and the neutral emotional state.

k(x;,x;) = x!'x; since in this case the cost function in (48)
is quadratic in terms oZ. In the general case, the expansion
performed around the current solution estimte ) in (34),
considering up to quadratic terms, is not valid for polynaimi
kernels of degred > 2.

Similarly two subproblems are generated from (48) con-
sidering for each one either variable or H is kept fixed. Fig. 1. Sample images depicting the different facial exgimes from the
The iterative process for optimizing with respectHoapplies Cohn-Kanade database.
the update rule in (38) where the involved first and second




A. Preprocessing of Facial Expression Data and non-linear) were found to attend an improved performanc

To form our data collection, for the facial expression recod this comparison. Moreover, the superiority of the pregec

nition experiments, we only acquired a single video frapfyadients optimization framework is.also demonstratet;esi .
from each video sequence, depicting a subject performing®@th PGNMF and PGSDNMF algorithms outperformed their

facial expression at its highest intensity level. To do smef Multiplicative counterparts. The highest measured reitiogn

detection was performed using the OpenCV [45] face detecfffcuracy rate is72.9% achieved by SDKNMF algorithm,
and the resulting facial regions of interest were manualfPnsidering classes partitioning into two subclasses as&ta
aligned with respect to the eyes position and anisotrolgicaP™d order polynomial kernel function. Regarding the baseli
scaled to a fixed size a0 x 30 pixels. Finally, each grayscale&/90rithms PCA outperformed all linear subspace learning
facial image was scanned row-wise, so as to form a feat@@orthms achieving a recognition rate @8.8%. Moreover,
vector which was used to compose either the training or t&-A which does not make any assumption on the data distri-
test set. bution of each class outperformed all discrimination erhan

To measure the facial expression recognition accuracy, {9 subspace methods. Finally, NDLA algorithm which also

randomly partitioned the available samples into 5-foldd an does not assume a Gaussian data distribution inside classes

cross validation has been performed by feeding the prajectd ©rder to enhance classes separability, in this expetimen
discriminant facial expression representations to a figaav  outperformed DNMF. On the other hand, GNMF although
classifier. This resulted into such a test set formation whé} forms_ s_lmllar dlscrlmlngnt criteria to NDLA alg_onthmt !
some expressive samples of an individual were left forngsti 'S SPecialized for clustering problems and thus it could not
while his rest expressive images (depicting other faciptes- Provide competitive classification performance.
sions) were included in the training set. This fact signifiba Figure 3 attempts a comparison between the basis images
increased the difficulty of the treated expression recagmit produced from training on the Cohn-Kanade database PGNMF
problem, since identity related issues arose. and the proposed PGSDNMF algorithm, considering for the
latter partitioning of each facial expression class intm tw
subclasses. Both methods have been trained to find the dptima
projection matrix to a subspace of equal dimensionality. As
The Cohn-Kanade AU-Coded facial expression databasecih be seen, the basis images extracted by PGNMF are
among the most popular databases for benchmarking methp@s sparse and have a rather holistic appearance, compared
that perform facial expression recognition. Our data ol to those generated by the PGSDNMF algorithm. More pre-
comprised of 407 images depicting 100 subjects, posing incigely, PGSDNMF produced a few holistic basis images that
different emotional states (i.e. anger, disgust, fearphegss, contribute in minimizing the reconstruction error, whileet
sadness, surprise and the neutral emotional state). As eafjority are sparse and localized corresponding to specific
be seen in Figure 1, Cohn-Kanade database images defjghl discriminant facial features, which participate aciél
subjects of different ethnic groups under severe illumamat expression formation and lie mainly in the facial areas adou
variations. Consequently, the data sample vectors do m@buth, eyes and eyebrows. These basis images significantly
necessarily correspond to compact facial expressionedassssist in facial expression discrimination and optimize th
To verify this, we have considered that each class is pameti imposed discrimination criteria introduced in the PGSDNMF
into three subclasses and computed the mean expressive im&gt function. This observation reveals that the proposed
for every cluster of each class according to the methodologyethod successfully decomposed each facial image into its

presented in subsection 1I-C. Figure 2 shows the mean imagigcriminant facial features, a fact that verifies its siguéy
for each facial expression considering the two more distafaf the facial expression classification task.

clusters inside each class. Clearly the illumination \taotes
are captured during clustering.

B. Cohn-Kanade dataset

mw ‘ B | ) | b |
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Fig. 2. Mean images derived from the two more distant subelasside eac..
expression class. The diverge illumination conditiondgrdufacial expressions
capture in the Cohn-Kanade database are evident.

) ) ) Fig. 3. Basis images derived from training in the Cohn-Kanadtabase
Table | summarizes the highest performance achieved &yorithms: a) PGNMF and b) PGSDNMF witf, = 2.

each examined method and the respective projection subspac
dimensionality. All subclass discriminant algorithmsnéar



TABLE |
BEST AVERAGE EXPRESSION RECOGNITION ACCURACY RATEE%) IN COHN-KANADE DATABASE

Linear Subspace Methods NMF-based Methods Proposed Methods
LDA | PCA | CDA | LPP | MFA | NMF | PGNMF | PGKNMF | DNMF | NDLA | GNMF SDNMF PGSDNMF SDKNMF
65.7 68.8 66.0 64.4 68.3 64.9 66.3 66.9 65.6 69.3 60.4 70.4 72.6 72.9
6 180 | 13 6 60 | 180 120 170 190 170 200 | O, =2 (110) | Cr = 2 (190) | C, = 2(200)
C. BU-3DFE Dataset images depicting 10 different objects captured from vagiou

The dataset we generated from BU-3DFE contains 700 it#€W angles, data samples inside classes span large ®-clas
ages, depicting 100 subjects performing 7 facial expressiovariations, forming various subclasses.
In the original data collection except of the neutral emualo Al @lgorithms applied on the same data ma _
state, each of the six performed facial expressions ingolv@nd the best results are summarized in Table IV. As it
four intensity levels. In our experimental evaluation waéa €20 be seen, PCA outperformed all linear subspace learning
included only the facial images at expressions apex. algonthr_ns, while SDKNMF considering five subclasses per
Table 1l presents the best average measured expres§8Rh object class .produced thg best results among all egdmin
recognition accuracy rate and the respective projectidn sinethods. The object recognition rates for LDA, PCA, CDA,
space dimensionality, achieved by each examined method. A¥MF, GNMF and SDKNMF wereT5.7%, 85.9%, 81.2%,
it can be seen the derived results are similar to those regorg0-1%, 77.4% and87.1%, respectively.
in the Cohn-Kanade database. SDKNMF attained the bestl0 demonstrate the data clustering effect in SDNMF algo-
performance across all examined subspace methods reachifigns performance, we recorded the recognition rateairat

66.4% when considering two subclasses per each expressfghdifferent parametef’, values. As it can be seen in Figure 4
class. SDNMF efficacy initially increases as we partition each slas

from 2 up to 5 subclasses, where our algorithm attained &t be
performance, while after that point further partitioningsses
o results in reduced recognition accuracy. This is attrithute

~ The CMU-PIE face database contains in total 41,368 facigle fact that in these cases the training samples per sstarias
images depicting 68 different subjects each captured ungigfiteq and, consequently, the subclass covariance resteice

variations in pose, illumination, and expression. For this,qy estimated which affects the correctness of the ifiedt
experiment we used 170 facial images for each '“d'V'dUB}ojection directions [33], [46].

captured under five near frontal poses (poses identified as
C05, C07, C09, C27, and C29) under 4 different expressions
and 43 different illumination conditions. The consideradiél
images were cropped, scaled to a fixed siz8k 32 pixels

and gray scaled according to [11]. We randomly selected
half facial images of each individual for training, whileeth
rest were used for testing. Table Ill summarizes the highest
recognition rates achieved by each examined method. The
experimental results showed that the proposed algorithms 7al ]
are more robust in variations in pose and expression for s . : : o
face recognition. PGSDNMF considering partitioning of leac Number of Subclasses

class into five subclasses attained the highest recognition

rate, 97.7% marginally outperforming its non-linear variant.

The best recognition rates for LDA, PCA, NMF, DNMFFig-“_- Opject re‘c‘ognition rate versus the number of subegach category
and SDNMF are9d.9%, 95.7%, 96.1%, 96.7% and 97,1% °f obiects is partitoned to.

respectively.

m6384 x2000

D. Face Recognition on PIE dataset

88

781

761

Mean Recognition Accuracy Rate (%)

E. Object Recognition on ETH-80 dataset F. Algorithms Computational Complexity and Convergence

ETH-80 image dataset depicts 80 objects divided into 8 To investigate the ability of the proposed SDNMF and PGS-
different classes, where for each object 41 images have b&MMF algorithms to minimize the considered cost function
captured from different view points, spaced equally over thn (23), with respect to the performed iteration rounds, we
upper viewing hemisphere. Thus, the database contain 3,h8ve applied both algorithms to factorize a dense data xnatri
images in total. For this experiment we used the cropped ald e R!?°°**°T composed of all expressive images of the
scaled to a fixed size df28 x 128 pixels binary images con- Cohn-Kanade dataset considering two subclasses pairtijion
taining the contour of each object. In order to form our tirin of each expression class and setting the projection subspac
set we randomly picked 25 binary images of each object, whitémensionality equal t&0. Moreover, parameters and S
the rest were used for testing. Since each category includieffuencing the contribution of the within and between sabsl
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TABLE I
BEST AVERAGE EXPRESSION RECOGNITION ACCURACY RATEE6) IN BU-3DFEDATASET

Linear Subspace Methods

NMF-based Methods

Proposed Methods

LDA PCA | CDA | LPP | MFA | NMF | PGNMF | PGKNMF | DNMF | NDLA | GNMF SDNMF PGSDNMF SDKNMF
54.6 | 64.4 | 59.3 | 55.3 | 58.4 | 58.7 59.7 62.6 63.4 61.7 56.3 64.1 64.6 66.4
6 100 13 6 20 150 110 200 180 180 190 =2(120) | C,. =2(70) | C, = 2(190)
TABLE Il

BEST FACE RECOGNITION ACCURACY RATES%) IN PIE IMAGE DATABASE

Linear Subspace Methods

NMF-based Methods

Proposed Methods

LDA | PCA | CDA | LPP | MFA | NMF | PGNMF | PGKNMF | DNMF | NDLA | GNMF SDNMF PGSDNMF SDKNMF

94.9 | 95.7 | 95.1 | 95 | 93.1 | 96.1 96.5 93.9 96.7 93.7 94.4 97.1 7.7 97.5

67 | 300 | 271 | 67 | 190 | 200 120 300 200 160 100 | C, =5 (200) | Cr = 5(120) | C, = 5(300)
TABLE IV

BEST OBJECT RECOGNITION ACCURACY RATE$%) IN ETH-80IMAGE DATABASE

Linear Subspace Methods

NMF-based Methods

Proposed Methods

LDA PCA | CDA | LPP | MFA | NMF | PGNMF | PGKNMF | DNMF | NDLA | GNMF SDNMF PGSDNMF SDKNMF
75.7 | 85.9 | 81.2 75 74.6 81.3 85.2 85.4 80.1 82.6 7.4 86.7 86.7 87.1
7 60 31 7 240 300 60 250 300 100 250 =5(300) | C, =5(100) | C. = 5(250)

scatter matrices trace optimization in the objective fiomct tational cost required by the two methods in order to update
were set for both algorithms ta5 and0.9, respectively, while matrix H for a single iteration.

both algorithms were initialized using the same randomly
generated matrices. Figure 5 shows the objective function
value reduction per iteration, denoting the quality of th8
approximation, for each algorithm. As it can be observ
PGSDNMF reduces the objective function in each iteratig
round more aggressively and converges in fewer iteratioes t
its multiplicative counterpart.

Based on the update rule in (28) for each iteration the
erall cost for the SDNMF algorithm ©(FLM). For PGS-

NMF based on the alternative projective gradient approach
%hd applying Algorithmd4 in [25] to determine properly the
learning rate parameter; the complexity iSO(FLM?) +t x
(O(rML?)) wheret is the number of iterations performed for
the minimization of the subproblem in (30) ands the average
number of iterations performed for finding an appropriate
Consequently, the cost for a single update of the PGSDNMF
algorithm is more expensive than that required by the SDNMF
algorithm.

15000

—e— SDNMF

——— PGSDNMF

Objective Value

10000
000 In Table V we show the recorded CPU training time,
measured in seconds, required by NMF, PGNMF, SDNMF,
k PGSDNMF and PCA algorithms. All algorithms have been
O 1000 1590 7050 290 3050 3500 implemented on Matlab and the required by each method
CPU time during training has been recorded. PCA required
less training time than all NMF-based algorithms. This is
attributed to the fact that both NMF and PGNMF are iterative
optimization methods, and consequently are computational
expensive. In our implementation, we derived SDNMF from
To reveal the computational requirements of each methtte original NMF algorithm modifying appropriately the mul
we measured the computational complexity per iteration ftiplicative update rules and the stopping condition, while
the derived update rules in (28) and (38) by counting tHRGSDNMF has been devised from the PGNMF implemen-
number of arithmetic operations required and summarized tfation provided by the authors of [25]. The difference in the
results using the bi@ notation [47]. Since the multiplicative training time between the PGSDNMF and PGNMF algorithms
updates operate on each matrix element, while the projectedittributed to the involved Kronecker product operatibatt
gradients updates perform optimization on a matrix level, Bignificantly increases the size of the matrices involvethi
order to perform a fair comparison we measure the compesmputations of the first method.

Number of Iterations

Fig. 5. Objective function value versus the number of itera for the
SDNMF and PGSDNMF algorithms.
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TABLE V . .
TRAINING TIME IN SECONDS REQUIRED BYNMF, PGNMF, SDNMF, settinga = 0.1 and 3 = 0.3 yielded the best results.

PGSDNMFAND PCA ON COHN-KANADE DATASET

Dimensionality g

Input | Projection | NMF | PGNMF | SDNMF | PGSDNMF | PCA
1200 [ 50 [ 17 | 13 | 58 | 8 [ 0.53

70

65.

60.

Avg. Recognition Accuracy Rate (%)

G. Parameters Selection

The proposed update rules involve paramétethat affect

. . . . Parameter B Value 02
the imposed discriminant factors and atsand/s that regulat ’ 00N, o1 oz 03 08

. . . . . . . Parameter a Value
their contribution in the cost function. Since, we are iatec
'f‘ enhancmg classes discrimination, t.hus mcreasmgsrﬂaa— Fiﬂ. 6. Mean expression recognition rate in Cohn-Kanadabdese after five
tion performance, we seek to cﬁ_etermme these parametérs Wihdom starts of SDNMF algorithm versus the parameteend 3 value.
respect to the reached recognition accuracy. Thus, we seek f
the C,, o and 5 values that achieve the highest recognition

rate. _ o V. CONCLUSIONS
More precisely, we performed a two stage cross validation, oo worid applications data distribution usually does

process in order first to determine the optiraal value, while not correspond to a compact set per class, but data form

con§|derlng equal contribution of the phscn_mmant fa_Storvarious subclasses. Inspired by this observation, we fiaves
settinga = 8 = 1, and subsequently, to identify the optima

g | for that clusteri tting. To determiti ated the use of CDA-inspired discriminant constraintscivhi
o and § values for that clustering setting. To determifi were incorporated in the NMF cost function, resulting in the

we e_xplo_ited _the training set in order_ to frain our algori'EthDNMF algorithm. SDNMF addresses the general problem
considering different values fd;. (ranging from 2 to 5 for the of finding discriminant projections that enhance class sepa

face databases and from 2 to 10 for the ETH-80). The rangercol[)i“ty by minimizing the scatter within every subclasa T

the examined, values is selected Sth as t_o guarantee tllac}Ive the SDNMF minimization problem, we developed novel
the number of samples per SUbC!aSS IS sufﬂmentl_y Iargeeém(?rrwltiplicative update rules that consider not only sampdss
than 10). Unfo_rtunately, se_archlng_ for 6.‘" possible _numb%bels but also their subclass origin. Moreover, optimizat

?f Eubglasstﬁs IS com{OL:FatloFallytlnfea5|b|?_ Thlés’ |r|! dof[.d\?/as performed using a projected gradients framework, ierord

0 burden h € CO'EPT ational cos WZ pferhorme vall abl% ?xploit its strong optimization properties. Finallyethon-
assuming that each class Is composed of the same numb&f i, counterpart of the proposed method consideringeproj
subclasses. Subsequently, the reached classificatioma@§cuy < in non-linear polynomial feature spaces has been also

for each e_xammed‘r valu_e was measured on the tra|n|_ng Seﬁwestigated. We compared the performance of the proposed
and the highest performing subclass partitioning settiag Walgorithms with that of various linear and non-linear cotape
selected. ing methods for facial expression, face and object recanit

Fsra}meterm andf were S|m|I%rIy detehrmmhgld through ","verifying the effectiveness of the proposed methods inowesi
validation stage performing a grid search, while consitgri recognition tasks.

the optimal clustering setting identified during the prexso
step. More precisely, for the facial expression recognitio
experiments on the Cohn-Kanade database we trained our
algorithm considering”,. = 2, which was identified during o o i . .
the previous step and set values to parameteasd 3 in the Theorem 1 The obj_ectlve function in (23) is non-increasing
range|0, 1]. Figure 6 shows the average reached expressigder the element-wise update rule in (28). y
recognition rates of SONMF in Cohn-Kanade after 5 random 10 Prove Theorem 1 we define an appropriate auxiliary
starts for each different set of parameters value. As it c#nction G which bounds the objective function from above
be seen SDNMF performs better whenis varying within and also satisfies the conditigi(H, H) = Ospyur(H).
[0,0.5] and 3 within [0.6, 1]. The highest achieved recognition?SiNg such an auxiliary functiods we can show that the
rate was attained for — 0.5 and 3 = 0.9 which were also UPdate rule:

the parameters value applied in experiments on both facial H® = argmin G(H,H*~1) (52)
expression databases. A similar procedure was also applied H

for the ETH-80 and PIE databases, where for the first, settingjl never increase the objective function, since the fwilog

in our algorithmC, = 5, o = 0.4 and 3 = 0.6 resulted inequality is valid:

APPENDIXA
PROOF OFCONVERGENCE

to the best performance, while for the latter the selected H® HO gD

parameter values wer€, = 5, a« = 0.2 and 8 = 0.9. OSDNMF( ) < G( ’ ) <

DNMF parameters have been similarly selected using cross a(at-v. get-v) — o HED 53
validation and performing a grid search in the rafi@é, 0.5] ( ’ ) SDNME ( ) - (33)
according to [16]. Thus, we appliedd = 0.1 and 3 = 0.1 on Lemma: The function in (54) is an auxiliary function for

all experiments on facial image data, while on ETH-80 datasg,, ,, which is the part of (23) that is only relevant kq ;.
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[ZTZH]; ; + o[HL,]x ; + S[Hdiag(e)(1 — Zer e, )diag(e)]x.;

-1 - / - - r= -1
G(h,h5V) = Fu, (V)4 F, (050 (h=h{ )+ D 1 (h=hy';")*
’ (54)

Proof: Let us denote withF; ~ and Fj| the first and (61) is simplified to:

second order derivatives &}, Wltjh respect tdzk ,; evaluated v
as: thz [dmje )(1— Ze e, )diagle) +

Fy,, = Z"ZH),; — [2"X]); + o[HLy]x,; — B[HL]x; =t Lj

(59) " S0
Fy, =27 2]k + a[Lul;; — By, (56) [Z 92: NZ, el ger. 9] >0 (63)
- ' 253

Obviously, according to the definition of the auxiliary fiion ) ) , ,
in (54) ityholds:G(h?h) = Fy, ,(h). Consequently, )\:ve only Which is valid ~since [ZL Yoy CJV%%GZGGT,‘)LJ =
need to show tha(h, h{'; ") > Fy, ,(h). In order to do so, 0.~ since  C > C, and  also
we compareG(h, h(t 1)) with the up to second order Taylor |di29(€)(1 — St Teﬁdm@e)hﬂ_ 2 0 . Summing
series expansion thk (h) defined as: up all the above inequalities completes the proof.

. Proof of Theorem 1: SubstitutingG(h, h,(i;.l)) of (54) into
Fiy, (h) = Fhk,j(hg,;l))JrFﬂk,j (h—hiﬁ;”)+—F;§’m (h—hﬁ;”)Q (52) we derive:

2
(57) h(f) _ G(h, h(t 1) h(f)_ — h(t 1)
Substituting (56) into (57) and comparing it with (54), we ™7 arg min Gi( )e k.

derive that instead of showing thét(h, hgw Dy > Fy, ,(h) 27 X]x; + BHY, Y67, —g—er 0€r,0]k,j
we can equivalently prove that: : = .
27 ZH]x; + o[HL,Jx; + S[Hdiagle) (1 - £, efe, ) diagle)]r,;

CT . .y .
[ZTZH],C,]»JFa[HLw]k,j+B[Hdiag(e)(1—Zefer.)diag(e)]k,j Consequently, (54) is an auxiliary function of (23) and
r=1 < fspNMF is non-increasing under the update in (28).

h(t—l) = Phi
kyj
_ . _ G8) APPENDIX B
To prove the above inequality we will compare each term ife,rsT ORDER PARTIAL DERIVATIVES WITH RESPECT TCY,
(58) separately: CONSIDERING ARBITRARY DEGREE POLYNOMIAL KERNELS
L The first order partial derivative of,, (X¢||Z*H) with
[ZTZH);, Z (Z7Z)y 1 hey > [ZTZ) b (59) respect toz,; consideringH fixed, is evaluated as follows:
= 00, (X¢||Z¢H) L zl x;)
—_— Y = —h i : hiih
ki ZGth,l[Lw]l,j > ahy,j[Lulj;. (60) D211 ;( ' (Z b
Ok( zl,zl Ok(z; ,zl))>
To complete the proof we need to show that: X hii J .
p p 8Zkl Z b J’ 8Zkl
. N (64)
Hdiage)(1 — ) e, e,)diagle) > —hiy[Le)j; &
r=1 k,j Considering a polynomial kernel its partial derivative hwit
Cy .
[Hdiag(e)(l _S T er)diag(e)} > —h, respect toz Is:
r=1 k,j a F d
n 0k(z;,z1) (Zi:1 Zi,jzi,l) s (z 2) d—1 (65)
[ZZ Nz, eneer 9} (61) e Oz s ORISR
r=10 r,0 .
' 7 Consequently, replacing (65) into (64) we derive
since VO, (X?||Z*H) as:
CT
diage)(1 — Te, )dia =0 62) 00, (X?||Z°H
l ge)(1-) efe,) de)] N (62) s (X?||Z°H) th s XlTZl)d
r=1 JsJ 6zk,l
given that matnx[z Te } is block diagonal with all L& d—1
r=1€r©€r| + Zzh 7,zzk,] Zl) (66)

V) . .
its diagonal elements equal to one. Consequently inegualit i=1 j=1



which in matrix form can be written as:
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