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Abstract—Current discriminant Non-negative Matrix Factor-
ization methods either do not guarantee convergence to a sta-
tionary limit point or assume a compact data distribution inside
classes, thus ignoring intra class variances in extractingdiscrimi-
nant data samples representation. To address both limitations, we
regard that data inside each class has a multimodal distribution,
forming various clusters and perform optimization using a
projected gradients framework to ensure limit point stationarity.
The proposed method combines appropriate clustering based
discriminant criteria in the NMF decomposition cost function,
in order to find discriminant projections that enhance class
separability in the reduced dimensional projection space thus,
improving classification performance. The developed algorithms
have been applied to facial expression, face and object recognition
and experimental results verified that they successfully identified
discriminant parts, thus enhancing recognition performance.

I. I NTRODUCTION

I T is common knowledge that the spatial image dimen-
sionality is much higher than that exploited by many

image analysis applications. This fact necessitates to seek
for efficient dimensionality reduction methods for appropriate
image feature extraction, which will alleviate computational
complexity and boost the performance of succeeding pro-
cessing algorithms. Such a popular category of methods, is
the subspace image representation algorithms which aim to
discover the latent image features by projecting linearly or
non-linearly an image to a low dimensional subspace, where
a certain criterion is optimized.

Non-negative Matrix Factorization (NMF) [1], is a popular
subspace learning algorithm widely used in image processing.
It is an unsupervised data matrix decomposition method that
requires both the matrix being decomposed and the derived
factors to contain non-negative elements. The non-negativity
constraint imposed by NMF on both the latent variables and
the observations is meaningful, when we operate on image
data exploiting their intensities, as the underlying features are
naturally non-negative. Moreover, the semantic interpretability
of the non-negative subspace learning is enhanced, since this
conforms nicely to identifying appropriate basic elements, cor-
responding to the basis images, which are added to reconstruct
the original data. This non-negativity limitation distinguishes
NMF from many other traditional dimensionality reduction
methods, such as Principal Component Analysis (PCA) [2],
Independent Component Analysis (ICA) [3], [4] or Singular
Value Decomposition (SVD) [5].

One of the most useful properties of NMF-based methods
is that they usually produce a sparse representation of the
decomposed data. Sparse coding corresponds to a data repre-
sentation using few basic elements that are spatially distributed

and ideally non overlapping. However, because the sparseness
achieved by the original NMF is somewhat of a side-effect
rather than a goal, caused by the imposed non-negativity
constraints, different studies have attempted to control the
degree to which the derived representation is sparse. Towards
this direction, Hoyer in [6], incorporated the notion of sparsity
into the standard NMF decomposition function so as the
sparseness of the representation can be better controlled,while
Li et al. [7] introduced localization constraints, leadingto a
parts-based representation.

Recently, numerous specialized NMF-based algorithms have
been proposed and applied in various problems in diverse
fields. These algorithms modify the NMF decomposition cost
function, by incorporating additional penalty terms in order
to fulfill specific requirements, arising in each application
domain. In [8], Projective NMF (PNMF) was introduced,
which proved to generate a much sparser and near orthogonal
projection matrix compared to original NMF. An extension of
NMF that is applicable on mixed sign data has been attempted
in [9], where the non-negativity constraint on the basis images
has been relaxed, while the weights matrix remained positively
constrained. Towards improving clustering performance, Cai
et al. [10], [11] recently proposed the Graph regularized
NMF (GNMF) that encodes the local data geometric structure
considering a nearest neighbor graph in order to exploit local
geometrical invariance between training samples when these
are mapped from the initial data space to the projection
subspace. Other approaches that exploit the data geometric
structure in order to extract discriminative information have
been also proposed in [12], [13]. Another notable variant of
NMF which retains the manifold structure of facial space, is
the Topology Preserving NMF (TPNMF) proposed by Zhang
et al. that is specialized for face representation and recognition
[14].

Focusing on applications operating on facial image data,
numerous specialized NMF decomposition variants have been
proposed for face recognition [7], [14], [15], face verification
[16] and facial expression recognition [17], [18]. In these
approaches the entire facial image is considered as a feature
vector and NMF aims to find projections that optimize a given
criterion. The resulting projections are then used in orderto
project unknown test facial images from the original high
dimensional image space into a lower dimensional subspace
where the criterion under consideration is optimized. In order
to model properly the non-linearities that are present in most
real life applications, Polynomial NMF (PNMF) has been pro-
posed in [19], which projects the original data into polynomial
spaces of arbitrary degree. An extension of PNMF has been
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proposed in [20], that considers projection of the trainingdata
using arbitrary Mercer’s kernels.

A supervised NMF learning method that aims to extract
discriminant facial parts appropriate for face verification is
the Discriminant NMF (DNMF) algorithm [16]. DNMF in-
corporates a discriminant factor inspired by Linear Discrim-
inant Analysis (LDA) [21] in the NMF factorization and
achieves a more efficient decomposition of the provided datain
their discriminant parts, thus enhancing separability between
classes. However, the considered discriminant factor possesses
two certain deficiencies inherited from the LDA optimality
assumption. Firstly, it assumes that the sample vectors of
each class are generated from underlying multivariate normal
distributions of common covariance matrix but with different
means. Secondly, since this approach assumes that each class
is represented by a single compact data cluster, the problem
of non-linearly separable classes cannot be treated efficiently.
Unfortunately, in real world applications, data distribution usu-
ally does not correspond to compact sets. This is common e.g.
in facial expression recognition, since there is no unique way
that people form certain expressions and moreover, there are
other factors, such as pose, texture and illumination variations
that lead to expression subclasses [22]. If this fact is not
properly addressed, the performance of NMF-based methods
is significantly degraded [23].

To overcome the aforementioned limitations we relax the
assumption that each class consists of a single compact data
cluster and regard that they form various subclasses, where
each one is approximated by a Gaussian distribution. Conse-
quently, we approximate the underlying distribution of each
class as a mixture of Gaussians and apply criteria inspired by
the Clustering based Discriminant Analysis (CDA) introduced
in [22] aiming at better subclasses separation. Moreover, we
extend NMF reformulating the cost function that drives the
optimization process by embedding appropriate discriminant
constraints and propose a novel algorithm, called Subclass
Discriminant NMF (SDNMF), which finds discriminant pro-
jections that enhance class separability in the reduced dimen-
sional space, by imposing discriminant criteria that assume
multimodality of the available training data. To solve the
SDNMF problem, we develop update rules that consider not
only samples class origin but also subclasses formation inside
each class. In addition, in order to exploit the well established
optimization properties of [24], [25] that ensure stationarity of
the reached limit point, we solve SDNMF problem using an
iterative projected gradients optimization framework. Finally,
we derive the non-linear counterpart of SDNMF that projects
training data to high dimensionality Hilbert spaces and propose
a set of update rules that consider polynomial projection spaces
of arbitrary degree.

In summary, the novel contributions of this paper are the
following:

• Subclass discriminant constraints that assume multimodal
data distribution are incorporated in the NMF cost func-
tion, resulting in a specialized NMF based method called
Subclass Discriminant NMF.

• To solve SDNMF, novel update rules under two different
optimization frameworks are proposed and their optimiza-

tion properties and proof of convergence are exhibited.
• The non-linear counterpart of SDNMF algorithm that

considers projections in high dimensional Hilbert spaces
is demonstrated.

• A thorough experimental study on various image recog-
nition problems is performed, comparing the proposed
methods with current state-of-the-art linear and non-linear
dimensionality reduction algorithms.

The rest of the paper is organized as follows. The linear
and non-linear NMF algorithms, as well as DNMF are re-
viewed in Section II. Section III, introduces the CDA inspired
discriminant criteria, the proposed SDNMF method and the
developed update rules considering two different optimization
strategies. Moreover, the non-linear counterpart of SDNMF
is also demonstrated. Section IV presents the conducted ex-
perimental study and verifies the efficiency of our algorithms
for facial expression, face and object recognition. Finally,
concluding remarks are drawn in Section V. A preliminary
version of this paper can be found in [26], [27].

II. L INEAR AND NON-LINEAR NMF AND ITS

DISCRIMINANT VARIANT

In this section, we briefly present the linear and non-
linear NMF decomposition concept and also review DNMF
algorithm. In the following, without loosing generality, we
shall assume that the decomposed data are images, although,
the techniques that will be described can be applied to any
kind of non-negative data.

A. NMF Basics

The basic idea of NMF is to approximate an image by
a linear combination of elements the so called basis images
that correspond to image parts. LetI be an image database
comprised ofL images belonging ton different classes and
X ∈ RF×L

+ be the data matrix whose columns areF -
dimensional feature vectors obtained by scanning row-wise
each image in the database.NMF considers factorizations of
the form:

X ≈ ZH, (1)

whereZ ∈ RF×M
+ is a matrix containing the basis images,

while matrix H ∈ RM×L
+ contains the coefficients of the

linear combinations of the basis images required to reconstruct
each original image in the database. Thus, after the NMF
decomposition thej-th image xj can be approximated by
xj ≈ Zhj , wherehj denotes thej-th weight column of matrix
H. Useful factorizations appear when the linear transformation
projects data from the original high dimensional space to a
reduced dimensional subspace (i.e.M ≪ F ).

To measure the cost of the decomposition in (1), one popular
approach is to use the matrix Frobenius norm square. Thus the
NMF cost functionOF (X||ZH) can be measured as the sum
of the squared Euclidean distances between all original images
in the database and their respective reconstructed versions:

OF (X||ZH) , ||X− ZH||2F =

L
∑

j=1

F
∑

i=1

(xi,j − [ZH]i,j)
2

(2)
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where||.||F is the Frobenius norm. NMF algorithm factorizes
the data matrixX into ZH, by solving the following con-
strained optimization problem:

min
Z,H

OF (X||ZH) (3)

subject to: zi,k ≥ 0 , hk,j ≥ 0, ∀i, j, k.

Using an appropriately designed auxiliary function, it hasbeen
shown in [28] that the following multiplicative rules update
hk,j andzi,k, resulting to the desired factors, while guarantee
a non increasing behavior of the cost function:

h
(t)
k,j = h

(t−1)
k,j

[Z(t−1)T
X]k,j

[Z(t−1)TZ(t−1)H(t−1)]k,j
, (4)

z
(t)
i,k = z

(t−1)
i,k

[XH
(t)T ]i,k

[Z(t−1)H(t)H(t)T ]i,k
. (5)

B. Non-linear NMF

The problem of Non-linear NMF (NNMF) can be summa-
rized as follows: find a set of non-negative weights and non-
negative, non-linear basis vectors such that the non-negative
non-linearly mapped training data can be approximated as a
linear combination of the learned non-negative non-linearly
mapped basis vectors. This can be formulated as follows. Let
φ(xi) : RF

+ → H be a non-linear mapping function that
projects the input imagexi to an arbitrary dimensional Hilbert
spaceH where NNMF considers the following factorization:

X
φ ≈ Z

φ
H, (6)

whereX
φ = [φ(xi), . . . , φ(xL)], Z

φ = [φ(z1), . . . , φ(zM )]
and H ∈ RM×L

+ contains the coefficients of the linear
combinations of the mapped basis vectorsφ(zj) required to
perform the approximation. The approximation error can be
similarly measured using the Frobenius norm square:

Oφ

(

X
φ||Zφ

H
)

,
1

2

L
∑

j=1

||φ(xj)−

M
∑

k=1

hk,jφ(zk)||
2
F

=
1

2

L
∑

j=1

(

[Kx,x]j,j − 2

M
∑

k=1

hk,j [Kz,x]k,j

+

M
∑

k=1

M
∑

l=1

hk,jhl,j [Kz,z]l,k

)

, (7)

where the kernel matrices are defined as:

[Kx,x]i,j = φ(xi)
Tφ(xj) , [Kz,z]i,j = φ(zi)

Tφ(zj)

[Kz,x]i,j = φ(zi)
Tφ(xj) , Kx,z = K

T
z,x. (8)

Thus, NNMF solves the following optimization problem:

min
Z,H

Oφ(X
φ||Zφ

H) (9)

subject to: zi,k ≥ 0 , hk,j ≥ 0

where i = 1, . . . , F , j = 1, . . . , L and k = 1, . . . ,M . In
[19], polynomial kernels of the form:k(xi,xj) = (xT

i xj)
d

were considered, whered denotes the polynomial degree and
the respective solution was found using appropriate auxiliary
functions of the actually minimized cost function for both

variablesZ andH. Thus, the following multiplicative update
rules were proposed for minimizing (7):

H
(t) = H

(t−1) ⊙
K

(t−1)
x,z

(

K
(t−1)
z,z H(t−1)

) (10)

Ẑ
(t) = Z

(t−1) ⊙
XḰ

(t−1)
x,z

Z(t−1)ΩḰ
(t−1)
z,z

, Z
(t) =

Ẑ
(t)

S
, (11)

whereΩ is a diagonal matrix, with[Ω]j,j =
∑M

k=1 hk,j and
S is a normalization matrix, such that the columns ofZ

(t)

sum up to one. MatriceśKx,z andḰz,z contain parts of the
first order derivatives with respect tozi,k of the polynomial
kernels and are defined as:[Ḱx,z]i,j = d(xT

i zj)
d−1 and

[Ḱz,z]i,j = d(zTi zj)
d−1. Operators⊙ and / denote element-

wise multiplication and division of matrices, respectively.

C. Discriminant NMF

DNMF [16] algorithm is an attempt to introduce discrim-
inant constraints in the NMF decomposition cost function.
To derive these the well known Fisher discriminant criterion
has been exploited, which attempts to find a transformation
matrixΨ that maximizes the ratio defined by the traces of the
between and within class scatter matricesŚb = Ψ

T
SbΨ and

Św = Ψ
T
SwΨ evaluated over the projected data. DNMF cost

function incorporates a similar discriminant factor, requiring
the dispersion of the projected samples that belong to the
same class around their corresponding mean to be as small
as possible, while at the same time the scatter of the mean
vectors of all classes around their global mean to be as large
as possible. Consequently, DNMF algorithm minimizes the
following cost function:

ODNMF (X||ZH) = OKL(X||ZH) + αTr[Św]− βTr[Śb]
(12)

where Tr[.] is the matrix trace operator andα, β are positive
constants.

III. SUBCLASS DISCRIMINANT NON-NEGATIVE MATRIX

FACTORIZATION

In this section we first present the subclass-based discrim-
inant criteria and demonstrate how these are incorporated
in the NMF decomposition cost function resulting in the
SDNMF problem. Next, we derive the proposed update rules
considering two different optimization strategies that solve
SDNMF and also its non-linear counterpart.

A. Subclass based Discriminant Analysis

Similar to LDA, CDA seeks to determine a transformation
matrixΨ that enhances classes discrimination in the projection
subspace. To do so, CDA assumes a multimodal data distribu-
tion inside classes, where each class is composed of various
subclasses and attempts to enhance classes discrimination
by minimizing the scatter within every subclass, while well
separating subclasses from each other class.

To formulate the CDA criteria for then-class image
databaseI, let us denote the number of subclasses composing
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the r-th class byCr, the total number of formed subclasses
in the database byC =

∑n
i Ci and the number of images

belonging to theθ-th subclass of ther-th class byNr,θ. Let
us also define the mean vector for theθ-th cluster of ther-th
class byµr,θ = [µr,θ

1 . . . µr,θ
F ]T , which is evaluated over the

Nr,θ images, while vectorxr,θ
ρ = [xr,θρ,1 . . . x

r,θ
ρ,F ]

T corresponds
to the feature vector of theρ-th image belonging to theθ-th
cluster of ther-th class. Using the above notations we can
define the within subclass scatter matrixSCDA

w as:

S
CDA
w =

n
∑

r=1

Cr
∑

θ=1

Nr,θ
∑

ρ=1

(

x
r,θ
ρ − µr,θ

) (

x
r,θ
ρ − µr,θ

)T
(13)

and the between subclass scatter matrixS
CDA
b as:

S
CDA
b =

n
∑

i=1

n
∑

r,r 6=i

Ci
∑

j=1

Cr
∑

θ=1

(

µi,j − µr,θ
) (

µi,j − µr,θ
)T
.

(14)
Considering that the columns of matrixH contain the pro-

jectedM -dimensional feature vectors and in order to facilitate
our subsequent analysis using more compact equation forms,
we express the CDA scatter matrices in a graph Laplacian
form:

Σw ,

n
∑

r=1

Cr
∑

θ=1

Nr,θ
∑

j=1

(

hj − µ
r,θ
) (

hj − µ
r,θ
)T

= HLwH
T (15)

and

Σb ,

n
∑

i=1

n
∑

r,r 6=i

Ci
∑

j=1

Cr
∑

θ=1

(

µi,j − µr,θ
) (

µi,j − µr,θ
)T

= HLbH
T , (16)

whereLw andLb areL× L symmetric positive semidefinite
matrices defined as:

Lw , IL −

n
∑

r=1

Cr
∑

θ=1

(

1

Nr,θ

e
T
r,θer,θ

)

(17)

Lb , 2

( n
∑

r=1

Cr
∑

θ=1

C − Cr

N2
r,θ

e
T
r,θer,θ − diag(e)

×

[

1−

Cr
∑

r=1

e
T
r er

]

diag(e)

)

. (18)

Here diag(e) denotes a function that converts vectore into a
diagonal matrix containing its elements on the main diagonal,
IL is an L × L identity matrix, 1 is an L × L matrix of
ones, whileer,θ, er and e areL-dimensional vectors whose
i-th element is defined as:

[er,θ]i =

{

1 , if xi ∈ θ-th cluster of ther-th class
0 , otherwise.

,

(19)

[er]i =

{

1 , if xi ∈ r-th class
0 , otherwise.

(20)

[e]i =
1

Cardinality of samplexi cluster
. (21)

The trace of the within subclass scatter matrixΣw can be
used as an appropriate indicator of the samples dispersion
inside subclasses. Minimizing its trace increases concentration
of samples around their subclass mean. Similarly, Tr[Σb]
indicates the dispersion of the mean vectors between all
subclasses that belong to different classes. Thus, maximizing
Tr[Σb] increases the difference between the means of every
subclass of a certain class to every subclass of each other
class.

B. SDNMF Objective Function and its Multiplicative Update
Rules

Since we desire in the projection subspace to simultaneously
minimize Tr[Σw] and maximize Tr[Σb], the cost function of
the SDNMF algorithm is formulated as follows:

OSDNMF (X||ZH) ,
1

2
||X− ZH||2F +

α

2
Tr[HLwH

T ]

−
β

2
Tr[HLbH

T ], (22)

where α and β are positive constants, while12 is used to
simplify subsequent mathematical derivations. Alternatively,
the SDNMF cost function can be written using matrices trace
form as follows:

OSDNMF (X||ZH) =
1

2
Tr[XX

T ]− Tr[ZHX
T ] (23)

+
1

2
Tr[ZHH

T
Z
T ] +

α

2
Tr[HLwH

T ]−
β

2
Tr[HLbH

T ],

where we have applied the matrix properties Tr[AB] =
Tr[BA], Tr[A] = Tr[AT ] and ||A||2F = Tr[AA

T ].
Consequently, the minimization problem of SDNMF is

formulated as:

min
Z,H

OSDNMF (X||ZH) (24)

subject to: zi,k ≥ 0 , hk,j ≥ 0, ∀i, j, k.

which requires the minimization of (23) subject to the non-
negativity constraints applied on the elements of both factors
H andZ.

In order to solve the constrained optimization problem in
(24), we introduce Lagrange multipliersφ ∈ RF×M

+ = [φi,k]
and ψ ∈ RM×L

+ = [ψk,j ] each associated with one of the
non-negativity constraintszi,k ≥ 0, hk,j ≥ 0, respectively.
Consequently, we formulate the Lagrangian functionL as
follows:

L =
1

2
Tr[XX

T ]− Tr[ZHX
T ] +

1

2
Tr[ZHH

T
Z

T ] + Tr[ψH
T ]

+
α

2
Tr[HLwH

T ]−
β

2
Tr[HLbH

T ] + Tr[φZT ]. (25)

The optimization problem in equation (24) is equivalent to the
minimization of the Lagrangian functionargmin

Z,H
L. By setting

the partial derivatives ofL with respect tozi,k andhk,j equal
to zero and exploiting the KKT conditions, [29] we obtain the
following equalities::
(

∂L

∂hk,j

)

hk,j = [ZT
ZH]k,jhk,j − [ZT

X]k,jhk,j

+ α[HLw]k,jhk,j − β[HLb]k,jhk,j = 0(26)
(

∂L

∂zi,k

)

zi,k = [ZHH
T ]i,kzi,k − [XH

T ]i,kzi,k = 0. (27)
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The added discriminant factors in the SDNMF cost function
are totally independent from the basis image matrixZ. Conse-
quently, keeping variableH fixed and optimizing forZ results
to the same optimization problem described in [28] and to the
update formulae in (5). This can be also verified by solving
(27) for zi,k. Thus, we can recall the convergence proof of
conventional NMF in [28] to show that (23) is non-increasing
under the update rule in (5). Solving (26) forhk,j we derive the
proposed multiplicative update rule shown in (28). A detailed
proof regarding the non-increasing behavior of (23) under the
proposed update rules in (28) forH can be found in the
Appendix A.

It should be noted that as in every NMF-based optimization
problem, the objective function in (23) is convex either in
Z or H, but non-convex in both variables. Therefore, the
proposed iterative optimization algorithm reaches a locally
optimal solution which is non-unique and is usually sensitive
to the initialization point. Various initialization strategies have
been proposed in the literature however, their efficacy is
both data and application dependant, since the additional
imposed constraints in the NMF decomposition cost function
also affect the starting factors suitability. Lee and Seung[1]
exploited the random seeding approach which is computation-
ally efficient and has been also adopted in this work. Other
computationally more complex approaches to initialize the
decomposition factors are based on K-means clustering [30]
or SVD decomposition [31].

The optimization process successively updates variableZ or
H until a stopping criterion is invoked. In this work we ter-
minate the optimization process when the improvement in the
cost function value between two successive iterations is less
than10−3. Other similar stopping criteria based on monitoring
the objective function improvement have been proposed in
the literature [32]. Finally, in order to compute the projection
to the lower dimensional feature space for an unknown test
samplexj and extract its discriminant representation we use
the pseudo-inverseZ† = (ZT

Z)−1
Z
T as: x́j = Z

†
xj . The

iterative optimization process for the SDNMF problem is
summarized in Algorithm 1.

Algorithm 1 Algorithm outline for the optimization of SD-

NMF.

1: Input: Non-negative data matrixX = [x1,x2, . . . ,xL]

along with the class label and cluster origin{yi, ci}

associated with each training facial imagexi i = 1, . . . , L.

2: Output: The basis images matrixZ ∈ RF×M
+ and the

weights matrixH ∈ RM×L
+ .

3: Initialize: Z
(0), H(0) and t = 1.

4: repeat
5: Update H

(t) givenZ
(t−1) using (28).

6: Update Z
(t) givenH

(t) using (5).

7: t = t+ 1.
8: until |OSDNMF (X||Z(t)

H
(t)) − OSDNMF (X||Z(t−1)

H
(t−1))| ≤

10−3

C. Dividing Classes into Subclasses

Regarding the optimal division of each class into subclasses,
various criteria have been proposed in the literature [33],
[34]. In our implementation, we have considered the Nearest-
Neighbor (NN) based clustering algorithm presented in [33]
which is a good compromise between computation speed and
clustering accuracy. Moreover, as it has been shown in [33]
various other clustering methods can be used but they do not
affect the overall classification performance significantly. This
can be attributed to the fact that only first and second order
statistics of each cluster are used in the optimization criteria
and, thus, precise clustering is not crucial, as long as the
location and dispersion of each cluster is robustly estimated.

According to NN clustering, we first construct a sorted set
{xr,1, . . . ,xr,Nr

} for everyr-th class with itsNr training sam-
ple vectors arranged as follows: samplesxr,1 andxr,Nr

are the
two most distant feature vectors of ther-th class in the initial
high dimensional image space, i.e., the two sample vectors that
maximize the Euclidean distanceargmaxxi,xj

||xi−xj||2. The
rest of the samples are then ordered, so thatxr,2 is the sample
closest toxr,1, while xr,Nr−1 is the sample closest toxr,Nr

.
This procedure results in an ordered set, where the sample
ranked in thej-th position is the(j − 1)-th closest sample
to xr,1, and at the same time, the(Nr − j)-th more distant
sample to the other extremumxr,Nr

. Subsequently, we divide
data samples belonging to ther-th class intoCr subclasses,
by partitioning the ordered set intoCr equally sized subsets,
thus obtainingCr subclasses.

D. Projected Gradients Subclass Discriminant Non-negative
Matrix Factorization (PGSDNMF)

The derived multiplicative update rules for the evaluationof
the optimal factorsH andZ lack of convergence results [24],
[25], since they only guarantee a non-increasing behavior of
the cost function in (23) and do not ensure that optimization
converges to a limit point that is also stationary. In NMF-based
optimization problems, stationarity is an important property,
since it guarantees that the reached limit point after a sequence
of iterations corresponds to a local minimum. Moreover, as it
has been shown in [25], update rules derived using projected
gradients attain faster convergence compared to their multi-
plicative counterparts. In order to exploit these efficiencies
we adopt such an optimization framework for the SDNMF
problem. Using the cost function in (23) we formulate two
subproblems, by keeping eitherZ or H fixed and performing
optimization for the other. Consequently, two cost functions
O1(Z) andO2(H) are derived whereO1(Z) assumesH is
kept fixed, whileO2(H) assumes a fixedZ:

min
Z

O1(Z) subject to: zi,k ≥ 0, ∀i, k (29)

min
H

O2(H) subject to: hk,j ≥ 0, ∀k, j. (30)

1) Optimization ofZ solving the subproblem (29):The
performed optimization is an iterative steepest descent process
that at a given iteration roundt the following update rule is
applied:

Z
(t) = P [Z(t−1) − αt∇O1(Z

(t−1))], (31)
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h
(t)
k,j = h

(t−1)
k,j

[Z(t−1)T
X]k,j + β[H(t−1)

∑n
r=1

∑Cr

θ=1
C−Cr

N2
r,θ

e
T
r,θer,θ]k,j

[Z(t−1)T
Z
(t−1)

H
(t−1)]k,j + α[H(t−1)

Lw]k,j + β

[

H
(t−1)diag(e)

(

1−

Cr
∑

r=1

e
T
r er

)

diag(e)

]

k,j

, (28)

where operatorP [.] = max[., 0] guarantees that no negative
values can be assigned to the updated elements of matrixZ

andαt is the learning step parameter for thet-th iteration.
The determination of a proper learning step parameterαt,

at each iterationt, is crucial, since not only it determines
convergence speed, but also constitutes a time consuming op-
eration. An efficient approach for setting an appropriate value
to parameterαt based on the Armijo rule [35] is presented
in [25], which is also adopted in this work. According to this
strategy the learning step is computed asαt = βgt , where
gt is the first non-negative integer value found, such that the
following inequality is satisfied:

O1(Z
(t))−O1(Z

(t−1)) ≤ σ〈∇O1(Z
(t−1)),Z(t) − Z

(t−1)〉,
(32)

where operator〈., .〉 is the Frobenius inner product, which
computes the sum of the entries of the Hadamard product
between two matricesA andB as:

〈A,B〉 =
∑

i,j

Ai,jBi,j = Tr[AT
B]. (33)

Parametersβ andσ take values in range(0, 1), while in our
experiments we have setβ = 0.1 and σ = 0.01 which is
an efficient parameter selection, as has been verified in other
studies [25], [36].

The cost function in (23) is quadratic in terms ofZ. Thus,
O1(Z) can be expanded nearZ(t−1) as follows:

O1(Z
(t)) = O1(Z

(t−1)) +
(

Z
(t) − Z

(t−1)
)T

∇O1(Z
(t−1)) (34)

+
1

2

(

Z
(t) − Z

(t−1)
)T

∇2O1(Z
(t−1))

(

Z
(t) − Z

(t−1)
)

.

By replacing (34) into (32), we derive the following inequality,
which is less computationally expensive:

(1− σ)
〈

∇O1(Z
(t−1)),Z(t) − Z

(t−1)
〉

(35)

+
1

2

〈

Z
(t) − Z

(t−1),∇2O1(Z
(t−1))(Z(t) − Z

(t−1))
〉

≤ 0.

By iterating the update rule in (31), a sequence of min-
imizers {Z(t)}∞t=1 of O1(Z) is generated and according to
Bertsekas [37], it is guaranteed that a stationary point is found
among its limit points. Thus, in order to verify whether the
currently reached limit point is stationary or not, a stationarity
check step [36] is performed, which examines whether the
following condition is satisfied:

||∇PO1(Z
(t))||F ≤ eZ||∇

PO1(Z
(1))||F , (36)

where∇PO1(Z
(t)) is the projected gradient ofO1(Z

(t)), with
respect toZ, with its (i, k)-th element defined as:

[∇PO1(Z
(t))]i,k =

{

[∇O1(Z
(t))]i,k , if zi,k > 0

min
(

0, [∇O1(Z
(t))]i,k

)

, if zi,k = 0
(37)

andeZ is a predefined stopping tolerance set toeZ = 10−3.

2) Optimization ofH solving the subproblem (30):In
order to find a stationary limit point forO2(H), a similar
procedure is followed. Initially, the learning step parameterαt

is determined and the weights matrixH is updated as follows:

H
(t) = P [H(t−1) − αt∇O2(H

(t−1))] (38)

until the functionO2(H) is sufficiently decreased and the
following inequality resulting by performing the expansion
nearH(t−1) considering up to quadratic terms holds:

(1− σ)
〈

∇O2(H
(t−1)),H(t) −H

(t−1)
〉

(39)

+
1

2

〈

H
(t) −H

(t−1),∇2O2(H
(t−1))(H(t) −H

(t−1))
〉

≤ 0.

The update procedure is repeated, until the limit point of the
sequence{H(t)}∞t=1 becomes stationary. Consequently, similar
to the stationarity control condition checked regarding the
update ofZ, the following termination criterion is used:

||∇PO2(H
(t))||F ≤ eH||∇PO2(H

(1))||F . (40)

The presented strategy generates a sequence of minimizers
{Z(t),H(t)}∞t=1 until the reached limit point is stationary.

The minimization of both subproblems in (29) and (30)
involves the calculation of the first and second order gradients
of the two optimized functionsO1(Z) andO2(H). Using the
formulation of the subclass scatter matrices provided in (15)
and (16), the partial derivatives are evaluated as follows:

∇O1(Z) = ZHH
T −XH

T (41)

∇2O1(Z) = HH
T (42)

∇O2(H) = Z
T
ZH− Z

T
X+ αHLw − βHLb (43)

∇2O2(H) = Z
T
Z⊗ IL + αIM ⊗ Lw − βIM ⊗ Lb (44)

where ⊗ denotes the Kronecker product operation. Con-
sequently, inequality (39) that drives the evaluation of the
optimum learning step parameterαt during the optimization
of the weights matrixH can be rewritten as:

(1 − σ)Tr[∇O2(H
(t−1))T (H(t) −H

(t−1))]

+
1

2
vec(H(t) −H

(t−1))T∇2O2(H
(t−1))

× vec(H(t) −H
(t−1)) ≤ 0 (45)

where vec(.) denotes an operator that converts a matrix into a
vector by stacking its columns.

E. Connections of SDNMF algorithm with the NPAF frame-
work

In [13] a unified framework for various NMF-based methods
has been proposed, that uses a fast gradient descent opti-
mization algorithm. In order to exploit the merits of this
unified framework we adapt our SDNMF algorithm to NPAF
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by modifying appropriately the considered alignment matrix.
More precisely NPAF framework that exploits the Kullback-
Leibler (KL) divergence metric [38] considers the following
optimization problem:

ONPAF (X||ZH) , OKL(X||ZH) +
α

2
Tr[HLH

T ], (46)

whereOKL(X||ZH) is the part of the NPAF cost function
that measures the reconstruction error andL is a symmetric
positive semidefinite patch alignment matrix, different for
each specialized NMF-based algorithm. To unify SDNMF
algorithm in the NPAF framework we can rewrite its cost
function as follows:

OKL
SDNMF (X||ZH) = OKL(X||ZH) +

α

2
Tr[H(Lw −

β

α
Lb)H

T ],

(47)
which is equivalent to (46) with the alignment matrixL that
encodes the discriminative information replaced byLw− β

α
Lb.

Since matricesLw andLb are symmetric and positive semidef-
inite SDNMF can be directly incorporated into the NPAF
framework and optimized by the proposed in [13] generative
multiplicative or fast gradient descent update rules.

F. Subclass Discriminant Kernel NMF Algorithm (SDKNMF)

In order to model non-linearities in the extracted image
features we derive the non-linear counterpart of the proposed
algorithm called SDKNMF. Here we shall only demonstrate
the optimization of the SDKNMF problem, considering pro-
jections of the available training data to polynomial feature
spaces, exploiting arbitrary degree polynomial kernel functions
of the formk(xi,xj) =

(

x
T
i xj

)d
. However, it is straightfor-

ward to extend SDKNMF, such as to exploit different Mercer’s
kernels, using the methodology presented in [20]. The problem
at hand can be summarized as follows: approximate a set of
non-linear non-negative training sample vectors mapped on
a polynomial feature space, using a linear combination of
appropriately weighted non-linear non-negative basis vectors
mapped on the same polynomial feature space in a discrimi-
nant manner.

Consequently, the optimization problem for the polynomial
SDKNMF algorithm is formulated as follows:

min
Z,H

Oφ

(

X
φ||Zφ

H
)

+
α

2
Tr[HLwH

T ]−
β

2
Tr[HLbH

T ] (48)

subject to: zi,k ≥ 0 and hk,j ≥ 0 ∀i, j, k

which is solved using projected gradients in order to ensure
limit point stationarity. It should be noted that the previ-
ously presented methodology for the optimization of PGS-
DNMF algorithm is valid only for linear kernels of the form
k(xi,xj) = x

T
i xj since in this case the cost function in (48)

is quadratic in terms ofZ. In the general case, the expansion
performed around the current solution estimateZ

(t−1) in (34),
considering up to quadratic terms, is not valid for polynomial
kernels of degreed ≥ 2.

Similarly two subproblems are generated from (48) con-
sidering for each one either variableZ or H is kept fixed.
The iterative process for optimizing with respect toH applies
the update rule in (38) where the involved first and second

order partial derivatives of the cost function with respectto
H, keeping variableZ fixed, are now evaluated as:

∇Oφ

(

X
φ||Zφ

H
)

= Kz,zH−Kz,x + αHLw − βHLb

(49)

∇2Oφ

(

X
φ||Zφ

H
)

= Kz,z ⊗ IL + αIM ⊗ Lw − βIM ⊗ Lb.
(50)

The learning step parameterαt is similarly determined using
(45) and a stationarity condition check step is performed as
in (40), in order to verify that the projected gradient at the
reached limit point is sufficiently close to zero.

Respectfully, optimization forZ is performed by iterating
the update rule in (31), while the optimal learning step
parameter is now determined using (32) instead of (35), since
the cost function for different Mercer’s kernels is no longer
quadratic in terms ofZ and thus inequality (35) is not valid.
Considering polynomial kernel functions of arbitrary degree
the involved in (32) first order partial derivative with respect
to Z, is evaluated as:

∇Oφ

(

X
φ||Zφ

H

)

= Z

(

HH
T ⊙ K̀z,z

)

−X

(

H⊙ K̀z,x

)T

.

(51)

As can be observed, all involved calculations can be performed
using the so-called kernel trick. Thus, explicit computation
of the mappingsφ(zi) and φ(xj) is not required. Details
regarding the derivation of the first order partial derivative with
respect toZ, when considering polynomial kernel functions for
the non-linear mapping are available in Appendix B.

IV. EXPERIMENTAL STUDY

We compare the performance of the proposed methods, con-
sidering both optimization frameworks, with those of various
NMF based algorithms, such as NMF, PGNMF [25], DNMF,
PGKNMF [20], NDLA [13] and GNMF [11]. Moreover, we
also include in our experimental comparison linear subspace
learning methods such as CDA, LDA, PCA, LPP [39] and the
Marginal Fisher Analysis (MFA) [40], which is an appropriate
LDA variant that overcomes the Gaussian distributed data sam-
ples optimality assumption. For our experiments we consider
facial expression recognition on the Cohn-Kanade [41] and the
Binghamton University 3D Facial Expression Database (BU-
3DFE) [42], face recognition on the CMU-PIE dataset [43]
and object recognition on the ETH-80 [44] image set. Figure
1 shows example images from the Cohn-Kanade dataset, de-
picting the seven recognized facial expression classes arranged
in the following order: anger, fear, disgust, happiness, sadness,
surprise and the neutral emotional state.

Fig. 1. Sample images depicting the different facial expressions from the
Cohn-Kanade database.
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A. Preprocessing of Facial Expression Data

To form our data collection, for the facial expression recog-
nition experiments, we only acquired a single video frame
from each video sequence, depicting a subject performing a
facial expression at its highest intensity level. To do so, face
detection was performed using the OpenCV [45] face detector
and the resulting facial regions of interest were manually
aligned with respect to the eyes position and anisotropically
scaled to a fixed size of40×30 pixels. Finally, each grayscale
facial image was scanned row-wise, so as to form a feature
vector which was used to compose either the training or the
test set.

To measure the facial expression recognition accuracy, we
randomly partitioned the available samples into 5-folds and a
cross validation has been performed by feeding the projected
discriminant facial expression representations to a linear SVM
classifier. This resulted into such a test set formation where
some expressive samples of an individual were left for testing,
while his rest expressive images (depicting other facial expres-
sions) were included in the training set. This fact significantly
increased the difficulty of the treated expression recognition
problem, since identity related issues arose.

B. Cohn-Kanade dataset

The Cohn-Kanade AU-Coded facial expression database is
among the most popular databases for benchmarking methods
that perform facial expression recognition. Our data collection
comprised of 407 images depicting 100 subjects, posing in 7
different emotional states (i.e. anger, disgust, fear, happiness,
sadness, surprise and the neutral emotional state). As can
be seen in Figure 1, Cohn-Kanade database images depict
subjects of different ethnic groups under severe illumination
variations. Consequently, the data sample vectors do not
necessarily correspond to compact facial expression classes.
To verify this, we have considered that each class is partitioned
into three subclasses and computed the mean expressive image
for every cluster of each class according to the methodology
presented in subsection III-C. Figure 2 shows the mean image
for each facial expression considering the two more distant
clusters inside each class. Clearly the illumination variations
are captured during clustering.

Fig. 2. Mean images derived from the two more distant subclasses inside each
expression class. The diverge illumination conditions during facial expressions
capture in the Cohn-Kanade database are evident.

Table I summarizes the highest performance achieved by
each examined method and the respective projection subspace
dimensionality. All subclass discriminant algorithms (linear

and non-linear) were found to attend an improved performance
in this comparison. Moreover, the superiority of the projected
gradients optimization framework is also demonstrated, since
both PGNMF and PGSDNMF algorithms outperformed their
multiplicative counterparts. The highest measured recognition
accuracy rate is72.9% achieved by SDKNMF algorithm,
considering classes partitioning into two subclasses and asec-
ond order polynomial kernel function. Regarding the baseline
algorithms PCA outperformed all linear subspace learning
algorithms achieving a recognition rate of68.8%. Moreover,
MFA which does not make any assumption on the data distri-
bution of each class outperformed all discrimination enhanc-
ing subspace methods. Finally, NDLA algorithm which also
does not assume a Gaussian data distribution inside classes
in order to enhance classes separability, in this experiment
outperformed DNMF. On the other hand, GNMF although
it forms similar discriminant criteria to NDLA algorithm, it
is specialized for clustering problems and thus it could not
provide competitive classification performance.

Figure 3 attempts a comparison between the basis images
produced from training on the Cohn-Kanade database PGNMF
and the proposed PGSDNMF algorithm, considering for the
latter partitioning of each facial expression class into two
subclasses. Both methods have been trained to find the optimal
projection matrix to a subspace of equal dimensionality. As
can be seen, the basis images extracted by PGNMF are
less sparse and have a rather holistic appearance, compared
to those generated by the PGSDNMF algorithm. More pre-
cisely, PGSDNMF produced a few holistic basis images that
contribute in minimizing the reconstruction error, while the
majority are sparse and localized corresponding to specific
local discriminant facial features, which participate in facial
expression formation and lie mainly in the facial areas around
mouth, eyes and eyebrows. These basis images significantly
assist in facial expression discrimination and optimize the
imposed discrimination criteria introduced in the PGSDNMF
cost function. This observation reveals that the proposed
method successfully decomposed each facial image into its
discriminant facial features, a fact that verifies its superiority
for the facial expression classification task.

(a) (b)

Fig. 3. Basis images derived from training in the Cohn-Kanade database
algorithms: a) PGNMF and b) PGSDNMF withCr = 2.
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TABLE I
BEST AVERAGE EXPRESSION RECOGNITION ACCURACY RATES(%) IN COHN-KANADE DATABASE

Linear Subspace Methods NMF-based Methods Proposed Methods

LDA PCA CDA LPP MFA NMF PGNMF PGKNMF DNMF NDLA GNMF SDNMF PGSDNMF SDKNMF
65.7 68.8 66.0 64.4 68.3 64.9 66.3 66.9 65.6 69.3 60.4 70.4 72.6 72.9

6 180 13 6 60 180 120 170 190 170 200 Cr = 2 (110) Cr = 2 (190) Cr = 2(200)

C. BU-3DFE Dataset

The dataset we generated from BU-3DFE contains 700 im-
ages, depicting 100 subjects performing 7 facial expressions.
In the original data collection except of the neutral emotional
state, each of the six performed facial expressions involves
four intensity levels. In our experimental evaluation we have
included only the facial images at expressions apex.

Table II presents the best average measured expression
recognition accuracy rate and the respective projection sub-
space dimensionality, achieved by each examined method. As
it can be seen the derived results are similar to those reported
in the Cohn-Kanade database. SDKNMF attained the best
performance across all examined subspace methods reaching
66.4% when considering two subclasses per each expression
class.

D. Face Recognition on PIE dataset

The CMU-PIE face database contains in total 41,368 facial
images depicting 68 different subjects each captured under
variations in pose, illumination, and expression. For this
experiment we used 170 facial images for each individual
captured under five near frontal poses (poses identified as
C05, C07, C09, C27, and C29) under 4 different expressions
and 43 different illumination conditions. The considered facial
images were cropped, scaled to a fixed size of32× 32 pixels
and gray scaled according to [11]. We randomly selected
half facial images of each individual for training, while the
rest were used for testing. Table III summarizes the highest
recognition rates achieved by each examined method. The
experimental results showed that the proposed algorithms
are more robust in variations in pose and expression for
face recognition. PGSDNMF considering partitioning of each
class into five subclasses attained the highest recognition
rate, 97.7% marginally outperforming its non-linear variant.
The best recognition rates for LDA, PCA, NMF, DNMF
and SDNMF are94.9%, 95.7%, 96.1%, 96.7% and 97, 1%
respectively.

E. Object Recognition on ETH-80 dataset

ETH-80 image dataset depicts 80 objects divided into 8
different classes, where for each object 41 images have been
captured from different view points, spaced equally over the
upper viewing hemisphere. Thus, the database contains 3,280
images in total. For this experiment we used the cropped and
scaled to a fixed size of128× 128 pixels binary images con-
taining the contour of each object. In order to form our training
set we randomly picked 25 binary images of each object, while
the rest were used for testing. Since each category includes

images depicting 10 different objects captured from various
view angles, data samples inside classes span large in-class
variations, forming various subclasses.

All algorithms applied on the same data matrixX
16384×2000

and the best results are summarized in Table IV. As it
can be seen, PCA outperformed all linear subspace learning
algorithms, while SDKNMF considering five subclasses per
each object class produced the best results among all examined
methods. The object recognition rates for LDA, PCA, CDA,
DNMF, GNMF and SDKNMF were75.7%, 85.9%, 81.2%,
80.1%, 77.4% and87.1%, respectively.

To demonstrate the data clustering effect in SDNMF algo-
rithms performance, we recorded the recognition rate it attains
for different parameterCr values. As it can be seen in Figure 4
SDNMF efficacy initially increases as we partition each class
from 2 up to 5 subclasses, where our algorithm attained its best
performance, while after that point further partitioning classes
results in reduced recognition accuracy. This is attributed to
the fact that in these cases the training samples per subclass are
limited and, consequently, the subclass covariance matrices are
poorly estimated which affects the correctness of the identified
projection directions [33], [46].
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Fig. 4. Object recognition rate versus the number of subclasses each category
of objects is partitioned to.

F. Algorithms Computational Complexity and Convergence

To investigate the ability of the proposed SDNMF and PGS-
DNMF algorithms to minimize the considered cost function
in (23), with respect to the performed iteration rounds, we
have applied both algorithms to factorize a dense data matrix
X ∈ R1200×407

+ composed of all expressive images of the
Cohn-Kanade dataset considering two subclasses partitioning
of each expression class and setting the projection subspace
dimensionality equal to50. Moreover, parametersα and β
influencing the contribution of the within and between subclass
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TABLE II
BEST AVERAGE EXPRESSION RECOGNITION ACCURACY RATES(%) IN BU-3DFEDATASET

Linear Subspace Methods NMF-based Methods Proposed Methods

LDA PCA CDA LPP MFA NMF PGNMF PGKNMF DNMF NDLA GNMF SDNMF PGSDNMF SDKNMF
54.6 64.4 59.3 55.3 58.4 58.7 59.7 62.6 63.4 61.7 56.3 64.1 64.6 66.4

6 100 13 6 20 150 110 200 180 180 190 Cr = 2 (120) Cr = 2 (70) Cr = 2(190)

TABLE III
BEST FACE RECOGNITION ACCURACY RATES(%) IN PIE IMAGE DATABASE

Linear Subspace Methods NMF-based Methods Proposed Methods

LDA PCA CDA LPP MFA NMF PGNMF PGKNMF DNMF NDLA GNMF SDNMF PGSDNMF SDKNMF
94.9 95.7 95.1 95 93.1 96.1 96.5 93.9 96.7 93.7 94.4 97.1 97.7 97.5

67 300 271 67 190 200 120 300 200 160 100 Cr = 5 (200) Cr = 5(120) Cr = 5(300)

TABLE IV
BEST OBJECT RECOGNITION ACCURACY RATES(%) IN ETH-80 IMAGE DATABASE

Linear Subspace Methods NMF-based Methods Proposed Methods

LDA PCA CDA LPP MFA NMF PGNMF PGKNMF DNMF NDLA GNMF SDNMF PGSDNMF SDKNMF
75.7 85.9 81.2 75 74.6 81.3 85.2 85.4 80.1 82.6 77.4 86.7 86.7 87.1

7 60 31 7 240 300 60 250 300 100 250 Cr = 5 (300) Cr = 5 (100) Cr = 5(250)

scatter matrices trace optimization in the objective function
were set for both algorithms to0.5 and0.9, respectively, while
both algorithms were initialized using the same randomly
generated matrices. Figure 5 shows the objective function
value reduction per iteration, denoting the quality of the
approximation, for each algorithm. As it can be observed
PGSDNMF reduces the objective function in each iteration
round more aggressively and converges in fewer iterations than
its multiplicative counterpart.
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Fig. 5. Objective function value versus the number of iterations for the
SDNMF and PGSDNMF algorithms.

To reveal the computational requirements of each method
we measured the computational complexity per iteration for
the derived update rules in (28) and (38) by counting the
number of arithmetic operations required and summarized the
results using the bigO notation [47]. Since the multiplicative
updates operate on each matrix element, while the projected
gradients updates perform optimization on a matrix level, in
order to perform a fair comparison we measure the compu-

tational cost required by the two methods in order to update
matrix H for a single iteration.

Based on the update rule in (28) for each iteration the
overall cost for the SDNMF algorithm isO(FLM). For PGS-
DNMF based on the alternative projective gradient approach
and applying Algorithm4 in [25] to determine properly the
learning rate parameterαt the complexity isO(FLM2)+ t×
(

O(rML2)
)

wheret is the number of iterations performed for
the minimization of the subproblem in (30) andr is the average
number of iterations performed for finding an appropriateαt.
Consequently, the cost for a single update of the PGSDNMF
algorithm is more expensive than that required by the SDNMF
algorithm.

In Table V we show the recorded CPU training time,
measured in seconds, required by NMF, PGNMF, SDNMF,
PGSDNMF and PCA algorithms. All algorithms have been
implemented on Matlab and the required by each method
CPU time during training has been recorded. PCA required
less training time than all NMF-based algorithms. This is
attributed to the fact that both NMF and PGNMF are iterative
optimization methods, and consequently are computationally
expensive. In our implementation, we derived SDNMF from
the original NMF algorithm modifying appropriately the mul-
tiplicative update rules and the stopping condition, while
PGSDNMF has been devised from the PGNMF implemen-
tation provided by the authors of [25]. The difference in the
training time between the PGSDNMF and PGNMF algorithms
is attributed to the involved Kronecker product operation that
significantly increases the size of the matrices involved inthe
computations of the first method.
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TABLE V
TRAINING TIME IN SECONDS REQUIRED BYNMF, PGNMF, SDNMF,

PGSDNMFAND PCA ON COHN-KANADE DATASET

Dimensionality
Input Projection NMF PGNMF SDNMF PGSDNMF PCA

1200 50 17 13 58 85 0.53

G. Parameters Selection

The proposed update rules involve parameterCr that affects
the imposed discriminant factors and alsoα andβ that regulate
their contribution in the cost function. Since, we are interested
in enhancing classes discrimination, thus increasing classifica-
tion performance, we seek to determine these parameters with
respect to the reached recognition accuracy. Thus, we seek for
the Cr, α and β values that achieve the highest recognition
rate.

More precisely, we performed a two stage cross validation
process in order first to determine the optimalCr value, while
considering equal contribution of the discriminant factors
settingα = β = 1, and subsequently, to identify the optimal
α andβ values for that clustering setting. To determineCr,
we exploited the training set in order to train our algorithms
considering different values forCr (ranging from 2 to 5 for the
face databases and from 2 to 10 for the ETH-80). The range of
the examinedCr values is selected such as to guarantee that
the number of samples per subclass is sufficiently large (more
than 10). Unfortunately, searching for all possible number
of subclasses is computationally infeasible. Thus, in order
to burden the computational cost we performed validation
assuming that each class is composed of the same number of
subclasses. Subsequently, the reached classification accuracy
for each examinedCr value was measured on the training set
and the highest performing subclass partitioning setting was
selected.

Parametersα and β were similarly determined through a
validation stage performing a grid search, while considering
the optimal clustering setting identified during the previous
step. More precisely, for the facial expression recognition
experiments on the Cohn-Kanade database we trained our
algorithm consideringCr = 2, which was identified during
the previous step and set values to parametersα andβ in the
range[0, 1]. Figure 6 shows the average reached expression
recognition rates of SDNMF in Cohn-Kanade after 5 random
starts for each different set of parameters value. As it can
be seen SDNMF performs better whenα is varying within
[0, 0.5] andβ within [0.6, 1]. The highest achieved recognition
rate was attained forα = 0.5 andβ = 0.9 which were also
the parameters value applied in experiments on both facial
expression databases. A similar procedure was also applied
for the ETH-80 and PIE databases, where for the first, setting
in our algorithmCr = 5, α = 0.4 and β = 0.6 resulted
to the best performance, while for the latter the selected
parameter values wereCr = 5 , α = 0.2 and β = 0.9.
DNMF parameters have been similarly selected using cross
validation and performing a grid search in the range[0.1, 0.5]
according to [16]. Thus, we appliedα = 0.1 andβ = 0.1 on
all experiments on facial image data, while on ETH-80 dataset

settingα = 0.1 andβ = 0.3 yielded the best results.
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Fig. 6. Mean expression recognition rate in Cohn-Kanade database after five
random starts of SDNMF algorithm versus the parametersα andβ value.

V. CONCLUSIONS

In real world applications data distribution usually does
not correspond to a compact set per class, but data form
various subclasses. Inspired by this observation, we investi-
gated the use of CDA-inspired discriminant constraints which
were incorporated in the NMF cost function, resulting in the
SDNMF algorithm. SDNMF addresses the general problem
of finding discriminant projections that enhance class sepa-
rability by minimizing the scatter within every subclass. To
solve the SDNMF minimization problem, we developed novel
multiplicative update rules that consider not only sample class
labels but also their subclass origin. Moreover, optimization
was performed using a projected gradients framework, in order
to exploit its strong optimization properties. Finally, the non-
linear counterpart of the proposed method considering projec-
tions in non-linear polynomial feature spaces has been also
investigated. We compared the performance of the proposed
algorithms with that of various linear and non-linear compet-
ing methods for facial expression, face and object recognition
verifying the effectiveness of the proposed methods in various
recognition tasks.

APPENDIX A
PROOF OFCONVERGENCE

Theorem 1: The objective function in (23) is non-increasing
under the element-wise update rule in (28).

To prove Theorem 1 we define an appropriate auxiliary
functionG which bounds the objective function from above
and also satisfies the conditionG(H,H) = OSDNMF (H).
Using such an auxiliary functionG we can show that the
update rule:

H
(t) = argmin

H

G(H,H(t−1)) (52)

will never increase the objective function, since the following
inequality is valid:

OSDNMF

(

H
(t)
)

≤ G
(

H
(t),H(t−1)

)

≤

G
(

H
(t−1),H(t−1)

)

= OSDNMF

(

H
(t−1)

)

. (53)

Lemma: The function in (54) is an auxiliary function for
Fhk,j

, which is the part of (23) that is only relevant tohk,j .
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G(h, h
(t−1)
k,j ) = Fhk,j

(h
(t−1)
k,j )+F

′

hk,j
(h

(t−1)
k,j )(h−h

(t−1)
k,j )+

[ZT
ZH]k,j + α[HLw]k,j + β[Hdiag(e)(1−

Cr
∑

r=1

e
T
r er)diag(e)]k,j

2h
(t−1)
k,j

(h−h
(t−1)
k,j )2

(54)

Proof: Let us denote withF ′
hk,j

and F ′′
hk,j

the first and
second order derivatives ofFhk,j

with respect tohk,j evaluated
as:

F
′

hk,j
= [ZT

ZH]k,j − [ZT
X]k,j + α[HLw]k,j − β[HLb]k,j

(55)

F
′′

hk,j
= [ZT

Z]k,k + α[Lw ]j,j − β[Lb]j,j (56)

Obviously, according to the definition of the auxiliary function
in (54) it holds:G(h, h) = Fhk,j

(h). Consequently, we only

need to show thatG(h, h(t−1)
k,j ) ≥ Fhk,j

(h). In order to do so,

we compareG(h, h(t−1)
k,j ) with the up to second order Taylor

series expansion ofFhk,j
(h) defined as:

Fhk,j
(h) = Fhk,j

(h
(t−1)
k,j )+F

′

hk,j
(h−h

(t−1)
k,j )+

1

2
F

′′

hk,j
(h−h

(t−1)
k,j )2

(57)
Substituting (56) into (57) and comparing it with (54), we
derive that instead of showing thatG(h, h(t−1)

k,j ) ≥ Fhk,j
(h)

we can equivalently prove that:

[ZT
ZH]k,j + α[HLw]k,j + β[Hdiag(e)(1−

Cr
∑

r=1

e
T
r er)diag(e)]k,j

h
(t−1)
k,j

≥ F
′′

hk,j

(58)
To prove the above inequality we will compare each term in
(58) separately:

[ZT
ZH]k,j =

L
∑

l=1

[ZT
Z]k,khk,l ≥ [ZT

Z]k,khk,j (59)

α[HLw]k,j = α

M
∑

l=1

hk,l[Lw]l,j ≥ αhk,j [Lw]j,j . (60)

To complete the proof we need to show that:
[

Hdiag(e)(1−

Cr
∑

r=1

e
T
r er)diag(e)

]

k,j

≥ −hk,j [Lb]j,j ⇔

[

Hdiag(e)(1−

Cr
∑

r=1

e
T
r er)diag(e)

]

k,j

≥ −hk,j

×

[

n
∑

r=1

Cr
∑

θ=1

C − Cr

N2
r,θ

e
T
r,θer,θ

]

j,j

(61)

since
[

diag(e)(1−

Cr
∑

r=1

e
T
r er)diag(e)

]

j,j

= 0 (62)

given that matrix
[

∑Cr

r=1 e
T
r er

]

j,j
is block diagonal with all

its diagonal elements equal to one. Consequently inequality

(61) is simplified to:

M
∑

l=1

hk,l

[

diag(e)(1−

Cr
∑

r=1

e
T
r er)diag(e)

]

l,j

+

hk,j

[

n
∑

r=1

Cr
∑

θ=1

C − Cr

N2
r,θ

e
T
r,θer,θ

]

j,j

≥ 0 (63)

which is valid since
[

∑n
r=1

∑Cr

θ=1
C−Cr

N2
r,θ

e
T
r,θer,θ

]

j,j
≥

0, since C ≥ Cr and also
[

diag(e)(1−
∑Cr

r=1 e
T
r er)diag(e)

]

l,j
≥ 0 . Summing

up all the above inequalities completes the proof.
Proof of Theorem 1: SubstitutingG(h, h(t−1)

k,j ) of (54) into
(52) we derive:

h
(t)
k,j = argmin

h
G(h, h

(t−1)
k,j ) ⇔ h

(t)
k,j = h

(t−1)
k,j ×

[ZT
X]k,j + β[H

∑n

r=1

∑Cr

θ=1
C−Cr

N2
r,θ

e
T
r,θer,θ]k,j

[ZTZH]k,j + α[HLw]k,j + β[Hdiag(e)
(

1−
∑Cr

r=1 e
T
r er

)

diag(e)]k,j
.

Consequently, (54) is an auxiliary function of (23) and
OSDNMF is non-increasing under the update in (28).

APPENDIX B
FIRST ORDER PARTIAL DERIVATIVES WITH RESPECT TOZ

CONSIDERING ARBITRARY DEGREE POLYNOMIAL KERNELS

The first order partial derivative ofOφ

(

X
φ||Zφ

H
)

with
respect tozk,l consideringH fixed, is evaluated as follows:

∂Oφ

(

X
φ||Zφ

H
)

∂zk,l
=

L
∑

i=1

(

− hl,i
∂k(zl,xi)

∂zk,l
+

( M
∑

j=1

hl,ihj,i

×
∂k(zi, zl)

∂zk,l
+

M
∑

j 6=l

hl,ihj,i
∂k(zj , zl)

∂zk,l

))

.

(64)

Considering a polynomial kernel its partial derivative with
respect tozk,l is:

∂k(zj , zl)

∂zk,l
=
∂
(

∑F
i=1 zi,jzi,l

)d

∂zk,l
= dzk,j

(

z
T
j zl

)d−1
. (65)

Consequently, replacing (65) into (64) we derive
∇Oφ

(

X
φ||Zφ

H
)

as:

∂Oφ

(

X
φ||Zφ

H
)

∂zk,l
= −

L
∑

i=1

hl,ixk,id
(

x
T
i zl

)d−1

+

L
∑

i=1

M
∑

j=1

hl,ihj,izk,jd
(

z
T
j zl

)d−1
(66)
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which in matrix form can be written as:

∇Oφ

(

X
φ||Zφ

H
)

= Z

(

HH
T ⊙ K̀z,z

)

−X

(

H⊙ K̀z,x

)T

.

(67)
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