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Abstract

In this paper we introduce a novel method for action/movement recogni-

tion in motion capture data. The joints orientation angles and the forward

differences of these angles in different temporal scales are used to represent

a motion capture sequence. Initially K-means is applied on training data

to discover the most representative patterns on orientation angles and their

forward differences. A novel K-means variant that takes into account the

periodic nature of angular data is applied on the former. Each frame is then

assigned to one or more of these patterns and histograms that describe the

frequency of occurrence of these patterns for each movement are constructed.

Nearest neighbour and SVM classification are used for action recognition on

the test data. The effectiveness and robustness of this method is shown

through extensive experimental results on four standard databases of motion

capture data and various experimental setups.
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1. Introduction

Motion capture (mocap) data provide a representation of the complex

spatio-temporal structure of human motion. During a traditional motion

capture session, the locations of characteristic parts on the human body

such as joints or the joint angles are recorded over time, using appropriate

tracking devices [1]. Different tracking technologies (magnetic, ultrasonic,

inertial, optical, mechanical) are in use today. Moreover, motion capture

can nowadays be performed with the use of low-cost 3D capturing devices

such as the Microsoft Kinect sensor. Motion capture data, usually in the

form of joint angles, are used in computer games and movies to animate a

hierarchical structure (skeleton) representing a human [2], where the nodes

model the joints of the skeleton and the arcs the segments (links). Some

examples of mocap data are shown in Fig. 1.

Figure 1: Walk, hop and run movement sequences from the HDM05 database [3].
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A node’s degrees of freedom depend on the allowable rotations and trans-

lations of the corresponding joint in the skeleton. Usually all joints have 3

rotational degrees of freedom (with respect to each of the three axes) whereas

the root node has also 3 translation parameters. The angle values of a certain

frame form the n-dimensional pose or posture vector. An example skeleton

is shown in Fig. 2.

Figure 2: A skeleton representation of human body.

Action recognition is an active research topic that deals with the pro-

cess of labelling a motion sequence with respect to the depicted motions.

Technically, an action is a sequence generated by a human subject during

the performance of a task. Action recognition is usually performed on video

data and has many applications including human computer interaction, video

surveillance, multimedia annotation and retrieval, etc.

The corpus of research dealing with action recognition on motion capture

data is more recent. Action recognition in such data has many applications
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including automatic annotation of motion capture data for archival, index-

ing, retrieval and asset management in games or animated movies produc-

tion, robotics, etc. It should be noted that capture devices such as Microsoft

Kinect, along with the corresponding software are able to generate multi-

modal action data consisting of video, depth and motion capture sequences.

Thus mocap-based action recognition on such data can be directly integrated

with algorithms that perform action recognition on video data. A few multi-

modal databases such as MHAD [4] and MSR Action3D [5] databases have

been created.

An action recognition method usually comprises of two basic steps. The

first step, namely feature extraction, deals with the transformation of the

input data into an appropriate representation that increases the separability

of the data that belong to different classes. The next step involves the train-

ing of models from the extracted features that are able to classify different

action classes. This is a challenging task, because the same movements can

be performed in a different way by different subjects. Moreover, the same

person can perform a movement with different speed, style, etc.

This paper presents a movement recognition method that operates on

motion capture data i.e. skeleton animation data. The method involves

the posture vector at each frame namely the vector of rotation angles in

the selected skeleton joints. Forward differences at different temporal scales

for each joint angle are also computed in order to capture the dynamics of

each joint. K-means is applied separately on the postures space and on the

forward differences of the training data to discover characteristic patterns.

Then each posture and each forward difference vector is mapped to the pat-
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terns and histograms with the frequencies of patterns appearances for each

sequence are formed. Classification is implemented using two different ap-

proaches: a nearest neighbour approach that utilizes histogram intersection

or Kullback-Leibler divergence (KL) as distance measure or by using support

vector machines (SVM).

The use of forward differences of postures vectors in different temporal

scales as a new representation for motion capture data is one of the novel

contributions of the proposed method. An additional contribution is the use

of a modified K-means algorithm that can handle angular data such as the

joint angles involved in mocap. The need for such a modification arises from

the fact that angular data are periodic and their natural representation is

on the unit circle. Thus, the notions of distance and mean value for angular

data are different from those for data on the line. The proposed method

follows the bag of words (BoW) framework with two differences/novelties:

K-means is applied on each set of features separately, resulting in multiple

histograms that describe a sequence, and histograms are implemented using a

voting scheme. The method does not require segmentation of motion capture

sequences into ”atomic” movements such as steps.

The proposed method has been shown, through extensive experimental

evaluation, to outperform most of the state-of-the-art methods in four well

known datasets.

The remaining of this paper is organized as follows. In Section 2, we

present a review of previous work on this topic. In Section 3, the proposed

method is described in detail. Experimental performance evaluation of the

method and comparison with other approaches is presented in Section 4.
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Conclusions follow in Section 5.

2. Previous Work

A great amount of research has been performed on activity recognition

from video data. Surveys of activity recognition approaches on such data

can be found in [6], [7] and [8]. However, motion capture technology be-

came widely available only during the last years. Hence the body of research

for movement recognition on mocap data is not as extensive as for video

data. Li et al. [9] propose a method for action recognition and classification

of motion capture data. Their method uses singular value decomposition

(SVD) to extract feature vectors from motion data. SVM classifiers are

used to segment and recognize motion streams. SVM classification applied

on the vector of 3D locations of characteristic points on the human body

is used by Wang et al. in [10] for human movement recognition. Kadu et

al. [11] adopt the tree-structured vector quantization (TSVQ) method to

represent human poses by codewords and approximate the dynamics of mo-

cap sequences by a codeword sequence. For the classification, the authors

use a spatial domain approach based on the histogram of codewords and a

spatiotemporal domain approach via codeword sequence matching. An al-

gorithm for sequence alignment and activity recognition, called IsoCCA, is

described in [12]. IsoCCA extends the canonical correlation analysis (CCA)

algorithm, by means of introducing a number of alternative monotonicity

constraints. The activity classification task performed in this paper is based

on a 1-NN classifier, that uses the alignment cost between sequences as dis-

tance metric. The method yields improved classification rates in comparison
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to other alignment algorithms, such as Canonical Time Wrapping (CTW),

Dynamic Time Wrapping (DTW), Hungarian and CCA. In [13] the authors

introduce a method for real-time classification of dance gestures in skeletal

animation. An angular skeleton representation that maps the motion data

to a smaller set of features is used. The full torso is fitted with a single ref-

erence frame. This frame is used to parametrize the orientation estimates of

both the first-degree limb joints (joints adjacent to torso) and second-degree

limb joints (tips of the skeleton extremities such as the hands and the feet).

Then a cascaded correlation-based maximum-likelihood multivariate classi-

fier is used to build a statistical model for each gesture class. The trained

classifier compares the input data with the gesture model of each class and

outputs a maximum-likelihood score. An input gesture is finally compared

with a prototype one using a distance metric that involves dynamic time-

warping. In [14], Lv et al. present a method for movement recognition where

each movement is represented as a spatio-temporal template consisting of

a set of channels with weights. The channels correspond to the 3D joints

trajectories and the weights are learned according to the Neyman-Pearson

criterion. Movements are recognized by comparing them with the templates.

In [15], Deng et al. propose a method for human motion recognition. First

the method partitions a human model in five parts, namely, torso, left upper

limb, right upper limb, left lower limb and right lower limb and K-means

is applied separately to each of these partitions. Then several trials from

each K-means class are used to train a generalized model to represent that

class. For isolated motion recognition the authors propose a voting scheme

that can be used with common dynamic programming techniques and they
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also present a new penalty-based similarity measure for DTW. For continu-

ous motion recognition, five body partition index maps are constructed and

applied. Concepts from the theory of chaotic systems are used by the frame-

work proposed by Ali et al. in [16] to model and analyze nonlinear dynamics

of human actions. The authors use the trajectories of reference body joints

to create time series by considering each data dimension separately. Mutual

information and false nearest neighbourhood algorithms are used to embed

each time series in a phase space of an appropriate dimension. Phase space

invariants are then used to represent the dynamical and metric structure of

the phase space. The invariants from all time series are subsequently used

to generate a global feature vector of an action. These feature vectors are

used as input in a K-nearest neighbor classifier. Ofli et al. [17] proposed a

new representation for skeletal action recognition. The authors use either a

fixed number of segments or a fixed temporal window, to segment an action

sequence. Subsequently, they find in these segments the most informative

joints and to represent the sequence with the use of these joints. Nearest

neighbour and SVM are used for classification. A hierarchical discriminative

approach is used in [18] by Han et al. for human action recognition. At first,

the authors use hierarchical latent variable space analysis to represent the

human motion in a hierarchical manifold space. Mutual invariant features

from each manifold subspace are extracted by the use of conditional random

fields. Finally, an SVM classifier is used for the classification.

Action recognition in skeleton animation data became more popular with

the release of markerless capture devices such as Microsoft Kinect. The

Kinect sensor not only records depth video but also provides, through al-
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gorithms included in the software that accompanies the sensor, information

for the joints positions of the tracked skeletons providing the possibility to

combine the video action recognition with motion capture action recognition.

Li et al. in [5] proposed a method for action recognition in depth video data

without the use of the corresponding tracked skeleton. They construct an

action graph to encode human actions and propose a bag of 3D points ap-

proach to characterize a set of salient postures that correspond to the nodes

in the action graph. They also propose a projection method to sample the

3D points from the depth maps. The 3D skeletal joint locations, extracted

from Kinect depth maps, were used from Xia et al. in [19] to perform ac-

tion recognition. The authors represent the human postures by histograms

of 3D joint location and use Linear Discriminant Analysis (LDA), clustering

and vector quantization to encode action sequences. Finally, classification is

performed with the use of hidden Markov models. The 3D joint positions

were also used by Yang and Tian in [20] to perform action recognition. The

authors proposed a new type of features to represent a sequence of skele-

tal motion. They model the dynamics of individual joints by computing

pairwise differences of joints in the spatial and temporal domain. More-

over, they use principal component analysis to reduce redundancy and noise

and to obtain EigenJoints. Finally, they use a non-parametric Näıve-Bayes-

Nearest-Neighbor (NBNN) classifier for action classification. The authors in

[20] compute differences between all pairs of joints xi, xj in the current frame

and also between the current and the previous or the initial frame, whereas

in the proposed method the difference between a joint’s values in the current

and subsequent frames, i.e., temporal differences, are evaluated. The method
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proposed in [21] by Wang et al. also operates on 3D joints positions. The

authors propose a new set of features called local occupancy pattern and

a new temporal patterns representation called Fourier Temporal Pyramid.

They represent an action as a linear combination of acionlets, where an ac-

tionlet is a particular conjunction of the features for a subset of the joints.

SVM is used for the classification. In [22], the authors propose a method for

3D human action recognition. The authors use motion trajectories to rep-

resent each human action. Moreover, the motion trajectories are projected

in a Riemmanian shape space. Finally, recognition is performed using a k

nearest neighbour approach that takes into account the geodesic distances

in the Riemmanian space. Gowayyed et al. in [23] proposed histograms of

oriented displacements (HOD) for action recognition. The displacement of

each joint votes with its length in a histogram of oriented angles. Each 3D

trajectory is represented by the HOD of its three 2D projection. In order to

capture temporal information, the authors apply a temporal pyramid, where

they compute the trajectories as a whole, halves and then quarters. Classi-

fication is performed using a linear SVM on the histograms. Barnachon et

al. in [24] proposed a method that uses histograms of 3D motion capture

data for action recognition. Histograms of action poses are computed to

represent an action and then Dynamic Time Wrapping is used to compare

and recognize actions. A method for recognizing actions using depth maps

is proposed by Yang et al. in [25]. The authors use Histograms of Oriented

Gradients to represent an action. The HOGs are extracted from Depth Mo-

tion Maps (DMM) where DMM are computed by stacking motion energy of

depth maps projected onto three orthogonal planes. The authors in [25] use
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the Depth Motion Maps, hence they use video data instead of skeletal data.

A linear SVM is used for the classification. Oreifej and Liu in [26] proposed a

method for action recognition from depth sequences. The authors represent

a sequence by forming a histogram of the surface normal orientation in time,

depth and space. Moreover, they use a novel discriminative density measure

to refine the quantization. Finally, they use SVM for classification.

Several methods in the literature use the bag of words framework to

perform action classification. Raptis et al. in [27] construct dictionaries of

action primitives in order to perform action classification. They use multi-

dimensional time series to represent the deformation of the body during an

action. More specifically, they track the positions of limb endpoints (arms,

legs and head) and create action dictionaries from the temporal scale, mean

and shape of primitive motion trajectories. A bag of words approach is used

on the action primitives for the classification. Their method works both on

video and motion capture data. In [28], Wang et al. estimate human joints

positions from videos in order to perform action recognition. The authors

group the estimated joints into five parts and then represent each action

by computing sets of co-occuring spatial configurations of body parts and

sets of co-occuring pose sequences of body parts. The authors use a bag of

words approach with the extracted features for classification. Ohn-Bar and

Trivedi in [29] proposed two set of features for action recognition on both

depth video data and skeletal data. As for the depth video data, the authors

use a modified Histogram of Oriented Gradients. They compute histograms

at each frame in box regions around each joint and then they re-apply the

algorithm on these histograms to capture temporal dynamics. Regarding the
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skeletal data, they use affinities within sequences of joint angles. Features

extracted from depth video and skeletal data are used to represent an action

sequence in a bag of words approach. The proposed method differs from the

bag of words methods presented above since it uses a variant, where the bag

of words is applied in each feature set separately resulting to different sets

of histograms, instead of concatenating the features before the application

of the bag of words framework. Moreover, as already stated in Section 1, we

proposed a variant that uses a voting scheme for computing the histograms.

More details are presented in Section 3.

Action segmentation and continuous action recognition can be also per-

formed on motion capture data. Barbič et al. [30] proposed three methods

for automatic action segmentation on a motion capture sequence. In the

first one, a boundary between consecutive actions is recognized using an in-

dication of intrinsic dimensionality from Principal Component Analysis while

the second method extracts segments using Probabilistic PCA. A Gaussian

mixture model representation in used in the third one. Raptis et al. in [31]

model an action as a linear time-invariant dynamical model of relatively small

order, driven by a sparse bounded input signal. The authors use the tempo-

ral statistics of the input sequences for recognizing and detecting transitions

between actions. A method for temporal segmentation of human motion in

motion capture data is proposed by Zhou et al. in [32]. The authors propose

Aligned Cluster Analysis (ACA) as an extension of k-means clustering. A

variable number of features in the cluster centers and a dynamic time warp-

ing kernel for temporal invariance achievement are the two extensions to the

classical k-means algorithm introduced in ACA.
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3. Method Description

In the proposed method each movement is represented by two types of

features: the posture vectors and the forward differences vectors.

Posture Vectors: A motion capture sequence can be represented as a se-

quence of posture vector xi, i = 1, . . . , N where N is the number of

frames of the sequence. Each posture vector carries information for the

rotation angles in the selected skeleton joints

xi = [θi1, θi2, . . . , θin] (1)

where n is the number of rotation angles that form the posture vector.

Forward Differences: A motion capture sequence can also be represented

by vectors of joints angles forward differences. Forward differences esti-

mate the first derivative of a signal and thus, when applied on joint an-

gles, carry information for the average angular velocities of the skeleton

joints within a temporal interval. More specifically, forward differences

in terms of a motion capture sequence can be defined as:

υ
t
i = ∆t[x] = xi+t − xi (2)

where xi,xi+t are the posture vectors in frames i and i+ t respectively.

In the proposed method, the forward differences of the joints angles are

computed in different temporal scales and more specifically for t = 1,

t = 5 and t = 10 in order to capture the dynamics of the joints of

a skeleton. It should be noted that since in (2) the values in posture

vectors xi+t and xi are angular values, the evaluation of the difference
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of two vectors involves finding for each pair of corresponding elements

their angular distance, which will be defined in Section 3.2 (equation

(4)).

Summarizing, two types of features, forming 4 groups of vectors are used

to represent a motion capture sequence: posture vectors and forward differ-

ences vectors in three different temporal scales. Thus a sequence is repre-

sented by four sets of feature vectors M1,M2,M3,M4:

M1 = {x1, . . . ,xN}

M2 = {υ1
1, . . . ,υ

1
N−1}

M3 = {υ5
1, . . . ,υ

5
N−5}

M4 = {υ10
1 , . . . ,υ10

N−10}

(3)

Features (postures and forward differences) are shown in Fig. 3.

The basic building blocks of the method are presented in the following

subsections.

3.1. Feature extraction

The first step of the algorithm concerns the quantization of the vector

spaces and the extraction, through clustering, of four codebooks consisting

of characteristic words.

Indeed, in order to recognize K different movement classes, we cluster

feature vectors in each feature space (the postures space and the forward

differences spaces in different temporal scales) into C clusters. The clusters

are identified by unsupervised clustering, using the K-means algorithm. K-

means is applied four times. First K-means is applied on all the posture
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(a) (b)

Figure 3: a) Features of a walk sequence b) Features of a hop sequence. The postures are

shown as skeletons whereas forward differences in the different temporal scales are shown

as bar plots The joints with the highest forward differences are drawn with red color.

vectors xij, i = 1, . . . , Nj, j = 1, . . . , L of all movement sequences in the

training set where Nj is the number of frames of the j-th movement sequence

and L the number of the training sequences. In other words K-means is

applied upon sets M1 of all training sequences. Since elements of posture

vectors are joint angles, a novel K-means variant modified to work on angular

data is applied (see Subsection 3.2). For each cluster created by the angular

K-means algorithm, the centroid vc, c = 1, . . . , C is computed as the circular
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mean (Subsection 3.2) of all postures in this cluster. This centroid represents

one dyneme. Due to the averaging procedure, dynemes don’t correspond

to postures from the training set but rather on ”average”, characteristic

postures. Example dynemes are shown in Fig. 4. Moreover, K-means is

applied on the forward differences vectors υ
t
ij , i = 1, . . . , Nj − t, j = 1, . . . , L,

each time for a different temporal scale t = 1, 5, 10 where Nj − t the number

of forward differences vectors in the j sequence and t the temporal scale.

This results to 3 · C centroids, ztc, c = 1, . . . , C. The number C of clusters is

selected empirically and depends on the number of movements K that are to

be recognized, the different ways a movement can be performed by different

people, the different body types, etc. However, as shown in Section 4 the

performance of the algorithm is not significantly affected by C, when C is

selected within a fairly large range of values. It should be noted that due to

the way forward differences are evaluated (equations (2) and (4)) they take

values in the range [0, π] and not [0, 2π] and thus both the classical K-means

algorithm and its angular variant (Subsection 3.2) generate the same results.

3.2. Angular K-means

Motion capture data, i.e. posture vectors xi, describe rotation angles

at the joints. As already mentioned, due to the periodic nature of angular

data neither the Euclidean distance nor the mean value estimator for data

on the line can be used in such data. For example, an angle of 0 radians

is the same as an angle of 2π radians but their Euclidean distance wouldn’t

be zero but 2π. Furthermore, the average of two angles 5◦ and 355◦ is 0◦

and not 180◦ as the classical average operator would entail. Two different

measures, namely the distance between two angles and the circular mean [33]
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Figure 4: Examples of dynemes extracted by the clustering algorithm.

can be used instead. The distance between two angles θi, θj is the smallest

arc between the two points that are defined by these angles on the unit circle:

arc(θi, θj) = π− | π− | θi − θj || (4)

The circular mean or sample mean direction x̄0 of k angular observations

θ1, · · · , θk represented by sample points P1, · · ·,Pk on a unit circle centred

at point O is the direction of the mean resultant vector R of the unit vectors

OP1, · · ·,OPk. Its value is given by:

x̄0 = arctan

(

S̄

C̄

)

, C̄ =
1

k

k
∑

i=1

cos θi, S̄ =
1

k

k
∑

i=1

sin θi (5)

Since the proposed algorithm applies the K-means algorithm on angle

data (posture vectors), a modified angular version was constructed by re-

placing the classical mean and Euclidean distance by the above quantities.
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3.3. Evaluation of the bags of words

Two variants were considered for this step. In the first one (variant 1) we

map each posture vector xij and forward differences vector υt
ij in the training

set to a cluster center. In more detail, the angular K-means algorithm will

assign each vector to a class c = 1, . . . , C. Based on the clustering results we

map each vector to its assigned class centroid. Thus each movement sequence

is represented in terms of cluster centroids (words). More specifically, each

frame is represented by four cluster centroids, i.e. those that correspond to

the posture vector and the three forward differences vectors of this frame.

Frames at the end of each sequence for which forward differences cannot be

evaluated are represented by less than four centroids.

Next, we form for each sequence four histograms sxj , s
υ
1

j , sυ
5

j , sυ
10

j by cal-

culating the frequency of appearance of every cluster center for the four types

of features. The histogram of the j-th sequence is a C-dimensional vector

qj = [qij ] , j = 1, . . . , L, i = 1, . . . , C:

qij =
ni

Nj

(6)

where ni is the number of occurrences of the i-th center within the se-

quence and Nj the number of feature vectors of the sequence. Example his-

tograms of posture vectors are shown in Figs 5, 6 whereas some histograms

of forward differences vectors are shown in Fig. 7. Finally, the four his-

tograms are concatenated to form the final vector having 4 ·C elements that

characterizes the movement:

sj =
[

sxj , s
υ
1

j , sυ
5

j , sυ
10

j

]

(7)
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(a) (b)

Figure 5: Dynemes histograms of cartwheel (a) and run on place (b) movements generated

by the proposed method, along with some dynemes that correspond to the most prominent

peaks of the histograms.

(a) (b)

Figure 6: Dynemes histograms of clap above head (a) and clap (b) movements generated

by the proposed method, along with some dynemes that correspond to the most prominent

peaks of the histograms.

In a second variant of the method (variant 2) instead of assigning each

feature vector to a single cluster center, we use a voting approach. At first
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(a) (b)

Figure 7: Forward differences (t = 1) histogram of (a) deposit floor movement and (b)

clap above head movement.

we evaluate the similarities of each feature vector with each cluster center:

dk = sim(vk,x) = exp(−(

∑n

i=1(arc(vki − xi))

0.5 ∗ max
k

(
∑n

i=1(arc(vki − xi)))
)2) (8)

where dk is the similarity of cluster center vk and feature vector x. The

similarity measure used in (8) was proposed in [34]. The distance values

within the exponential are normalized by half the maximum distance of the

feature vector from the cluster centers. By using this equation, the similar-

ities between a feature vector and the closest cluster centers are high, while

the similarities with more distant cluster centers are low. A more common

approach is to use the sum of all distances as a denominator, but with this

approach more cluster centers achieve high similarities. Then we form for

each feature vector, a vector of ordered similarities: D = [d(1), . . . , d(C)],

where C is the number of clusters. Finally, we form a C dimensional his-

togram for each type of features by adding to the bin that corresponds to a

cluster center the similarity of the feature vector with this center, starting
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from the most similar until the sum of the R largest similarities surpasses

the 5% of the sum of all similarities. In other words, R is found as the value

that satisfies the following inequalities:

∑R−1
k=1 d(k)

∑C

k=1 d(k)
< 0.05 <

∑R

k=1 d(k)
∑C

k=1 d(k)
(9)

In the special case where d(1) > 0.05
∑C

k=1 d(k), R is set to 1. An example

of this procedure in two dimensions is shown in Fig. 8. By choosing (8)

as a similarity measure, the number R of the similarities to be added to

the corresponding bins of the histogram is kept relatively small. The four

histograms that result from the procedure are then concatenated into a single

vector sj that characterized the movement.

Unlike the first variant of the method, that assigns each feature vector of

a frame to a single cluster center, in the second variant each feature vector of

a frame is represented by its similarities to the closest cluster centers, which

is a richer representation. Thus, while in the first variant a value equal to

one is added to the histogram bin that corresponds to the cluster center

where the frame/feature vector has been assigned, in the second variant the

similarities of the feature vector with the closest cluster centers are added to

the respective bins. The intuition behind (9), which essentially selects the

number of the closest centers for which the corresponding similarities will be

added, is that a feature vector/frame is well represented by its closest centers

whereas similarities with distant centers provide little information and can

be regarded as noise. Experiments showed that large values of R (including

R = C) decrease the performance of the method.

21



Figure 8: The star represents a feature vector and the circles are the cluster centers. The

star is connected with the 2 most similar centers. The sum of the similarities to the

2 most similar centers surpasses the 5% of the sum of the similarities to all the cluster

centers, while the similarity of the first most similar center does not surpass the above

percentage. Hence according to (9), R = 2 and only the first 2 similarities will be added

in the corresponding bins of the histogram.

3.4. Classification

To classify an unknown motion capture sequence to one of the movements

that the algorithm has been trained to recognize the following procedure is

used.

For the first variant of the method, we first use the posture vectors cluster

centers vC evaluated during the training stage to map each posture vector x
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of the test sequence into the nearest center:

k = arg min
c∈[1...C]

(
n

∑

i=1

arc(vci − xi)) (10)

Then we map each forward difference vector υ
t, for each temporal scale

t of the testing sequence into the nearest center:

k = arg min
c∈[1...C]

(
n

∑

i=1

|ztci − υt
i|) (11)

Once all vectors have been mapped to cluster centers we calculate four his-

tograms qx

test,q
υ
1

test,q
υ
5

test,q
υ
10

test for the testing sequence using (6) or (9) and the

four histograms are concatenated to form the final qtest =
{

qx

test,q
υ
1

test,q
υ
5

test,q
υ
10

test

}

histogram. qtest characterizes the sequence and is used for the classifica-

tion/recognition. For the second variant, the qtest vector is similarly created

by using the voting approach described in the previous subsection. Two clas-

sifiers were used, a Nearest Neighbour (NN) classifier and a Support Vector

Machine (SVM) classifier. Details are provided below.

3.4.1. Nearest neighbour classification

In this case, histogram intersection (12) and a symmetric version of

Kullback-Leibler divergence (13) are used to measure the similarity of qtest

with all labelled movement sequences of the training set:

HI(sj,qtest) =
4·C
∑

i=1

min{sj,i, qtest,i} (12)

KL(sj ,qtest) =
1

2
(

4·C
∑

i=1

sj,i ln
sj,i
qtest,i

+

4·C
∑

i=1

qtest,i ln
qtest,i
sj,i

) (13)
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where sj,i and qtest,i are the values of the i-th element for the vector sj

of the j-th training sequence and the test sequence vector qtest respectively.

Since both sj and qtest are vectors that result from the concatenation of

histograms, each of the equations (12) and (13) essentially evaluates the sum

of histogram intersection and Kullback-Leibler divergence values for the four

histograms that make up vectors sj and qtest.

The test sequence is subsequently assigned to the movement label of the

training set movement sequence whose similarity with the test sequence is

maximum.

3.4.2. SVM classification

In this case, an SVM classifier is trained using the vectors sj of the labeled

sequences of the training set. The trained SVM is then used to classify the

vector qtest of an unknown sequence.

Frequently used kernel functions include the polynomial kernel, the Radial

Basis Function (RBF) kernel and the χ2 kernel as proposed in [35]:

K(xj ,xk) = exp(−
1

2A

4·C
∑

i=1

(xj,i − xk,i)
2

xj,i + xk,i

) (14)

where A is the mean value of distances between all training samples. Exper-

iments conducted in this paper showed that the RBF kernel and the χ2 had

the best results for the K-class SVM that was implemented.

4. Experimental Results

The proposed method has been tested on various datasets from four

databases namely HDM05, Multimodal Human Action Database (MHAD),
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MSR Action3D (MSR) and Futurelight using various validation approaches.

All datasets but the MSR Action3D dataset are motion capture datasets.

These datasets contain rotation angles at the corresponding joints for many

body parts (see Figure 2). Since some of these body parts, for example the

thumb or the toes, bear no significant information for action recognition,

in the HDM05 dataset, we have retained only information for the following

body parts: lower back, upper back, thorax, right humerus, right radius, left

humerus, left radius, right femur, right tibia, right foot, left femur, left tibia,

left foot. In a similar manner, information for the following parts has been

retained in the MHAD and Futurelight datasets: hips, spine, neck left and

right shoulder, left and right arm, left and right arm roll, left and right fore

arm, left and right up leg, left and right up leg roll, left and right leg and

left and right foot. In addition, the global translation and rotation informa-

tion (i.e. the rotation and translation of the root node) were not considered

by the algorithm. The MSR Action3D dataset contains sequences obtained

with the Kinect device. The skeleton of this dataset contains only 20 joints,

thus no joints were excluded in this dataset. In all experiments the involved

histograms were normalized so that their elements sum to one. For the SVM

classifier with the RBF kernel the γ and soft margin parameters were set to

0.75 and 1000 respectively. The SVM classifier with the χ2 kernel was trained

with values of the soft margin parameter in the range 2−20, 2−19, . . . , 219, 220

and the best results are presented. The evaluation procedure, experimental

results and comparison with other methods for each database are presented

in different subsections. The number of clusters that led to the best perfor-

mance is mentioned in separate columns in each results table.
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4.1. Datasets from HDM05 database

The HDM05 database [3] consists of various movements performed by five

subjects in the form of amc files. Two different datasets, subsets of HDM05,

were used for the experiments. The first dataset (HDM05 Dataset 1), pro-

posed by Deng et al. in [15] includes 10 actions namely clap above hands (Cla-

pAbove), deposit floor (DepositFloor), jumping jack (JumpingJacks), front

kick with right foot (FKickR), front punch with right hand (FPunchR), run

on place (RunP), squat (Squat), staircase up (StaircaseUp), stand up sit floor

(StandSit) and walk left (WalkL). The three fold validation setup, proposed

in [15], was used. In more detail, the sequences of three subjects were selected

to form the training set and the the sequences of the other two to form the

testing set in every validation cycle. The distribution of training and testing

sequences in the 3 validation cycles are shown in Table 1.

Table 1: Distribution of training and testing subjects in the three validation cycles pro-

posed in [15].

Validation cycles Subjects for training Subject for testing

Cycle 1 1,2,3 4,5

Cycle 2 3,4,5 1,2

Cycle 3 1,2,5 3,4

The correct classification rates for all the variants of the proposed method

and a comparison with the results presented in [15] are shown in Table 2.

Variants 1 and 2 refer to the two alternative approaches described in Section

3.

As can be seen in this table the proposed method outperforms the method
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Table 2: Correct Classification rates and comparison of classification performance in the

experimental setup proposed in [15] on the HDM05 Dataset 1.

10 action classes Number of Clusters

SVM-χ2 (variant 1/2) 100 / 98.88 100 / 197

SVM-RBF (variant 1/2) 94.38 / 96.07 188 / 186

NN-Intersection (variant 1/2) 94.94 / 96.07 183 / 205

NN-KL (variant 1/2) 97.19 / 94.94 187 / 194

GM + SW [15] 94.96 -

proposed in [15] in most of the cases. SVM with χ2 kernel achieved the

highest classification rate, regardless the type of the variant.

The second subset used by Ofli et al. in [17] (HDM05 Dataset 2) in-

cludes 16 actions namely deposit floor (DepositFloor), elbow to knee (El-

bowKnee), grab high (GrabHigh), hop both legs (HopBoth), jog (Jog), kick

forwards (KickFor), lie down floor (LieFloor), rotate both arms backward

(RotateBArmsB), sneak (Sneak), squat (Squat), throw basketball (ThrowBas-

ket), jump (Jump), jumping jacks (JumpJacks), throw (Throw), sit down

(SitDown) and stand up (StandUp). The experimental setup proposed in

[17] was used. In more detail the sequences of 3 subjects were used to form

the training set (216 sequences) and the sequences from the other 2 subjects

were used to form the test set (177 action sequences). The correct classifica-

tion rates for all the variants and a comparison with [17] are shown in Table

3.

As can be seen in Table 3 the proposed method outperforms the method

proposed in [17] when SVM with χ2 kernel is used as a classifier. The con-
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Table 3: Correct Classification rates and comparison of classification performance in the

experimental setup proposed in [17] on the HDM05 Dataset 2.

16 action classes Number of Clusters

SVM-χ2 (variant 1/2) 95.48 / 93.22 500 / 253

SVM-RBF (variant 1/2) 88.70 / 89.83 217 / 202

NN-Intersection (variant 1/2) 88.70 / 85.88 217 / 205

NN-KL (variant 1/2) 85.31 / 82.49 211 / 216

SMIJ [17] 91.53 -

fusion matrix for the best variant (SVM-χ2 with variant 1) is shown in Fig.

9. As can be seen, the proposed method recognize with lower classification

rates (below 85%) only the SitDown action, which is confused with the simi-

lar StandUp action and the Throw action, which is confused with the similar

ThrowBasket action.

4.2. MHAD database

The Berkeley Multimodal Human Action Database (MHAD) [4] con-

tains 11 actions performed by 12 subjects in the form of bvh files. Each

subject performs each action 5 times. The dataset contains the follow-

ing actions: jump (JumpPlace), jumping jacks (JumpJacks), bend (Bend),

punch (Punch), wave one hand (WaveOne), wave two hands (WaveTwo),

clap (Clap), throw (ThrowBall), sit down (Sit), stand up (Stand) and sit

down/stand up (SitStand). The experimental setup proposed in [17] was

used, where sequences of 7 subjects were used to form the training set (384

action sequences) and the sequences from the remaining 5 subjects were used

to form the testing set (275 action sequences). The correct classification rates
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Figure 9: Confusion matrix (16 classes) for SVM-χ2 with variant 1 classification with

C = 500; 95.48% overall correct classification rate. HDM05 Dataset 2.

for all the variants and a comparison with [17] is shown in Table 4. The pro-

Table 4: Correct Classification rates and comparison of classification performance in the

experimental setup proposed in [17] on the MHAD database.

11 classes Number of Clusters

SVM-χ2 (variant 1/2) 98.18 / 97.82 186 / 214

SVM-RBF (variant 1/2) 93.82 / 95.64 208 / 195

NN-Intersection (variant 1/2) 88.36 / 84.36 215 / 218

NN-KL (variant 1/2) 86.18 / 76.72 100 / 185

SMIJ [17] 95.37 -

posed method outperforms the method proposed in [17] when SVM with χ2
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Figure 10: Confusion matrix (11 classes) for SVM-χ2 with variant 1 classification with

C = 186; 98.18% overall correct classification rate. MHAD Dataset.

kernel is used a a classifier and when SVM-RBF is used with variant 2 of the

method. The confusion matrix for the best variant (SVM-χ2 with variant 1)

for this dataset is shown in Fig. 10. In this experimental setup all actions

but two are perfectly recognized.

4.3. Datasets from MSR Action3D database

The MSR Action3D database [5] contains sequences of skeleton anima-

tion data obtained from a Microsoft Kinect sensor and therefore are more

noisy than the sequences obtained from ”traditional” (and more expensive)

motion captures systems. The database consists of 10 subject performing 20
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actions with 2 or 3 repetitions of each action. Two different datasets were

used for the experiments. In the first dataset, a subset of 8 subjects and 17

actions (MSR1), namely high arm wave (HighArmW), horizontal arm wave

(HorizArmW), hammer (Hammer), hand catch (HandCatch), forward punch

(FPunch), high throw (HighThrow), draw x (DrawX), draw tick (DrawTick),

draw circle (DrawCircle), hand clap (Clap), two hand wave (TwoHandW),

side-boxing (Sidebox), forward kick (FKick), side kick (SKick), jogging (Jog),

tennis swing (TSwing) and tennis serve TServe, were used for the experimen-

tal evaluation of the method as proposed in [17]. The experimental setup

proposed in [17] was used. According to this setup sequences of 5 subjects

were used to form the training set (226 action sequences) and the sequences

from the remaining 3 subjects were used to form the testing set (153 action

sequences). It should be noted that the MSR Action3D database provides

the positions of the joints instead of the corresponding orientations. Thus,

in order to evaluate the proposed method in this specific dataset, we modi-

fied the method so to operate on the joint positions. More specifically, the

angular K-means was replaced by the classical K-means and the angular dif-

ferences were replaced with the classical differences in the Euclidean space.

It should be also noted that PCA was applied to the positions of the joints

to decorrelate the data. The correct classification rates for all the variants

and a comparison with the [17] are shown in Table 5. It should be noted

that the authors in [17] converted the joint positions to joint angles.

As can be seen in this table the proposed method by far outperforms the

method proposed in [17] regardless the variant used in classification for both

types of variants. The confusion matrix for the best variant (SVM-χ2 with
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Table 5: Correct Classification rates and comparison of classification performance in the

experimental setup proposed in [17] on the MSR Action3D dataset.

17 classes Number of Clusters

SVM-χ2 (variant 1/2) 87.74 / 90.97 200 / 206

SVM-RBF (variant 1/2) 83.87 / 85.16 214 / 197

NN-Intersection (variant 1/2) 81.93 / 78.06 219 / 195

NN-KL (variant 1/2) 81.93 / 82.58 219 / 208

SMIJ [17] 33.99 -

variant 2) for the MSR dataset proposed in [17] is shown in Fig. 11. 13 out

of 17 classes are recognized with 100% classification rate in this challenging

dataset. To ensure fair comparison with [17], in another experiment, the

joint angles evaluated by the joint positions as in [17] were used to assess the

performance of the method. The joint angles were computed between any

two adjacent links in the skeleton hierarchy, considering the two links as vec-

tors and the joint angle as the angle between these vectors. However, since

the links/vectors are in 3D, using only their angle results in an incomplete

representation. Essentially such a representation is the axis-angle represen-

tation, without the rotation axis. The result of this experiment are shown in

Table 6. As can be seen the proposed method again outperforms the method

proposed in [17] even when the joint angles are used as input. The degraded

performance of the proposed method in this case is most probably due to the

incomplete representation mentioned above.

The second dataset consists of the entire database (MSR2) and besides

the 17 actions mentioned above, includes bend (Bend), golf swing (Golf) and
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Table 6: Correct Classification rates and comparison of classification performance in the

experimental setup proposed in [17] on the MSR Action3D dataset using joint angles

evaluated by converting joint positions.

17 classes Number of Clusters

SVM-χ2 (variant 1/2) 54.90 / 52.94 194 / 204

SVM-RBF (variant 1/2) 47.06 / 50.33 210 / 186

NN-Intersection (variant 1/2) 42.48 / 45.75 217 / 206

NN-KL (variant 1/2) 39.22 / 45.75 181 / 193

SMIJ [17] 33.99 -

pickup & throw (PickT) actions. The MSR2 dataset was used either split in

three subsets of actions as proposed in [5] or as one dataset containing all 20

actions as in [21].

At the first experiment the 567 sequences of the database were divided

into three subsets, each having 8 actions and recognition was performed

separately within each subset. The separation to three difference sets was

proposed by the authors in [5] due to the large computational cost of applying

an algorithm in the entire database. The actions that form each subset

are shown in Table 7. The AS1 and AS2 sets group actions with similar

movements, while AS3 was groups complex actions together.

The overall classification rate was then computed by averaging the re-

sults obtained in each subset separately. Three different experimental setups

proposed in [5] were used to verify the performance of the proposed method

in this case. In the first setup (test 1), 1/3 of the sequences were used for

training and the remaining 2/3 for testing. In the second setup (test 2),

2/3 of the sequences were used for training and the remaining 1/3 testing.
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Figure 11: Confusion matrix (17 classes) for SVM-χ2 with variant 2 classification with

C = 206; 90.97% overall correct classification rate. MSR1 Dataset.

Table 7: The three subsets of actions from the MSR database [5] used in the experiments

as proposed in [5].

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3)

Horizontal arm wave High arm wave High throw

Hammer Hand catch Forward kick

Forward punch Draw x Side kick

High Throw Draw tick Jogging

Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve

Tennis serve Forward kick Golf swing

Pickup & throw Side boxing Pickup & throw

In the third setup (cross subject test), the sequences of half of the subjects

were used for training and the rest for the testing. Tests 1 and 2 check if a
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method can perform well with small/large training sets and the cross subject

test checks if the method can perform well if the training and test sets consist

of different subjects. The overall classification results for the three tests are

shown in Table 8 along with results obtained by methods proposed in [5],

[19], [20], [25] and [22].

Table 8: Overall Correct Classification rates and comparison of classification performance

with the methods proposed in [5], [19], [20], [25], [22] in the three tests proposed in [5] on

the MSR Action3D database.

SVM-χ2

(variant 1 / 2)
[5] [19] [20] [25] [22]

Test 1 88.45 / 94.5 91.6 96.2 95.8 96.1 93.1

Test 2 99.12 / 97.3 94.2 97.1 97.8 97.3 95.3

Cross subject test 87.8 / 93.6 74.7 79 82.3 91.6 92.8

As can be seen in Table 8, the proposed method surpasses all five state-

of-the-art methods in Test 2 and in cross subject test by almost 2% and 1%

respectively. It should be noted that the cross subject test can be considered

as more fair since sequences of the same subject do not exist both in the

training and in the testing set. In Test 1, the proposed method performs

1.7% worse than the best classification result achieved by [19] and surpasses

the method in [5] and [22].

At the second experiment, the entire database (557 sequences) was used.

The cross subject test, described above was used to assess the proposed

method. The overall classification results for the cross subject test in the

entire database and a comparison with state of the art methods are shown

on Table 9. By observing this table one can see that the proposed method
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Table 9: Correct Classification rates and comparison of classification performance in the

experimental setup proposed in [21] on the MSR Action3D dataset.

20 classes Number of Clusters

SVM-χ2 (variant 1 / 2) 88.64 / 91.94 198 / 191

SVM-RBF (variant 1 / 2) 80.95 / 89.01 195 / 192

NN-Intersection (variant 1 / 2) 80.95 / 82.42 201 / 195

NN-KL (variant 1 / 2) 82.78 / 83.15 197 / 191

Actionlet Ensemble [21] 88.2 -

HON4D + Ddisc [26] 88.89 -

Gowayyed et al. [23] 91.26 -

Barnachon et al. [24] 90.56 -

Wang et al. [28] 90.22 -

JAS (Cosine) + MaxMin [29] 83.53 -

JAS (Cosine) + MaxMin + HOG2 [29] 94.84 -

(variant 2) achieved the highest classification rate when SVM-χ2 was used for

classification. The proposed method outperforms all but one of the state-of-

the-art methods (JAS (Cosine) + MaxMin + HOG2 [29]) in this challenging

dataset. This is because the authors in [29] used both depth maps and skele-

ton information to achieve action recognition whereas the proposed method

relies only on skeleton data to perform classification which is an advantage

since it broadens its applicability. However, the proposed method outper-

forms the method proposed in [29] by almost 8.5%, when the latter takes

into account only the skeleton information (JAS (Cosine) + MaxMin [29]).

The confusion matrix of the best variant is shown in Fig. 12. As can be seen,
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Figure 12: Confusion matrix (20 classes) for SVM-χ2 with variant 2 classification with

C = 191; 91.94% overall correct classification rate. MSR2 Dataset.

14 out of 20 actions are recognized with accuracy higher than 90%, while the

action with the worst accuracy is High Throw (63.64%).

4.4. Futurelight dataset

The Futurelight dataset contains 155 sequences of 5 action classes in the

form of bvh files, namely dance, jump, run, sit and walk with 30, 14, 30, 33

and 48 instances, respectively. The classes contain significant intra-class vari-

ations, making it a challenging dataset. A Leave-One-Out-Cross-Validation

(LOOCV) was used to asses the performance of the method. The classifica-

tion results of all variants are presented in Table 10 and are compared with

the results presented in [16], [27] and [31].

As can be seen in Table 10, the best classification rate was achieved when

SVM with χ2 kernel was used for classification and the histograms were
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Table 10: Correct Classification rates and comparison of classification performance in the

Futurelight dataset using a leave one out cross validation.

5 classes Number of Clusters

SVM-χ2 (variant 1/2) 96.20 / 99.37 190 / 185

SVM-RBF (variant 1/2) 94.94 / 97.47 180 / 183

NN-Intersection (variant 1/2) 98.73 / 98.10 181 / 184

NN-KL (variant 1/2) 96.20 / 98.73 181 / 186

Ali et al. [16] 89.7 -

Raptis et al. [27] 98.03 -

Raptis et al. [31] 83.87 -

computed using variant 2 of the method. The proposed method outperforms

all other state-of-the-art methods. The confusion matrix for the best variant

(SVM-χ2 with variant 2) for the Futurelight dataset using LOOCV is shown

in Fig. 13.

The best classification rates in all datasets are summarized in Table 11.

Table 11: Best classification rates achieved in all datasets. C: number of clusters in K-

means.

Dataset Classifier Hist. Type % C

MHAD SVM-χ2 variant 1 98.18 186

HDM05 Dataset 1 [15] SVM-χ2 variant 1 100 100

HDM05 Dataset 2 [17] SVM-χ2 variant 1 95.48 500

MSR Action3D [17] SVM-χ2 variant 2 90.97 206

MSR Action3D [21] SVM-χ2 variant 2 91.94 191

Futurelight SVM-χ2 variant 2 99.37 185
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Figure 13: Confusion matrix (5 classes) for SVM-χ2 with voting histograms classification

and use of the angular K-means with C = 185; 99.37% overall correct classification rate.

4.5. Discussion

From the results presented in the previous subsections, it is obvious that

the SVM-χ2 classification provided the best results in all cases. This result

confirms the results in [35], that χ2 kernel provides very good results when a

codebook/histogram representation is considered. The second best variant in

terms of classification is the one that uses SVM with an RBF kernel (SVM-

RBF). Regarding the approach used to construct the pattern histograms,

variant 1 provided the best results for MHAD and HDM05 datasets and

variant 2 provided the best results for MSR and Futurelight dataset. In gen-

eral (see Table 11) the proposed method achieves very high recognition rates

in 4 different databases, including the MSR database which was generated

from Kinect data and is in general noisy. As a matter of fact, the recognition

rates achieved by the method are often close to 99%. The above indicate that

the proposed method performs well in a variety of (often very challenging)

data, outperforming state-of-the-art methods for human action recognition

39



on motion capture data. The only method that performs better than the

proposed one, namely [29], utilizes both mocap data and depth maps.

The proposed method achieved good classification rates for a broad range

of cluster centers between 180 and 220 as can be seen in Fig. 14. In addition,

in order to judge the performance of the method on a much broader range of

cluster centers, the method was tested for 10, 50, 100, 500 and 1000 cluster

centers. The correct classification rates of these experiments are shown in

Fig. 15.
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Figure 14: Classification rates for the SVM-χ2 variant for different values of C, i.e. for

different numbers of K-means clusters. Classification rates in 5 different datasets are shown

From figures 14 and 15, it is obvious that regardless the number of clusters

(excluding, as expected, very small values i.e. 10), the codebooks created by

the K-means algorithm can lead to vectors that describe different actions

sufficiently well. Thus the proposed method does not require significant fine

tuning of the parameter C (K-means clusters).
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Figure 15: Classification rates for the SVM-χ2 variant for C = 10, 50, 100, 500, 1000. Clas-

sification rates in 5 different datasets are shown.

5. Conclusions

In this paper, a novel method for action/movement recognition in mo-

tion capture data was proposed. The method utilizes characteristic postures

(dynemes) and characteristic joint angles forward differences derived through

a novel variant of the K-means algorithm, along with a bag of words approach

(or a variant based on a voting scheme) and a nearest neighbour or SVM clas-

sifier. Experimental analysis verifies that the proposed approach provides

very good movement recognition results surpassing all state of the art meth-

ods that rely only on motion capture data. The proposed method achieved

better results mainly because it uses 2 types of features: the posture vec-

tors (spatial features) and the forward differences (temporal/spatiotemporal

features) computed over different temporal scales. The use of spatiotem-

poral features evaluated over different temporal scales has been proven to

achieve very good activity classification results in video based-methods (see
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references [36], [37] and [38]). Another reason that the proposed method

provided better results is the use of χ2 kernel, which has been shown in [35]

to achieve superior results when a codebook/histogram representation is con-

sidered. A limitation of the proposed method is that it cannot distinguish

between a movement and its reverse e.g. forward and backward walking.

However in most applications such a distinction is not needed. In the future,

extensions towards motion clustering, segmentation, indexing and retrieval,

that have significant similarities with action recognition, will also be consid-

ered. Moreover, research for applying this method for action-based person

identity recognition (recognizing a person based on the way he/she performs

certain actions) is underway with very promising results.
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