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ABSTRACT

In this paper we present two algorithms for efficient person
recognition operating upon motion capture data, depicting
persons performing various everyday activities. The first
approach is driven from the assumption that, if two motion
sequences depict a certain activity performed by the same
person, then, consecutive frames (poses) of one sequence are
expected to be similar to consecutive frames of the other. The
proposed method constructs a pose correspondence matrix
to represent the similarity between poses and utilizes an in-
tuitive method for estimating a similarity score between two
motion capture sequences, based on the structure of the cor-
respondence matrix. The second algorithm is based on a Bag
of Words model (BoW), where histograms are extracted from
motion sequences, based on the frequency of occurrences
of characteristic poses. This method is combined with the
application of Locality Preserving Projections (LPP) on the
data, in order to reduce their dimensionality. Our methods
achieved more than 98% correct person recognition rate, in
three different datasets.

Index Terms— person recognition, motion capture, clas-
sification, dimensionality reduction

1. INTRODUCTION

Motion capture has long been used in film and games indus-
try in order to allow for more realistic renditions of human
and animal motion. It is also useful in virtual reality applica-
tions, as well as in various disciplines that involve the study
of human motion, such as ergonomic analysis, sports biome-
chanics and rehabilitation. The result of motion capture is a
skeletal animation sequence, i.e. a series of skeleton config-
urations (poses) over time. Today, motion capture is becom-
ing more affordable. As an example, the Kinect sensor with
the accompanying human skeleton tracking software can de-
liver fairly good motion capture data with minimal cost. As a
consequence, motion capture techniques gain more and more
ground, giving boost to the development of diverse kinds of
applications.

Person recognition refers to the process by which the
identity of a person is recognized by a system, based on in-
formation that he or she carries. Examples of applications
involving person recognition include security or surveillance
systems, access control, patient monitoring, as well as a
wide range of systems involving human-computer interac-
tion. Traditionally, recognition is performed by means of
credentials, supplied by the person, in form of IDs, smart
cards or passwords. However, in the last decades, an increas-
ing use of biometric features is observed [1]. These features
may include physiological characteristics of a person, such
as fingerprints, face/iris characteristics, palm prints or DNA,
as well as behavioural characteristics [2], such as gait or
style when performing a certain action, keyboard typing, and
voice. Biometric characteristics show advantage over the
aforementioned credentials, with respect to counterfeiting or
loss risk.

To our knowledge, there do not exist methods for activity-
based person recognition from motion capture data, other than
those related to human gait analysis. Although those algo-
rithms apply mostly on video motion data, several methods
have been recently proposed, for gait-based person recogni-
tion (usually referred to simply as gait recognition) from mo-
tion capture sequences. In [3], the proposed method for gait
recognition is based on the analysis of the trajectories of lower
body joint angles, projected onto the sagittal plane. At the first
step of the method, the joint angles are estimated by fitting a
skeleton model to the sensor measurements. Thereafter, the
trajectories are normalized with respect to duration and walk
cycles, by means of a segmentation technique and Dynamic
Time Warping. Finally, the trajectories are classified using a
nearest-neighbor classifier, based on euclidean distance. In
[4], motion capture data are combined with measurements
from force plates, in order to combine both kinematic and
kinetic data. As a result, the features representing the data in-
clude joint angles and angular velocities, as well as forces ap-
plied on joints. Classification of gait data is performed using
Self Organizing Maps (SOMs). Additionally, the importance
and contribution of each feature is investigated, in order for
the factors that cause differences in gait to be determined.



Fig. 1: Flowchart for the correspondence-based method.

The method presented in [5] is suitable for both classifica-
tion of gait type (walking, running, jogging and limping) and
person recognition. Deriving from the fact that the percep-
tion of human motion by an observer relies on the detection
of specific ”motion features”, representing relative motion of
body parts, a two-stage PCA scheme is applied on the motion
data. The first stage of PCA is applied on the data, repre-
sented by joint angles and velocities, in order for a trajectory
on a low-dimensional manifold to be extracted. The second
stage of PCA detects the variability in the shape of this man-
ifold across individuals or gait types. In [6], gait recognition
is performed on motion data acquired from recordings with
the Kinect sensor. The 3D positional joint data are used to
extract both static (e.g. height, body part lengths) and dy-
namic (speed, step length) features. Gait data are classified
by three different types of classifiers, namely Naive Bayes, 1R
and C4.5. Also, the influence of the different features on the
recognition rate is investigated. In [7] the trajectories of spe-
cific parts of the human body during walking, referred to as
gait paths, are used for the extraction of features suitable for
person recognition. From the motion capture data, four differ-
ent kinds of features are extracted and subsequently classified
using a Naive Bayes and a k-Nearest Neighbor approach.

The two methods proposed in this paper follow a more
general approach to the person recognition problem, in com-
parison to the aforementioned methods. Recognition is based
on motion capture data representing a repertory of different

classes of human actions, such as waving, sitting down or
standing up, and not solely on gait. Thus, the proposed ap-
proaches broaden the applicability of movement-based person
recognition methods, to cover a large set of actions. As a mat-
ter of fact, the proposed approaches indicate that, other human
actions apart from walking bear significant person-specific
characteristics, that allow person recognition with high recog-
nition rates. The first proposed algorithm is based on the hy-
pothesis that, motion sequences of the same action performed
by the same person, exhibit strong similarity between suc-
cessive frames in one or more segments within them, which
is expressed through specific patterns. In order to classify
motion capture sequences to distinct humans, we developed
a scheme for similarity estimation between such sequences.
The second algorithm we propose consists a Bag of Words
(BoW) approach, that combines dimensionality reduction of
the motion data as a pre-processing step.

2. CORRESPONDENCE-BASED PERSON
RECOGNITION

As already mentioned, the first proposed method for activity-
based person recognition is based on the similarity between
two motion capture sequences and comprises of two distinct
steps:

1. The construction of a correspondence matrix, that de-
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Fig. 2: Sample frames from motion capture sequences of the activity classes ”deposit floor” (a) and ”sit down chair” (b), from the HDM05
database.

scribes which frame in the second sequence is the most
similar to each frame in the first sequence.

2. A process of calculating a similarity score between two
sequences from the correspondence matrix.

Person recognition is subsequently performed, by classifying
test motion sequences, using an 1-Nearest Neighbor classifier.
The workflow of the correspondence-based method is sum-
marized in Figure 1. In the following subsections the afore-
mentioned steps are described in detail.

2.1. Correspondence matrix construction

Let us consider two motion capture sequences denoted with
Xs = {x1,x2, ...,xM} and Ys = {y1,y2, ...,yN}, consist-
ing of M and N frames respectively. A frame in a sequence
consists of the rotation angles of each joint and describes the
pose of the human body at a certain time instance. Some
frames from motion sequences describing the activities ”de-
posit floor” and ”sit down chair” are illustrated in Figure 2.
In order to construct the correspondence matrix, the distances
from each pose yi of the sequence Ys to every pose xi in
sequence Xs are calculated.

For this purpose, we use a distance measure, based on the
logarithmic representation of the rotational data of each joint.
Let us assume that a pose is represented by J unit quater-
nions (q̂k), each of them describing the rotation on one of
the J joints. A unit quaternion can be projected to the tan-
gent space at some reference point of the 3-sphere that the
unit quaternions lie on. The reference point we selected for
the projection of the data, was the sample mean q̂m of quater-
nions for each joint calculated over a number of frames, which
was estimated as the quaternion that minimizes the sum of its
squared distances from the other quaternions, as described in
[8]. The aforementioned projection is performed by applying
a logarithmic mapping:

log(q̂m)(q̂) = ln(q̂∗m × q̂), (1)

where × denotes the quaternion multiplication and q̂∗m
is the conjugate of the unit quaternion representing the

sample mean. In this way, quaternions can be mapped
to 3D points in Euclidean space. Consequently, the dis-
tance between two rotations represented by quaternions,
can be approximated by the Euclidean distance between
two points in R3. Therefore, each joint rotation can be
represented by a 3D point P = {p1, p2, p3}, and a pose
of a skeleton consisting of J joints can be denoted as
x = {P1,P2, ...,PJ} = {p1, p2, ..., p3J}, i.e. as a vec-
tor of 3J elements. The distance between two such poses
x and y can then be estimated by the Euclidean distance
between the two pose vectors:

dLog(x,y) =

√√√√ 3J∑
i=1

(pi − qi)2 (2)

The calculated distances between all pairs of poses in the
two sequences Xs, Ys are used to construct a correspon-
dence matrix of dimensionalityM ×N , denoted with C. The
rows/columns of C correspond to poses of sequence Xs,Ys

respectively. For each pose xi of Xs, the nearest pose yj of
Ys is found and the element (i, j) of C is set to one, whereas
all other elements (i, k), k 6= j of the i-th row are set to zero.

The result of this process is, that C exhibits distinct
structures depending on the similarity between the two se-
quences under examination. When the two compared se-
quences describe movements of the same class (e.g. two
walking sequences) the correspondence matrix contains diag-
onal segments of ones, of various lengths, either continuous
or interrupted, since successive poses from one sequence are
in general most similar to successive poses from the other.
Specifically, these diagonal segments extend from the upper
left to the bottom right of the matrix. In case that the two
sequences depict the same movements performed by differ-
ent subjects, these diagonal segments tend to be smaller in
length and weaker in terms of slope. When the sequences
describe motions of different classes, irrespective of whether
they come from the same subject or not, there are two pos-
sibilities: First, there may exist long vertical lines, implying
that many poses in sequence Xs are matched to the same
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Fig. 3: Examples of correspondence matrices: two movements of the same class performed by the same (a) and different subjects (b). Two
movements of different classes performed by the same subject (c).

pose in Ys. This is often the case, when the two move-
ments described in the sequences are different, but share one
or more similar poses. Second, the correspondence matrix
may exhibit diagonal segments of limited length or the ones
(units) may be arranged with no particular structure, a fact
indicating, that the two sequences describe completely dif-
ferent movements. Examples of correspondence matrices are
shown in Figure 3, where the unit entries are represented by
white pixels.

2.2. Similarity score evaluation

In order to quantify the similarity of two motion capture se-
quences Xs,Ys, a score S is calculated over the respective
correspondence matrix C, based on the existence and the
structure of diagonal segments. The higher the score, the
more similar the two sequences are.

For each row of matrix C (which corresponds to a pose
of sequence Xs), the position of the unit entry (column in-
dex) is retrieved, in order to determine the relative position of
the unit entries in subsequent poses and to identify possible
diagonal segments. The relative position of a unit in the next
row with respect to the unit in the current row defines whether
the next unit lies in a ”legal” position or not, according to the
rules described below. These rules try to take into account the
fact that, although for two matching sequences, units (match-
ing poses) should ideally form a diagonal (45◦ slope) seg-
ment consisting of connected elements (i.e. units should be
arranged in matrix cells (i, j), (i + 1, j + 1), (i + 2, j + 2)

Table 1: Legal (marked with a tick) and illegal (marked with an x)
positions for a unit entry in the correspondence matrix.

1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
x
√ √ √ √

x

and so on), deviations from this ideal situation (e.g. gaps of
limited extend) should be allowed.

First, a maximum of three consecutive points within a di-
agonal segment are allowed to lie in a vertical placement, such
as (i, j),(i+ 1, j),(i+ 2, j). This means, that up to three con-
secutive poses of sequence Xs are allowed to be matched to
the same pose of sequence Ys. Furthermore, if the current
unit is at cell (i, j), then the unit in the next row can be either
in the ”ideal” position (i+ 1, j + 1), or in positions (i+ 1, j)
(vertical placement), (i + 1, j + 2), (i + 1, j + 3). In other
words, gaps of length 1 and 2 are allowed. Finally, the length
of each diagonal segment, that is, the number of units lying
on it, should be larger than a threshold Tl, in order for it to
contribute to the final score. It was observed that, a threshold
between 5 and 9 produces the best results. An example of le-
gal and illegal positions for a unit entry in the 4-th row of a
correspondence matrix, given the arrangement of units in the
previous 3 rows, is shown in Table 1.

After the aforementioned process has been performed for
every pose of sequence Xs, all the units lying in ”legal” po-
sitions, have been assigned to a diagonal segment. Each unit
entry to the correspondence matrix lying in a diagonal seg-
ment, is assigned a weight αi,j . A weight equal to 1 is as-
signed if consecutive poses of sequence Xs are matched to
exactly consecutive poses in sequence Ys, (i.e. units are in
an arrangement (i, j), (i+1, j+1)) and a weight equal to 0.8
otherwise. These weights, whose role is to favor exactly di-
agonal and penalize ”imperfect” diagonal unit arrangements,
were determined by performing experiments with different
values and selecting those that achieve the best recognition
rate. However, there is a reasonable interval around the ”op-
timal” weight values (1 and 0.8) that lead to similar results.
Thus, the effect of the weight values to the method perfor-
mance in not critical.

At the end of the procedure, the segments containing a
number of points below threshold Tl are discarded as invalid,
while the valid segments contribute to the calculation of the



total score. The total score S is estimated by summing the
weights of the units lying in valid diagonal segments:

S =
∑

(i,j)∈V

αi,j , (3)

where V is the set of all units lying in valid diagonal seg-
ments.

The actual classification of a test sequence, i.e. a sequence
that has not been assigned a label with respect to the subject
that performs it, is performed using an 1-Nearest Neighbor
classifier. In other words, the test sequence is tested against
all training sequences and is labeled with the subject label of
the training sequence that yielded the biggest similarity score.

3. PERSON RECOGNITION USING A BAG OF
WORDS APPROACH AND DIMENSIONALITY

REDUCTION

The second person recognition method that has been devel-
oped is based on a Bag of Words (BoW) approach [9] and uti-
lizes dimensionality reduction of the data as a pre-processing
step. The proposed algorithm consists of three steps:

1. Application of dimensionality reduction on the motion
capture data, using the Locality Preserving Projections
(LPP) method [10].

2. A histogram-based representation of motion sequences,
based on a set of characteristic poses.

3. Classification of the histograms calculated from test se-
quences, using a Support Vector Machine (SVM) clas-
sifier.

The basic steps of the method can be seen in the flowchart of
Figure 4. In the following sections, the aforementioned steps
are described in more detail.

3.1. Dimensionality reduction

Dimensionality reduction methods are frequently used in
machine learning applications, in order to project high-
dimensional data onto a low-dimensional space. Apart from
the reduction in the amount of data per se, which can be
crucial in certain applications, machine learning tasks can
also benefit from dimensionality reduction in other ways. For
example, it can be used to extract more meaningful features,
that carry useful information and describe better the data,
to discover the structure of the data or to reduce noise and
irrelevant information. Linear dimensionality reduction tech-
niques such as Principal Component Analysis (PCA) [11] and
Linear Discriminant Analysis (LDA) [12] are the most com-
monly used ones in machine learning applications, however,
non-linear techniques, such as Isomap [13], Locally Linear

Embedding (LLE) [14] and Laplacian Eigenmaps [15] are
also used with increasing frequency.

In order to apply dimensionality reduction to motion cap-
ture data, we should consider that they are non-linear. There-
fore, non-linear techniques could be more suitable for that
type of data. In particular, local non-linear techniques, such
as LLE and Laplacian Eigenmaps, have the property to pre-
serve the structure of the local neighborhood around the dat-
apoints, which is important when dealing with motion data.
On the other hand, non-linear techniques are computation-
ally more expensive and they lack a way of projecting new
test samples, as the mapping they provide is defined only on
the training samples. For the aforementioned reasons, we se-
lected to use the Locality Preserving Projections (LPP) tech-
nique in conjunction with our recognition method. Although
LPP is a linear dimensionality reduction technique, it com-
bines properties of both linear and non-linear techniques: as a
linear method, it is defined everywhere and can be applied ef-
fectively and fast in practical applications. Furthermore, like
local non-linear techniques, it preserves the local structure of
the data.

In the following sub-section, the LPP method and its ap-
plication to motion capture data is briefly explained.

3.1.1. Locality Preserving Projections and application to
motion capture data

The LPP method assumes that the data lie on a low dimen-
sional manifold embedded in the high dimensional space. It
calculates a linear transformation, which maps the data from
the high dimensional space, with dimensionality D, to a sub-
space of dimensionality d, while preserving the local neigh-
borhood information, in the sense of preserving the pairwise
distances between neighboring points.

The LPP algorithm consists of the following steps:

1. Construction of an adjacency graph: Let us assume
a graph G consisting of B nodes. An edge is put be-
tween two nodes i and j if the datapoints xi and xj are
close. In order to determine how close two datapoints
are, the k-nearest neighbors of a datapoint are consid-
ered: nodes i and j are connected with an edge if either
the point xi is among the k nearest neighbors of xj , or
xj is among the k nearest neighbors of xi.

2. Choice of weights: a sparse weight matrix W of size
B × B is calculated. Each element Wij has a value
equal to the weight of the edge connecting the nodes i
and j or equal to 0 if there is no edge between i and
j. For the assignment of weights to the edges, the heat
kernel function is used:

Wij = e−
‖xi−xj‖2

t (4)

3. Eigenmaps: the requirement for close points in the ini-
tial space to be mapped to close points in the reduced



Fig. 4: Flowchart for the LPP/BoW method.

space is met by the following cost function, the mini-
mization of which results to the optimal projection:

Φ(y) =
∑
ij

‖yi − yj‖2Wij , (5)

where yi = ATxi is the projection of a datapoint xi. It
can be proven, that the transformation matrix A is cal-
culated by solving the generalized eigenvalue problem:

XLXTa = λXMXTa, (6)

where M is the degree matrix, while L = M −W
is the graph Laplacian. The transformation matrix A
is constructed by the eigenvectors corresponding to the
first d eigenvalues λ0 < λ1 < ... < λd−1.

From the above discussion, it can be observed, that the
LPP algorithm involves up to three parameters, that need to
be determined: the dimension d of the low-dimensional space,
the number of neighboring datapoints k in the construction of
the adjacency graph and the parameter t of the heat kernel
function. In our case, the optimal parameters were defined as
those that lead to the highest recognition rate and were found
using grid search.

In order to apply the LPP method to motion capture data,
the frames of a training set of motion sequences are con-
catenated in a matrix. In more detail, let us assume that

there are k training sequences, X1,X2, ...,Xk, consisting
of N1, N2, ..., Nk frames (poses) respectively, and that each
frame (sample) is represented by a D-dimensional feature
vector. Then, a matrix X, with

∑
i

Ni rows and D columns

is formed by concatenating all frames from all training se-
quences. For the representation of the rotational data, we used
the logarithmic mapping of the quaternions, as described in
section 2.1. Thus, D equals the number of the joints times
three, as there are three components describing the informa-
tion for each joint in the logarithmic mapping representation.
By applying the LPP technique to the training data matrix
X, a transform matrix A is calculated, which can be used to
project the training and testing sequences. Subsequently, the
projected data are used as input by the classification method
presented in the next section.

3.2. Bag of Words approach

In order to apply a Bag of Words approach, a codebook of
characteristic poses, called dynemes, is calculated from the
set of training sequences. This is achieved by applying the
k-means algorithm on the projected frames of the training set,
in order to cluster them into C clusters. Each dyneme repre-
sents the centroid of a cluster. Subsequently, for each training
motion sequence a histogram can be calculated as follows:
a motion sequence X = {x1,x2, ...,xN} is transformed to
a sequence XD = {d1,d2, ...,dN}, where each frame di



is derived by replacing the frame xi with the dyneme which
is closest to it, i.e. the center of the cluster xi has been as-
signed to. By calculating the frequency of occurrence for
each one of the C dynemes in the sequence XD, a histogram
s = {s1, s2, ..., sC} of the dyneme appearances can be con-
structed.

A similar procedure is followed in order to calculate
the histogram for a test sequence. For each frame of a test
sequence, the distances to all dynemes are estimated, and
the frame is replaced with the dyneme which is closest to
it. Again, the histogram is constructed by calculating the
frequencies of occurrence of each dyneme in the sequence.

Once the histograms for all training sequences have been
calculated, they are used along with their labels, which in our
case refer to the person that performs the movement depicted
in the sequence, to train a Support Vector Machine (SVM)
classifier [16]. In order to classify test sequences, the cor-
responding histograms are extracted and subsequently fed to
the SVM classifier. The SVM classifier used involves a chi-
squared kernel function [17] given by the following formula:

K(si, sj) = exp(− 1

A
D(si, sj)) (7)

where D(si, sj) denotes the χ2 distance between si =
{si1, si2, ..., siC} and sj = {sj1, sj2, ..., sjC}:

D(si, sj) =
1

2

C∑
k=1

(sik − sjk)2

sik + sjk
, (8)

while A is a scaling factor, calculated as the mean of χ2 dis-
tances between all training samples.

4. DATASETS

In order to test the two proposed methods, we used the
HDM05 and the MHAD datasets, that were mainly devised
to test the performance of activity recognition and motion
retrieval algorithms, as in [18], [19], [20], [21], [22], as well
as a gait dataset, used in gait recognition experiments.

4.1. HDM05 database

The HDM05 motion capture database [23] consists of mo-
tion capture files, for various types of activities, performed
by five actors. Our person recognition task included 16
classes of activities (393 files in total) for the five sub-
jects: depositFloorR, elbowToKnee3RepsLelbowStart, grab-
HighR, hopBothLegs3hops, jogLeftCircle4StepsRstart, kick-
RFront1Reps, lieDownFloor, rotateArmsBothBackward3Reps,
sneak4StepsR start, squat1Reps, throwBasketball, hopBoth-
Legs1hops, jumpingJack1Reps, throwStandingHighR, sit-
DownChair and standUpSitChair. Motion files in ASF/AMC
format were used.

From the motion capture clips, we selected the rotation in-
formation for a subset of 13 joints, namely lower back, upper
back, thorax, right humerus, right radius, left humerus, left
radius, right femur, right foot, left femur, left tibia, left foot
and right tibia, since these joints were observed to be the most
informative, and therefore more discriminant for our recogni-
tion task.

Since the number of sequences of each motion for each
subject in the dataset is different, we selected a fixed train
(276 motion sequences) and test (117 motion sequences) data
set for our experiments.

4.2. Berkeley Multimodal Human Action Database (MHAD)
database

The MHAD [24] database contains motion capture data for
a set of 11 motion classes, namely Jumping in place, Jump-
ing jacks, Bending - hands up all the way down, Punching
(boxing), Waving - two hands, Waving - one hand (right),
Clapping hands, Throwing a ball, Sit down then stand up,
Sit down, and Stand up. These motions are performed by
12 different subjects. For each subject, there are 5 sequences
of each motion, resulting to 659 (there is a missing file) se-
quences in total. Motion files in BVH format were used in
our experiments. Only rotations of the following joints were
considered: spine, spine1, spine2, RightShoulder, RightArm,
RightForeArm, LeftShoulder, LeftArm, LeftForeArm, Righ-
tUpLeg, RightLeg, RightFoot, LeftUpLeg, LeftLeg and Left-
Foot.

The fact that the dataset contains equal number of trials
for each motion by each subject, allows us to use two distinct
configurations for our experiments: (a) we build fixed train
(396 sequences) and test (263 sequences) sets and (b) we use
a cross validation scheme, where in each fold the test set con-
sists of a sequence by each subject, for the same motion (12
samples in total) and the training set includes the remaining
sequences.

4.3. Gait data

In addition to the databases presented above, we also per-
formed experiments using gait data from [6]. The dataset con-
sists of 67 files, each of them containing the 3D coordinates
of specific joints, recorded with Microsoft’s Kinect sensor.
Gait data are collected for nine different persons and each of
them (except for one) performs 8 trials. Since the data refer
to the position rather than the rotation of each joint, we used
the 3D coordinates for our experiments. As a pre-processing
step, we canceled out the global translation and rotation of
the root, from all the skeleton joints. Through this process,
each pose in a walking sequence becomes independent of the
orientation and position of the person in the 3D space. Subse-
quently, a frame (pose) is treated as a vector consisting of 3D
points, thus, having a dimensionality equal to the number of



Table 2: Correct person recognition rates

Database Correspondence BoW initial dimensionality LPP/BoW
Rate Rate Dimensionality (D) Rate Dimensionality (d) Parameters

HDM05 (fixed sets) 91.45% 95.73% 39 98.29% 14 k=40, t=3.7, C=110
MHAD (fixed sets) 96.2% 97.72% 45 98.1% 10 k=60, t=3.8, C=110
MHAD (folds) 98.02% 98.77% 45 98.79% 14 k=40, t=3.7, C=110
Gait data 85.4% 94.44% 18 98.57% 8 k=60, t=3.9, C=80

selected joints times three. As with the two aforementioned
datasets, we selected to use the positional data for a subset of
joints, located on the legs, namely: HipLeft, KneeLeft, An-
kleLeft, HipRight, KneeRight and AnkleRight. For our ex-
periments we used a 7-fold cross validation scheme, as the
one described in [6].

5. EXPERIMENTAL RESULTS

Several parameters have to be defined, for the approach that
combines LPP dimensionality reduction and Bag of Words.
Different values for the number of clusters C (and conse-
quently the number of dynemes) in the k-means algorithm
were tested, whereas a grid search was performed for the val-
ues of the parameters d, k and t of the LPP technique, de-
scribed in section 3. Correct recognition rates for the two
methods are presented in Table 2. Furthermore, in order to
show the effect of the dimensionality reduction step, we also
display the recognition rates for the BoW method when ap-
plied on the data of initial dimensionality, i.e. without dimen-
sionality reduction.

It can be observed, that both methods provide high recog-
nition rates, with the LPP/BoW method always performing
better than the other one. In the cases of HDM05 database
and the gait data, the LPP/BoW method achieved a signif-
icantly better recognition rate, while in MHAD database
both methods achieved similar performance. Additionally,
although lower recognition rates for the MHAD database
would be expected, since it includes more subjects, results in
this datasets were equally good or better than in the HDM05.
This is partially due to the fact that, the MHAD dataset con-
tains more sequences for each movement for the subjects,
allowing for better training. As far as dimensionality reduc-
tion is concerned, it can be observed, that LPP significantly
improved the recognition rates of the BoW approach in the
case of HDM05 and gait data, while it had a minor effect
in the case of MHAD data, for which high recognition rates
were already obtained without dimensionality reduction and
thus not much room for improvement existed.

The aforementioned results indicate that there also exist
various human movements, apart from gait, which bear dis-
criminative information and can therefore be suitable for the
person recognition task. For example, all motion classes of
the HDM05 dataset achieved 100% person recognition rate,

except for sneak4StepsRstart and standUpSitChair where
rates 80% and 83.33% were achieved respectively, when the
BoW/LPP method was applied for person recognition. Most
probably, person recognition rates in these two motion classes
were lower because these classes bear less discriminant infor-
mation for person recognition, than the other classes.

Regarding the gait dataset, the LPP/BoW method outper-
formed the recognition method proposed in [6], that achieves
a maximum 91% correct recognition rate. It should be noted
that no comparisons with other methods that perform person
recognition on motion capture data depicting various move-
ments are provided, because, to the best of our knowledge, no
such methods exist in the literature.

6. CONCLUSIONS AND FUTURE WORK

Two methods for person recognition on motion capture data
have been presented in this paper. The first algorithm is based
on the structure of a correspondence matrix between motion
capture sequences, whereas the second algorithm adopts a
Bag of Words approach combined with dimensionality re-
duction on the motion capture data, using the LPP method.
Both methods achieved high person recognition rates on the
test datasets. An important finding of this work is that human
movements other than walking (gait) can be successfully used
for person recognition. Regarding future work, additional fea-
tures, such as the velocity and acceleration of joints could be
explored. Testing the algorithms on other datasets will be also
attempted.
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