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Source Phone Identification Using Sketches of

Features
Constantine L. Kotropoulos

Abstract

Speech recordings carry useful information for the devices used to capture them. Here, acquisition

device identification is studied using sketches of features as intrinsic device characteristics. That is,

starting from large-size raw feature vectors obtained by either averaging the log-spectrogram of a speech

recording along the time axis or stacking the parameters of each component for a Gaussian Mixture Model

modeling the speech recorded by a specific device, features of reduced size are extracted by mapping

these raw feature vectors into a low-dimensional space. The mapping preserves the “distance properties”

of the raw feature vectors. It is obtained by taking the inner product of the raw feature vector with a

vector of independent identically distributed random variables drawn from a p-stable distribution. State-

of-the art classifiers, such as a sparse representation-based classifier or support vector machines, applied

to the sketches yield an identification accuracy exceeding 94% on a set of 8 landline telephone handsets

from Lincoln-Labs Handset Database. Perfect identification is reported for a set of 21 cell-phones of

various models from 7 different brands.

Index Terms

Digital speech forensics, symmetric p-stable distributions, sketches of features, sparse representations.

I. INTRODUCTION

Digital speech content can be imperceptibly altered by malicious, even amateur, users, employing a

variety of low-cost audio editing software. This creates a serious threat permeating a wide variety of
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fields, such as intellectual property, intelligence gathering and forensics, to name a few [1]. Theories and

tools to combat this threat in the field of digital speech forensics are still in their infancy [2].

First of all, one needs to extract forensic evidence about the mechanism involved in the generation of

the speech recording by analyzing the speech signal [2]. That is, to identify the acquisition device by

assuming that the device along with its associated signal processing chain leaves behind intrinsic traces in

the speech signal. Indeed, the various devices (e.g., telephone handsets, cell-phones) do not have exactly

the same frequency response due to the tolerance in the nominal values of the electronic components and

the different designs employed by the various manufacturers [3]. This implies that the recorded speech

can be considered as a signal whose spectrum is the product of the genuine speech spectrum, driving the

acquisition device, and the frequency response of the latter. Consequently, the recorded speech signal can

be exploited in device identification, following a blind-passive approach, as opposed to active embedding

of watermarks or having access to input-output pairs [2].

Audio forensics are less developed [4] than image forensics [1]. Several problems have attracted the in-

terest of the forensics community, including codec identification, authentication of speakers’ environment,

and automatic acquisition device identification, so far. Many studies were performed for the identification

of codecs, such as MP3 [5], Windows Media Audio codec [6], Code Excited Linear Prediction codecs

[7], or G.711, G.726, G.728, G.729, Internet Low-Bit codec, Adaptive Multi-Rate NarrowBand, and Silk

[8]. Classification and regression trees were reported to achieve an identification accuracy of 92% among

nine codecs using a 50% cross-validation on a database with 180 test conditions, comprising three noise

types (car, babble and hum) at five signal to noise ratios [9]. The authentication of speakers’ environment

was investigated in [10]–[13]. The effectiveness of Hidden Markov Model-based phone recognition1

for forensic voice comparison has been evaluated in terms of both validity (accuracy) and reliability

(precision) in [14]. Acoustic environment identification finds many applications (e.g., audio recording

integrity authentication, real-time crime localization/identification). Statistical techniques for estimating

the reverberation and background noise were proposed in [15], [16].

Telephone handset identification was first treated in order to avoid performance degradation in speaker

recognition due to mismatches between training and test data. For example, autoassociative neural

networks were reported to achieve an accuracy of 85% in a two-class problem (i.e., carbon-button vs.

electret telephone handset identification) in the NIST-99 speaker evaluation database, employing 1448

test utterances [17]. A Gaussian mixture model-based handset selector was proposed in [18] and then

1In this sentence only, a phone refers to the acoustic realization of a phoneme in loose terms.
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handset-specific stochastic second-order feature transformations were applied to the distorted feature

vectors increasing speaker verification accuracy. Another method for the classification of 4 microphones

was originally proposed in [11] and further improved thanks to a proper fusion strategy [12]. The speech

signal was parameterized by employing time domain features and the mel-frequency cepstral coefficients

(MFCCs). The identification of the microphones was performed by the Naive Bayes classifier at a short-

time frame level. Accuracies in the order of 60–75% were reported. Rank level fusion was shown to

increase the classification accuracy to 100% [12]. The identification of 8 landline telephone handsets and 8

microphones was addressed in [2]. In particular, the intrinsic characteristics of the device were captured by

concatenating the mean vectors of a Gaussian mixture model (GMM) trained on the speech recordings of

each device. Linear- and mel-scaled cepstral coefficients were employed for speech signal representation.

A classification accuracy of 93.2% was reported for 8 landline telephone handset identification in the

Lincoln-Labs Handset Database (LLHDB) [19], when a support vector machine (SVM) classifier and a

2-fold cross-validation was employed. The identification of 14 cell-phones was proposed in [3] extracting

the MFCCs from each device speech recordings, which were then classified by an SVM. An identification

accuracy of 96.42% was reported for 14 different cell-phones using a set of 3360 utterances uttered by

24 speakers equally divided into a training and test set. Blind-passive methods for landline telephone

handset identification were proposed in [20] and [21]. More specifically, the random spectral features

were extracted by reducing the size of average log-spectrograms thanks to an orthogonal random Gaussian

projection matrix [20]. In a supervised setting, the label information (i.e., the class where each device

belongs to) of the training speech recordings was taken into account in order to derive a mapping between

the feature space where the average log-spectrograms lie onto and the label space [21]. This supervised

method reached an accuracy of 97.58% in the LLHDB. The blind-passive method for landline telephone

handset identification introduced in [20] was extended by investigating the sketches of spectral features

(SSFs) as intrinsic traces suitable for device identification in [22]. The SSFs were extracted by taking the

inner product of the average log-spectrogram with a vector of independent identically distributed (i.i.d.)

random variables (r.vs) drawn from a p-stable distribution [23].

In this paper, the sketches (i.e., feature vectors of reduced size) are elaborated in a more wide sense

than [22]. On the top of the SSFs, sketches are extracted from the Gaussian supervectors (GSVs). The

GSVs are made by concatenating the model parameters of the GMM components (i.e., the mean vectors

and/or the vectors comprising the elements of diagonal covariance matrices on their main diagonal)

modeling the MFCCs, having excluded the 1st coefficient [24]. GSVs are extracted with or without

resorting to a GMM universal background model (UBM) [25]. In the former case, the GSVs are made by

January 10, 2014 DRAFT



4

concatenating the mean vectors of the MFCCs after applying maximum a posteriori adaptation (MAP).

The sketches of features form an overcomplete dictionary for devices’ intrinsic traces. This dictionary

is exploited then for sparse representation-based classification (SRC) [26]. If sufficient training speech

recordings are available for each device, it is possible to express the sketches extracted from a recording

captured by an unknown (test) device as a compact linear combination of the dictionary atoms for the

device actually used during acquisition. This representation is designed to be sparse, because it involves

only a small fraction of the dictionary atoms and can be computed efficiently via ℓ1-norm optimization.

The classification is performed by assigning each test sketch the device identity the dictionary atoms

weighted by non-zero coefficients are associated with. It is demonstrated that by employing a proper

p-stable distribution to randomly project feature vectors of large size to sketches of reduced size, very

high recognition rates can be obtained by using either an SRC or an SVM.

The proposed method is tested for source phone identification in two databases. First, the SSFs are

employed to identify the 8 landline telephone handsets of the LLHDB using a 2-fold cross-validation. That

is, by dividing the available recordings into two disjoint sets balanced in the number of recordings, the

number of speakers and their gender) as in [2], [3]. For comparison purposes, the average 23-dimensional

MFCC vector of each speech recording is considered as a baseline feature for device characterization.

Performance comparisons are made for the SRC, the linear SVM [27], [28], and the nearest-neighbor

(NN) classifier, which employs the cosine similarity measure. The experimental results demonstrate

the effectiveness of the SSFs over the MFCCs as device intrinsic traces, no matter which classifier is

employed. The SSFs classified by the SRC yield an accuracy exceeding 95% on the LLHDB. The power

of SSFs in landline telephone handset identification is also assessed, when the test speaker identity is left

out from the training set. As expected, the device identification accuracy is reduced, but it still exceeds

78%. In the latter case, sketches of the GSVs are also extracted by MAP adapting the mean vectors of

a GMM-UBM with 128 or 256 components trained on the training subset of the TIMIT database [29]

with the mean vectors of the MFCCs extracted from the LLHDB utterances. The device identification

accuracy increases to 94.11%, when the sketches of the GSVs are classified by the SVM.

Second, a database of 21 cell-phones of various models from 7 different brands was collected by

recording 10 utterances uttered by 12 male speakers and another 12 female speakers, randomly chosen

from the TIMIT database. The 10 utterances per speaker were concatenated in a single 30 s long recording.

Two disjoint subsets were created, balanced in the number of files as well as speakers and gender. Each

subset comprises 252 files. This database is referred to as the MOBIPHONE database, hereafter. A

perfect device identification is achieved, when the sketches of the GSVs, extracted by MAP adapting
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the mean vectors of a GMM-UBM with either 64 or 128 components trained on the training subset of

the TIMIT database with the mean vectors of the MFCCs extracted from the MOBIPHONE recordings,

are classified by any of the aforementioned classifiers. By omitting GMM-UBM training, GSVs are

calculated by concatenating the mean vectors and the parameters of the GMM components (i.e., the

mean vectors and/or the vectors comprising the elements of diagonal covariance matrices on their main

diagonal) modeling the MFCCs extracted from the MOBIPHONE recordings. Using one component

only, the sketches of these GSVs achieve an accuracy of 99.21%, when they are classified by the SRC.

The device identification accuracy of SSFs classified by the SRC is 98.81%, while that of the average

23-dimensional MFCC vectors classified by the SVM is 97.22%.

The paper is organized as follows. In Section 2, the acquisition device intrinsic traces are introduced.

That is, the calculation of the SSFs, the MFCCs, and the GSVs is described. The sparse representation-

based device identification is detailed in Section 3. The LLHDB and the MOBIPHONE database as well

as the experiments conducted are discussed in Section 4. Conclusions are drawn in Section 5.

II. ACQUISITION DEVICE INTRINSIC TRACES

The majority of features employed in speech and speaker recognition, spoken language identification,

or audio processing parameterize the spectrum of the signal. Assuming that the acquisition device is

a linear time-invariant system, its impact on the recorded speech is modeled by the convolution of its

impulse response and the original speech. Thus, the identity of the acquisition device is embedded into

the recorded speech, since the spectrum of any recorded speech segment is the product of the spectrum

of the original speech signal and the device frequency response.

A. Raw feature vectors

The first feature vector of large size is obtained from the spectrogram (i.e., the magnitude of the short-

term Fourier transform) of each recorded speech signal by employing frames of duration 64 ms with a

hop size of 32 ms and discrete Fourier transform of size 4096 samples. The speech frames are obtained by

multiplying the recorded speech signal with a Hamming window. The resulting representation has a size

of 2049 samples, including the dc value and 2048 equally spaced frequency samples of the (short-term)

discrete-time Fourier transform in the interval [0, fs/2] for sampling frequency fs = 8 KHz. Next, the

logarithm of the spectrogram is calculated and is averaged along the time axis. The just described feature

vector is called average log-spectrogram. The average log-spectrograms of the utterance SA1 “She had

your dark suit in greasy wash water all years” from TIMIT database that was uttered by person FALW

January 10, 2014 DRAFT



6

and recorded by 4 carbon button and 4 electret landline telephone handsets in the LLHDB are depicted

in Fig. 1 and 2, respectively.

The MFCCs are considered as the baseline features [2]. They encode the frequency content of the

speech signal by parameterizing the rough shape of its spectral envelope. Following [2], the MFCC

calculation employs frames of duration 20 ms with a hop size of 10 ms, and a 42-band filter bank.

The correlation between the frequency bands is reduced by applying the discrete cosine transform to

the log-energies of the bands. The sequence of 23-dimensional MFCCs is averaged along the time axis

yielding a 23-dimensional average vector. In Fig. 3 and 4, the MFCCs are depicted, for the SA1 speech

utterance uttered by the speaker FALW and recorded using the 4 carbon button and the 4 electret landline

telephone handsets in the LLHDB database. Both the average log-spectrograms and the average MFCCs

look appropriate as acquisition device intrinsic traces.

A second class of feature vectors having large size comprises the GSVs [25]. The GSVs are derived

by either resorting to a GMM-UBM or not. In the former case, the mean vectors of the GMM-UBM are

MAP adapted using the MFCCs of the source phone speech recordings. To do so, a GMM-UBM with a

number of components ranging from 64 to 256 components was trained on the MFCCs extracted from

the utterances of the training subset of the TIMIT database. For example, the GSV made by stacking

the mean vectors of 128 components has size of 2816 elements, after having excluded the 1st MFCC

coefficient. Let mk, k = 1, . . . ,K denote the mean vectors of the GMM-UBM. The MAP adaptation of

the mean vectors results in [25]

νk = ηk mk + (1− ηk) µk (1)

where µk is the mean vector of the source phone MFCCs assigned to the kth component and ηk is a

mixing coefficient. If ζlk = Prob(k|ξl) is the probability of assignment of the lth MFCC vector ξl of a

source phone speech recording to the kth component, µk in (1) is given by

µk =
1

ζk

∑
l

ζlk ξl (2)

where ζk =
∑

l ζlk. The mixing coefficient is given by

ηk =
ζk

ζk + τ
(3)

where τ is the so-called relevance factor, regulating the trade-off between what the data suggest and

our prior belief contained in the UBM mean vectors. The scalar τ was set to 16 as recommended in

[25]. Alternatively, one may choose to estimate the GMM model parameters directly from the MFCCs
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extracted from the source phone recordings. In this case, GSVs of much smaller size are obtained by

concatenating the parameters of the GMM components. For 5 components, the size of the resulting GSV

is 220.

B. Sketches of features

Sketches, that is feature vectors of reduced size, are obtained by proper random projections. Denote

the data matrix by Z ∈ Rd′×n, containing the raw feature vectors of large size for the n recordings.

For example, d′ = 2049 for the average log-spectrograms, while d′ = 2816 for the GVS made by

concatenating the mean vectors for GMMs of 128 components. The size of such raw feature vectors is

reduced to d < d′ by pre-multiplying Z with a projection matrix R ∈ Rd×d′
, yielding X = R Z. The

columns of X are the sketches proposed as acquisition device intrinsic traces. If the columns of Z are

average log-spectrograms, the SSFs are obtained in the columns of X. If the columns of the data matrix

are the GSVs, their sketches are found in the columns of X. The elements of R, Ri,j , are taken as i.i.d.

r.vs. sampled from a p-stable distribution [30].

A distribution D over R is called p-stable if there exists p > 0 such that for any n real numbers αi,

i = 1, 2, . . . , n and i.i.d. random numbers ri drawn from D, the r.v.
∑

i αi ri has the same distribution

with the r.v. (
∑

i |αi|p)1/p r, where r is an r.v. having distribution D. That is, if Ri,j is sampled from a

p-stable distribution, for any two average log-spectrograms (say the first two column of Z) the differences

Xi,1 −Xi,2 =
∑d′

j=1Ri,j(Zj,1 − Zj,2), i = 1, 2, . . . , d, are also i.i.d. samples of a p-stable distribution.

This implies that the projection can be used to recover an approximate value of the ℓp distance of the

raw feature vectors computed in a space of reduced dimensions.

The most well-known stable distribution is the Gaussian distribution of zero mean and unit standard

deviation N (0, 1), which is 2-stable. This distribution was used in [20]. However, the class of stable

distributions is much wider, including heavy-tailed distributions as well [23]. For p = 0.5, one obtains the

Levy distribution. The Cauchy distribution f(r) = 1
π

1
1+r2 is 1-stable. Unfortunately, the aforementioned

three distributions are the only cases for which closed form expressions of the probability density functions

exist [31]. The probability density functions of symmetric p-stable distributions for different values of

the tail constant p are plotted in Figure 5. However, samples can be drawn from any p-stable distribution

[32]. Indeed, for p ∈ (0, 2], Ri,j are generated by [23]

Ri,j =
sin(pθ)

cos1/p θ

(
cos(θ(1− p))

− lnu

) 1−p

p

(4)

where θ is uniform on [−π/2, π/2] and u is uniform on [0, 1]. (4) results for a zero skewness parameter
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δ from the generic expression [31], [32]

Ri,j =


γ(p, δ) sin p (θ+θ0)

cos
1
p θ

(
cos(θ−p(θ+θ0))

w

) 1−p

p

if p ̸= 1

2
π

[
(π2 + δ θ) tan θ − δ ln

(
π

2
w cos θ
π

2
+δ θ

)]
if p = 1,

(5)

where γ(p, δ) = (1 + (δ tan π p
2 )2)

1

2p , θ0 = 1
p arctan(δ

π p
2 ), and w is an exponentially distributed r.v.

with mean 1. To generate samples from the Cauchy distribution (i.e., p = 1), both (4) and (5) yield

Ri,j = tan θ.

Strictly speaking, the ℓp distance preserved by the p-stable random projections is a norm if 1 ≤ p ≤ 2.

In addition, the restricted isometry property (RIP) [33] for symmetric p-stable distributions has been

proved only for 1 ≤ p ≤ 2 [34]. The range of p will be confined to 1 ≤ p ≤ 2, hereafter. Moreover,

the projection matrix R is orthogonalized and the entries of X ∈ Rd×n are further post-processed as

follows. Each row of X is normalized to the range [0, 1] by subtracting from each matrix element the row

minimum and then by dividing it with the difference between the row maximum and the row minimum.

The data matrix containing the average MFCC vectors is post-processed similarly.

III. ACQUISITION DEVICE IDENTIFICATION VIA SPARSE REPRESENTATIONS

The problem of revealing the device identity of a test sketch given a number of labeled sketches from

N acquisition devices is addressed based on the SRC [26]. Let Xi = [xi,1|xi,2| . . . |xi,ni
] ∈ Rd×ni denote

the dictionary that contains ni sketches, stemming from the ith device as column vectors (i.e., dictionary

atoms). Given a test sketch y ∈ Rd that comes from the ith device, one assumes that y is expressed as

a linear combination of the atoms that are associated to the ith device, i.e.,

y =

ni∑
j=1

xi,j ci,j = Xi ci (6)

where ci,j ∈ R are coefficients, which form the coefficient vector ci = [ci,1, ci,2, . . . , ci,ni
]T .

If X = [X1|X2| . . . |XN ] ∈ Rd×n is an overcomplete dictionary formed by concatenating n sketches,

which stem from N acquisition devices2, y ∈ Rd in (6) is equivalently rewritten as y = X c, where

c = [0T | . . . |0T |cTi |0T | . . . |0T ]T is the n × 1 augmented coefficient vector, whose elements are zero

except those associated with the ith device. Thus, the entries of c bear information about the device the

test sketch y ∈ Rd comes from.

2Obviously, n =
∑N

i=1 ni.
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Since the device identity of a test sketch is unknown, it is predicted by seeking the sparsest solution

to the linear system of equations y = X c. Formally, given the overcomplete dictionary X and the test

sketch y ∈ Rd, the problem of sparse representation is to find the coefficient vector c, such that y = Xc

and ∥c∥0 is minimized, i.e.,

c∗ = argmin
c

∥c∥0 subject to Xc = y (7)

where ∥.∥0 is the ℓ0 quasi-norm returning the number of the non-zero entries of a vector. Unfortunately,

the solution of the problem (7) is NP-hard. An approximate solution to the problem (7) can be obtained

by replacing the ℓ0-norm with the ℓ1-norm:

c∗ = argmin
c

∥c∥1 subject to X c = y (8)

where ∥.∥1 denotes the ℓ1-norm of a vector. The ℓ1 minimization (8) correctly recovers the ℓ0 solution

in (7) with t + 1 nonzero elements, if ψ d < t < ⌊d+1
3 ⌋ for some small constant ψ [35]. That is, as

long as the number of nonzero elements of the ℓ0 solution is a small fraction of the dimension d, the

solution of (7) is equivalent to the solution of (8), which can be obtained by standard linear programming

methods in polynomial time. This is a necessary and sufficient condition related to the neighborliness of

the convex polytope spanned by the columns of X3 [35], while the RIP gives sufficient conditions only

[26]. It is worth noting that by projecting the data using a p-stable matrix, the dictionary X obeys the

RIP for 1 ≤ p ≤ 2 [34].

A test sketch is classified as follows. The coefficient vector c∗ is obtained by solving (8). Ideally, c∗

contains non-zero entries in positions associated with the dictionary atoms (i.e., columns of X) stemming

from a single device, so that one can easily assign the test sketch y to that device. However, due to

modeling errors, there are small non-zero entries in c∗ that are associated to multiple devices. To cope

with this problem, each sketch is classified to the device class that minimizes the residual ∥y−Xδi(c)∥2,

where δi(c) ∈ Rn is a vector, whose nonzero entries are associated to the ith device only [26].

3That is, when X maps all t dimensional facets of the unit ℓ1 ball in Rn to the facets of the convex polytope spanned by the
columns of X, which belongs to Rd.
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A. Robustness to sparse modeling errors

A more general model for a test sketch y ∈ Rd allows for an error vector e ∈ Rd, having a fraction

of its elements nonzero [26], i.e.,

y = X c+ e = [X|I]

 c

e

 , (9)

where I ∈ Rd×d is the identity matrix. The error vector e elements have arbitrary magnitude and cannot be

ignored or treated by replacing the equality constraint with an ℓ2-norm regularization term ∥y−Xc∥2 ≤ ε

in (8). Let X̂ = [X|I] ∈ Rd×(n+d) be the extended dictionary and v = [cT eT ]T .

Next, the sparsest solution v∗ is found by solving the extended ℓ1 minimization problem:

v∗ = argmin
v

∥v∥1 subject to X̂ v = y. (10)

Once the sparsest solution v∗ = [ĉT êT ]T is determined, each test sketch is classified to the device class

that minimizes the modified residual ∥y − ê−X δi(ĉ)∥2.

IV. EXPERIMENTAL EVALUATION

Experiments were conducted on two databases, namely, a subset of the LLHDB [19] as in [2] for

landline telephone handset identification and the MOBIPHONE for source cell-phone identification.

The subset of the LLHDB consists of speech recordings from 53 speakers (24 male speakers and 29

female speakers) acquired by 8 landline telephone handsets. 4 of telephone handsets are carbon-button

(CB1-CB4) and the remaining 4 are electrect (EL1-EL4). Each speaker utters 10 sentences from the

TIMIT database [29]. The recording are approximately 3 s long. 2 of the 10 sentences (i.e., SA1 and

SA2) are read by every speaker and the remaining 8 sentences are different. The latter were used for

device identification.

The MOBIPHONE contains 21 cell-phones of various models from 7 different brands. The brands and

models of the cell-phones are listed in Table I. For 12 male speakers and another 12 female speakers,

randomly chosen from the TIMIT database, 10 utterances were recorded by the various cell-phones.

These 10 utterances per speaker were concatenated in a single 30 s long recording.

Two sets of experiments were conducted for landline telephone handset identification. The first set of

experiments follows the 2-fold cross-validation set-up, while the second one partitions the recordings so

that the speakers, whose utterances were included in the test set, were left out from the training set. A
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TABLE I
THE BRANDS AND MODELS OF THE CELL-PHONES IN THE MOBIPHONE AND THEIR CLASS NAMES.

Class
Name

Brand and Model Class
Name

Brand and Model

HTC1 HTC desire c APL1 iPhone5
HTC2 HTC sensation S1 Samsung E2121B
LG1 LG GS290 S2 Samsung E2600
LG2 LG L3 S3 Samsung GT-18190 mini
LG3 LG Optimus L5 S4 Samsung GT-N7100

(galaxy note2)
LG4 LG Optimus L9 S5 Samsung Galaxy

GT19100 s2
N1 Nokia 5530 S6 Samsung Galaxy Nexus S
N2 Nokia C5 S7 Samsung e1230
N3 Nokia N70 S8 Samsung s5830i
SE1 Sony Ericson c902 V1 Vodafone joy 845
SE2 Sony Ericson e510i

third set of experiments was conducted for cell-phone identification using disjoint partitions of training

and test speakers.

A. Landline telephone handset identification using 2-fold cross-validation

The first set of experiments follows the 2-fold cross-validation set-up for device identification in [2],

[3]. The 3392 recordings were divided into two disjoint sets that are balanced in the number of recordings,

the number of speakers, and their gender). The first subset of 1696 recordings was used to derive the

training dictionaries, while the second subset of 1696 recordings was exploited for testing.

The top identification accuracies are summarized in Table II, when the SSFs or the MFCCs are classified

by the SRC solving (8) for Cauchy and Gaussian random projections, the linear SVM [27], [28], and

the NN with the cosine similarity measure. By inspecting Table II, it is seen that the SSFs identify

the acquisition device committing less errors than the MFFCs, no matter which classifier is employed.

Moreover, the SSFs achieve state-of-the-art identification accuracy, if they are fed to either the SVM

or the SRC classifier for both stable distributions considered. The latter classifier achieves the highest

identification accuracy (i.e., 94.99%), when Gaussian random projections are used. The SRC outperforms

also the SVM, when the MFCCs are employed.

The performance of the SRC solving (8) and the SVM in telephone handset identification as a function

of feature dimension d for SSFs obtained by several values of p is depicted in Fig. 6. The best accuracy
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TABLE II
TOP TELEPHONE HANDSET IDENTIFICATION ACCURACIES ACHIEVED BY THE SSFS FOR CAUCHY AND GAUSSIAN RANDOM

PROJECTIONS AND THE MFCCS, WHEN THE SRC SOLVING (8), THE LINEAR SVM, AND THE NN ARE EMPLOYED.

Features Feature
dimen-
sion

Classifier Accuracy (%)

SSFs (Cauchy) 800 SRC 94.72
SSFs (Cauchy) 800 SVM 94.66
SSFs (Cauchy) 775 NN 83.78
SSFs (Gaussian) 700 SRC 94.99
SSFs (Gaussian) 800 SVM 94.66
SSFs (Gaussian) 850 NN 85.08
MFCCs 23 SRC 89.79
MFCCs 23 SVM 87.35
MFCCs 23 NN 81.95
MFCCs- based
Gaussian
supervector [2]

N/A SVM 93.20

(i.e., 95.08%) was obtained for the SRC with p = 1.5 and d = 850. Clearly, for d > 175 the SRC

outperforms the best result reported in [2], demonstrating the robustness of the proposed approach.

The performance of the SRC solving (10) is compared to that of the SVM in telephone handset

identification for SSFs of several dimensions d obtained using several values of p in Fig. 7. The best

accuracy (i.e., 95.46%) was obtained for the SRC for Cauchy random projections (i.e., p = 1) and

d = 550. The SVM attained the top accuracy of 94.96% for the SSFs of the same dimension d = 550

and a stable projection with p = 1.3. It is seen that the best accuracies were obtained for random

projections employing p-stable distributions different than the Gaussian (i.e., p ̸= 2).

In order to check if the accuracy differences are statistically significant, we apply the approximate

analysis in [36]. Assume that the accuracies ϖ1 and ϖ2 are binomially distributed random variables.

If ϖ̂1, ϖ̂2 denote the empirical accuracies, and ϖ = ϖ̂1+ϖ̂2

2 , the hypothesis H0 : ϖ1 = ϖ2 = ϖ is

tested at 95% level of significance. The accuracy difference has variance β = 2ϖ(1−ϖ)
M , where M is

the number of test recordings (i.e., 1696). For φ = 1.65
√
β, if ϖ̂1 − ϖ̂2 ≥ φ, we reject H0 with risk

5% of being wrong. The aforementioned analysis yields that the performance gain between the SRC or

the SVM employing the SSFs and that reported in [2] is statistically significant (φ = 1.35%), while the

accuracy differences between the SRC and the SVM are not.
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B. Landline telephone handset identification leaving test speakers out from training

Two sketches of features were tested for landline telephone handset identification, namely the SSFs

and the sketches of the GSVs. The GSVs were extracted resorting to a GMM-UBM for 128 and 256

components trained on the training subset of the TIMIT. The 3392 recordings of the LLHDB were

split into two disjoint sets as follows. The utterances of 15 randomly chosen female speakers and 12

randomly chosen male speakers were exploited in order to derive the dictionaries of the sketches, while

the utterances of the remaining 14 female speakers and the 12 male speakers were used to extract the

test sketches. By doing so, the training and test sets include 1728 and 1664 recordings, respectively.

Three such random permutations of 15 among the 29 female speakers and 12 among 24 male speakers

where made and the resulting accuracies were averaged. To the best of the author’s knowledge, such an

evaluation is performed for first time in the literature.

The linear SVM was found to yield statistically significant accuracy gains in telephone handset

identification over the SRC solving either (8) or (10). Due to space limitations, comparisons are made

between the linear SVM and the SRC solving (8). Fig. 8 depicts the accuracy of each classifier as a

function of feature dimension d of the SSFs obtained for various p. The best accuracy (i.e., 81.95%)

was obtained for the SVM with Gaussian random projections (i.e., p = 2). For d = 625 and p = 1.6,

the SRC attained an average accuracy of 78.53%. The accuracy difference 3.42% exceeds the threshold

φ = 2.28% of the approximate analysis, which implies a statistically significant performance gain.

Table III summarizes the accuracies measured for the three classifiers, when the sketches of the GSVs

were employed for 128 and 256 components in the GMMs. The threshold on the difference of the

SRC and SVM accuracies that guarantees statistically significant performance gains is also included in

Table III. It is seen that for 128 components the performance gain of the SVM over the SRC is not

statistically significant. On the contrary, the performance gain of the SVM over the SRC is statistically

significant for 256 components. Both the SRC and the SVM offer statistically significant performance

gains over the NN classifier. The best accuracy in Table III is statistically significant over that reported

in [2].

C. Source cell-phone identification leaving test speakers out from training

Various sketches of features were tested for cell-phone identification, namely the sketches of the GSVs,

the SSFs, and the average MFCCs. The GSVs were extracted by exploiting a GMM-UBM with 64 and

128 components trained on the entire training subset of the TIMIT as well as the dialect region DR2

of the training subset of the TIMIT. In the MOBIPHONE, two disjoint subsets of 252 recordings were
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TABLE III
BEST TELEPHONE HANDSET IDENTIFICATION ACCURACIES ACHIEVED BY THE SKETCHES OF GSVS WHEN THE SRC

SOLVING (10), THE LINEAR SVM, AND THE NN ARE EMPLOYED.

K Classifier p d Accuracy (%) φ(SRC,SVM)

128 SRC 1.2 775 93.63 1.36
SVM 1.5 775 94.11
NN 1.2 400 74.34

256 SRC 1.3 400 89.66 1.52
SVM 1.6 775 94.65
NN 1.8 850 74.70

created, that are balanced in the number of recordings as well as speakers and gender in order to MAP

update the GMM-UBM mean vectors. The sketches of GSVs had size d ≤ 120. In addition, GSVs were

extracted by training a GMM with a number of components K ranging from 1 to 5 on the MFCCs

extracted from the recordings of the MOBIPHONE. In the latter case, the GSVs were made by stacking

the component mean vectors and the vector comprising the elements of diagonal component covariance

matrices on their main diagonal. For such GSVs, various sizes d ≤ d′/2 = (K × 22) were tested. The

SSFs of size d ≤ 850 as well as the average MFFCs were also employed for cell-phone identification.

The random projections reduced the size of the average MFFCs to d ≤ 11.

The best identification accuracies are summarized in Table IV, when the SRC solving (10), the linear

SVM, and the NN with the cosine similarity measure classified the sketches of features. By inspecting

Table IV, it is seen that a perfect classification was achieved by the SRC and the SVM applied to

GSVs, exploiting the GMM-UBM. When the entire training set of TIMIT was used in the GMM-UBM

training, the NN achieves a perfect classification as well. An almost perfect classification was achieved

by the NN when the DR2 dialect region was employed to train the GMM-UBM. It is worth mentioning

that the top performance was consistently obtained for p ≤ 1.3 and d ≤ 100. For the GSVs training

on the MOBIPHONE data with 1 or 2 components, a high accuracy was measured for all classifiers.

The marginal accuracy differences are not statistically significant at 95% level of significance. The SRC

outperformed the SVM, when the SSFs were employed. In this case, the accuracy difference between

any pair of classifiers is statistically significant at 95% level of significance. For the sketches of the

average MFFCs, the SVM achieved the top accuracy among the three classifiers. Although not directly

comparable, the accuracies obtained here are higher than those reported in [3].
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TABLE IV
BEST SOURCE CELL-PHONE IDENTIFICATION ACCURACIES ACHIEVED BY THE SRC SOLVING (10), THE LINEAR SVM, AND

THE NN FOR VARIOUS SKETCHES OF FEATURES.

Sketches of Features Classifier Accuracy (%)
GSVs using a GMM-UBM trained on SRC 100
the full training subset of TIMIT (K = 64, 128) SVM 100

NN 100
GSVs using a GMM-UBM trained on SRC 100
the training subset DR2 of TIMIT (K = 64) SVM 100

NN 99.60
GSVs using a GMM-UBM trained on SRC 100
the training subset DR2 of TIMIT (K = 128) SVM 100

NN 98.41
GSV with 1 GMM component trained on SRC 99.21
the MOBIPHONE SVM 98.41

NN 98.02
GSV with 2 GMM components trained on SRC 96.83
the MOBIPHONE SVM 95.24

NN 94.05
SSFs SRC 98.81

SVM 96.03
NN 94.84

average MFFCs SRC 96.82
SVM 97.22
NN 96.03

V. CONCLUSIONS

The sketches of features have been demonstrated to capture the intrinsic trace of the acquisition device

in vectors of small size, speeding up classification and resulting to memory savings. By employing

a proper p stable distribution to randomly project raw feature vectors of large size to sketches, very

high rates have been obtained for landline telephone handset identification in the LLHDB as well as

source cell-phone identification in the MOBIPHONE by either a sparse representation-based classifier or

a support vector machine. The concept of correntropy [37], as a generalized similarity measure between

two arbitrary random variables, can be exploited in the re-formulation of the identification problem.
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Fig. 1. Average log-spectrograms for the 4 carbon button landline telephone handsets in the LLHDB (Horizontal axis: frequency
index; Vertical axis: average log-spectrogram value).
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Fig. 2. Average log-spectrograms for the 4 electret landline telephone handsets in the LLHDB (Horizontal axis: frequency
index; Vertical axis: average log-spectrogram value).
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Fig. 3. Average MFCCs for the 4 carbon button landline telephone handsets in the LLHDB (Horizontal axis: MFCC index;
Vertical axis: average MFCC value).
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Fig. 4. Average MFCCs for the 4 electret landline telephone handsets in the LLHDB (Horizontal axis: MFCC index; Vertical
axis: average MFCC value).
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Fig. 5. Probability density functions of symmetric p-stable distributions for different values of the tail constant p.

DRAFT January 10, 2014



23

25 100 175 250 325 400 475 550 625 700 775 850
84

86

88

90

92

94

95.1

 

 

SSFdimension (d)

S
R

C
 C

la
ss

ifi
ca

tio
n 

ac
cu

ra
cy

 (
%

)

p=1.5
p=2
p=1.0
[2]

(a)

25 100 175 250 325 400 475 550 625 700 775 850
76

78

80

82

84

86

88

90

92

94

95.1

 

 

SSFdimension (d)

S
V

M
 C

la
ss

ifi
ca

tio
n 

ac
cu

ra
cy

 (
%

)

p=2
p=1.5
p=1.0
[2]

(b)

Fig. 6. Telephone handset identification accuracy versus the SSF dimension d achieved by (a) the SRC solving (8) and (b) the
SVM for various p.
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Fig. 7. Telephone handset identification accuracy versus the SSF dimension d achieved by the SRC solving (10) and the SVM
for various p.
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Fig. 8. Telephone handset identification accuracy versus the SSF dimension d achieved by the SRC solving (8) and the SVM
for various p.
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