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Online PLSA: Batch Updating Techniques
Including Out-of-Vocabulary Words
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Abstract— A novel method is proposed for updating an already
trained asymmetric and symmetric probabilistic latent semantic
analysis (PLSA) model within the context of a varying document
stream. The proposed method is coined online PLSA (oPLSA).
The oPLSA employs a fixed-size moving window over a document
stream to incorporate new documents and at the same time to
discard old ones (i.e., documents that fall outside the scope of the
window). In addition, the oPLSA assimilates new words that had
not been previously seen (out-of-vocabulary words), and discards
the words that exclusively appear in the documents to be thrown
away. To handle the new words, Good-Turing estimates for the
probabilities of unseen words are exploited. The experimental
results demonstrate the superiority in terms of accuracy of
the oPLSA over well known PLSA updating methods, such as
the PLSA folding-in (PLSA fold.), the PLSA rerun from the
breakpoint, the quasi-Bayes PLSA, and the Incremental PLSA.
A comparison with respect to the CPU run time reveals that the
oPLSA is the second fastest method after the PLSA fold. However,
the better accuracy of the oPLSA than that of the PLSA fold.
pays off the longer computation time. The oPLSA and the other
PLSA updating methods together with online LDA are tested for
document clustering and F1 scores are also reported.

Index Terms— Document clustering, document modeling,
information retrieval, out-of-vocabulary (OOV) words, PLSA
updating, probabilistic latent semantic analysis (PLSA),
unsupervised learning.

I. INTRODUCTION

ACCESSING, processing, and retrieving text, audio and
video data has been enhanced by various machine

learning algorithms, which employ computationally efficient
statistical methods to extract and process information from
the data. Probabilistic latent semantic analysis (PLSA) [1]
is such an unsupervised machine learning algorithm that has
evolved from latent semantic analysis (LSA) [2]. It manip-
ulates huge amounts of data within a solid probabilistic
framework. Another example is the latent Dirichlet allocation
(LDA) [3], which is the Bayesian extension of PLSA. Indeed,
the PLSA was shown to be a special variant of the LDA
with a uniform Dirichlet prior in a maximum a posteriori
model [4]. PLSA, LSA, and LDA share more or less the same
application domains, including data modeling [5]–[8], data
classification [9]–[13], and retrieval of documents [1], [14],
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images, or videos [15], [16]. The majority of the aforemen-
tioned applications deal with large data volumes that cannot
be stored in the memory to be processed at once. In addition,
the data are accumulated or vary over time. As a result, several
efforts have been made toward updating incrementally the
LSA [17]–[19], the LDA [20]–[22], or the PLSA [23]–[25]
with respect to new terms or documents. Recently, we have
proposed the so-called recursive PLSA (RPLSA) for updating
a trained PLSA model, when new documents are added in the
document collection [26]. In this paper, we revisit the RPLSA
by employing a fixed-size moving window to incorporate new
documents, and discard old ones, similarly to the incremental
PLSA (IPLSA) method [25]. In addition, out-of-vocabulary
(OOV) words (i.e., words unseen so far) appearing in the
new documents, are handled. The proposed method is coined
online PLSA (oPLSA). The updating equations of the PLSA
model are derived for both the asymmetric and the symmetric
formulations, for every advance of the window to incorporate
the newly arrived documents containing potentially OOV
words, while discarding the old ones (i.e., documents that
fall outside the scope of the moving window). To handle the
OOV words, we resort to Good-Turing probability estimates
[27] to initialize the corresponding conditional probabilities
with nonzero values. Furthermore, in addition to the com-
monly used random initialization (referred to as Averaged
Random), we test the initialization of PLSA parameters with
two schemes, namely the Random Acol and the Random
C, which have previously been applied to initialize the non-
negative matrix factorization (NMF) [28]. These initializations
are tailored to the PLSA model by applying probability
smoothing in order to cope with zero probability estimates.
The oPLSA together with the initialization schemes is com-
pared with well established PLSA updating methods, namely
the PLSA folding-in (PLAS fold.) [29], the quasi-Bayes PLSA
(QB PLSA) [24], the IPLSA [25], and the PLSA rerun
from the breakpoint, in terms of accuracy and speed. The
average absolute error between the probabilities derived by the
aforementioned PLSA updating methods and those estimated
by the PLSA applied from scratch manifests the superior
modeling power of the oPLSA. The average log-likelihood of
the updating methods under study as a function of iterations
demonstrates the superior behavior of the oPLSA against the
other updating methods under study. In addition, with respect
to the average CPU run time the oPLSA is found to be less
time consuming than all the other updating methods except
the PLSA fold., which is the least time consuming method.
However, the excessive computational time of the oPLSA is
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paid off by its higher accuracy than that of the PLSA fold.
Finally, the updating methods under study and the online LDA
algorithm are tested for document clustering with respect to
the F1 score. To sum up, the contributions of this paper against
our previous work [26] lie in: 1) the oPLSA now has the ability
to handle not only new documents, but also new terms within
the new documents that are treated as unseen words thanks
to Good-Turing probability estimates for the OOV words;
2) the oPLSA now has the ability to discard old documents
that fall outside the domain of the moving window over the
document stream. The vocabulary also varies by discarding
terms that appear only in the documents thrown away; 3) the
oPLSA works on a fixed-size moving window allowing batch
document processing; and 4) efficient initialization schemes
combined with smoothing are proposed for the parameter
initialization.

The outline of this paper is as follows. In Section II, the
PLSA is briefly presented. The traditional PLSA updating
schemes are summarized in Section III, while the proposed
updating algorithms are derived in Section IV. Experimental
results are demonstrated in Section V, and the conclusion is
drawn in Section VI.

II. PLSA

PLSA performs a probabilistic mixture decomposition by
means of the so-called aspect model [30], which associates an
unobserved class variable to co-occurence. For text processing,
we are interested in the occurrence of a word/term w ∈ W =
{w1, w2, . . . , wM } in a document d ∈ D = {d1, d2, . . . , dN },
while the unobserved class variable z ∈ Z = {z1, z2, . . . , zK }
usually represents the topic a document was generated from.
It holds that |Z | � min (|D|, |W |), where | · | stands for
the cardinality of the corresponding set. Furthermore, all the
pairs (d, w) are assumed to be independent and identically
distributed, and conditionally independent given the respective
latent class z. The data generation process can be better
described by the following scheme [31]: 1) select a document
d with probability P(d); 2) pick a latent topic z for the
document with probability P(z|d); and 3) generate a term w
with probability P(w|z). Accordingly, the joint distribution of
a word w in a document d generated by a latent topic z is
given by P(d, w, z) = P(d)P(z|d)P(w|z).

A. Asymmetric Formulation

The joint distribution of d and w is obtained by summing
over all possible realizations of z

P(d, w) =
∑

z∈Z

P(d, w, z) = P(d)
∑

z∈Z

P(z|d)P(w|z)
︸ ︷︷ ︸

P(w|d)

. (1)

As can be seen from (1), the document-specific term distri-
bution P(w|d) is obtained by a convex combination of the
|Z | aspects/factors P(w|z). To determine P(d), P(z|d), and
P(w|z), the log-likelihood function

L =
∑

d∈D

∑

w∈W

n(d, w) log P(d, w) (2)

has to be maximized with respect to all the aforemen-
tioned probabilities. In (2), n(d, w) denotes the term-document
frequency. That is, the number of times w occurs in d .
The estimation of P(d) can be carried out independently
resulting in P(d) = n(d)

/∑
d ′∈D n(d ′). The conditional

probabilities P(z|d) and P(w|z) are estimated by means of the
EM algorithm [31], [32], which alternates between the
Expectation (E)-step

P̂(z|d, w) = P(w|z)P(z|d)∑
z′∈Z P(w|z′)P(z′|d)

(3)

and the Maximization (M)-step

P(w|z) =
∑

d∈D n(d, w)P̂(z|d, w)
∑

d∈D
∑

w′∈W n(d, w′)P̂(z|d, w′)
(4)

P(z|d) =
∑

w∈W n(d, w)P̂(z|d, w)

n(d)
. (5)

By alternating (3) with (4) and (5), a convergent procedure is
obtained to a local maximum of the log-likelihood.

B. Symmetric Formulation

An equivalent model can be obtained by applying the
Bayes’ rule to invert the conditional probability P(z|d) [31],
yielding P(d, w) = ∑

z∈Z P(z)P(d|z)P(w|z). Let R =∑
d∈D

∑
w∈W n(d, w). Following similar lines to the asym-

metric model, the following E-step and M-step result:
E-step

P̂(z|d, w) = P(z)P(d|z)P(w|z)∑
z′∈Z P(z′)P(d|z′)P(w|z′)

. (6)

M-step

P(w|z) =
∑

d∈D n(d, w)P̂(z|d, w)
∑

d∈D
∑

w′∈W n(d, w′)P̂(z|d, w′)
(7)

P(d|z) =
∑

w∈W n(d, w)P̂(z|d, w)
∑

d ′∈D
∑

w∈W n(d ′, w)P̂(z|d ′, w)
(8)

P(z) =
∑

d∈D
∑

w∈W n(d, w)P̂(z|d, w)

R
. (9)

The symmetric PLSA formulation can be
rewritten in matrix notation as P = UK SK VT

K ,
where UK is the |W | × |Z | matrix with
jk element P(w|z), VK is the |D| × |Z | matrix with ik
element P(d|z), SK is the |Z | × |Z | diagonal matrix having
as elements on its main diagonal P(z), z ∈ Z , and P is the
|W | × |D| matrix with elements the probabilities P(w, d).
Such a decomposition looks like the truncated singular value
decomposition (SVD) employed within the LSA. Despite
the just described resemblance, it should be stressed that the
LSA and the PLSA solve different optimization problems.
Indeed, the LSA minimizes the Frobenius norm between
the original-term document matrix and its best K -rank
approximation, while the PLSA maximizes the likelihood
function of multinomial sampling. In other words, the PLSA
minimizes the cross entropy (or Kullback–Leibler divergence)
between the model and the empirical distribution.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BASSIOU AND KOTROPOULOS: oPLSA: BATCH UPDATING TECHNIQUES INCLUDING OOV WORDS 3

III. PLSA UPDATING

Updating refers to the process of adding new data in the
initial data collection. Such a need emerges when documents
and/or terms are added or deleted in document clustering or
topic-detection. Updating is a necessity due to the huge data
volumes continuously changing over time, and the memory
and time limitations, preventing one to process the data as
a whole at once. As a result, several methods have emerged
for updating the LSA or PLSA models. These methods are
frequently met in the literature with terms, such as online,
incremental, or folding-in.

Let us begin with LSA updating techniques, which have
motivated the development of PLSA updating techniques. For
updating the LSA model, which is estimated by a truncated
SVD, the most representative methods include recomputing
the SVD, SVD folding-in [17], SVD-updating [2], [18], and
SVD folding-up [19]. SVD-updating makes updating compu-
tationally efficient by leveraging suitable Cholesky factoriza-
tions, while SVD folding-up is a hybrid method alternating
repeatedly between the SVD folding-in and the SVD-updating
to prevent the loss of orthogonality.

Similarly, several methods for updating the PLSA model
have been proposed. The PLSA fold. is the simplest method
for updating the PLSA model, when new documents are added
in the initial document collection [23], [33], [34]. It is based
on an incremental variant of the EM algorithm discussed
in [27] that recalculates only the probabilities of the topics
given the new documents P(z|dnew) in the M-step leaving the
probabilities of the words given the topics P(w|z) unchanged.
Usually, a very small number of iterations is needed for the
EM to converge. Another incremental approach is proposed in
[35] that is based on the generalized expectation maximization
[27]. An incremental version of EM that updates the PLSA
model parameters using only a subset of training data at each
iteration is also proposed in [36], while in [37] the PLSA
model parameters are updated by means of an online EM
algorithm that works on the weighted mean values of the
conditional probability P(z|d, w).

The so-called IPLSA method is developed, whenever a
batch of new incoming documents is added and a batch of
old documents is discarded [25]. The PLSA fold. is used
to fold-in new terms and documents in four steps. In the
first step, the old documents and terms are discarded and
the probabilities of the remaining terms and documents are
estimated by renormalization. In the second step, the new
documents are folded-in by means of the PLSA fold. for
the asymmetric formulation. In the third step, the new terms
are folded-in by exploiting the symmetric PLSA formulation.
Finally, all the PLSA parameters are revised by applying the
asymmetric PLSA algorithm in the fourth step.

Two new adaptation paradigms for PLSA are derived in
[24], namely the QB PLSA for incremental learning and
the MAP PLSA for corrective training. They are based on
a Bayesian PLSA framework that uses a Dirichlet density
kernel as prior. The QB PLSA estimates the model para-
meters by maximizing an approximate posterior distribution,
or equivalently, a product of the likelihood function of cur-
rently observed documents and the prior density given the

Fig. 1. Schematic representation of (a) the initial data volume, (b) the deletion
of old documents and the words that appear exclusively in them, and (c) the
insertion of new documents and their associated words in the word-document
matrix as the window advances.

hyperparameters from previous documents. The MAP PLSA
maximizes the posterior probability integrated by a prior
density and a likelihood function. A maximum a posteriori
estimator is also employed in Bayesian folding-in, which uses
a Dirichlet density kernel as prior [38].

IV. OPLSA

The oPLSA is a window-based method for updating the
PLSA parameters for both the asymmetric and the symmetric
formulations. Let us suppose that the PLSA model parameters
have been extracted for the data volume observed in Fig. 1(a).
Let Dl and Wl be the set of documents and the vocabulary
associated with the PLSA model parameters. In each advance
of the window, the documents that fall outside the window are
discarded, as shown in Fig. 1(b). After removing the discarded
documents, the vocabulary may change due to the deletion
of words that appear exclusively in the discarded documents.
Let D−

l and W−
l be the sets of already seen documents and

words, respectively. Another consequence is the insertion of
new documents into D−

l that are referred to as folding-in
documents as well as the possible inclusion of new terms in
the vocabulary W−

l that are referred to as folding-in words
[Fig. 1(c)]. Clearly, the folding-in words can be treated as
OOV words for the vocabulary W−

l . Let D+
l and W+

l be the
sets of documents and words that fall inside the new window
position. In the RPLSA, we addressed the problem of adding
new documents containing words from a fixed vocabulary
without using a window. As a result, the RPLSA does not
support model adaptation when documents and/or words are
removed from the initial data volume nor does update the
PLSA model parameters when new words are included in the
vocabulary. The oPLSA method is formulated by means of a
fundamental operation, namely the addition/deletion of a piv-
otal document to the document collection. This fundamental
operation allows us to treat more complex operations, such as
the addition/deletion of an actual document. For consistency
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reasons with the addition of a single document, the removal
of a single document is also formulated.

In the analysis following, the original PLSA algorithm is
executed once for the initial word and document collections.
Then, it is assumed that a window of size S advances by a
single document. The oPLSA algorithm performs three steps
to update the existing PLSA model parameters between the
lth and (l + 1)th position of the window. The aim is to update
the PLSA model parameters having been estimated by the EM
algorithm at the lth position of the window to obtain the PLSA
model parameters at the (l + 1)th position of the window. In
other words, to derive the equations for initializing the EM
algorithm at the (l +1)th position of the window. For simplic-
ity, we assume that the PLSA model parameters at the lth posi-
tion of the window have been obtained after EM convergence.

A. Asymmetric Formulation

1) Discard Old Document and Their Exclusive Words: For
simplicity let us consider the case of a single document and a
single exclusive word to be discarded at the (l + 1)th window
advance. When dout is discarded from the existing document
collection Dl , a new document collection D−

l = Dl − {dout}
results. If the discarded document dout contains only a single
exclusive word wout, (i.e., a word that does not appear in any
document in D−

l ), this word is also discarded from Wl yielding
the vocabulary of already seen word W−

l = Wl − {wout}. The
corresponding PLSA model probabilities for dout, Pl(z|dout),
and wout, Pl(wout|z), are eliminated and the PLSA model
parameters for the remaining documents d ∈ D−

l and words
w ∈ W−

l are renormalized as follows:

P−(z|d)l = P(z|d)l∑
z′∈Z P(z′|d)l

, z ∈ Z , d ∈ D−
l (10)

P−(w|z)l = P(w|z)l∑
w′∈W −

l
P(w′|z)l

, z ∈ Z , w ∈ W−
l . (11)

Clearly, (10) and (11) are still valid when more than one
documents and words are to be discarded.

2) Add a New Word and Document:

a) Let a new document din be inserted in the already
seen document collection D−

l , yielding D+
l = D−

l +
{din}. Suppose that the document is pivotal. That is,
it contains only a single word win that appears α
times. This word, win, can be either a word from the
vocabulary of already seen words W−

l or a new word
denoted by wOOV, being an OOV word at this point.
In the latter case, the new word is inserted in W−

l ,
expanding it into W+

l = W−
l + {wOOV}. Therefore,

the entries of the augmented word-document matrix
satisfy

n(d, w)l+1

=

⎧
⎪⎨

⎪⎩

α, if w = win and d = din

n(d, w)l , if w ∈ W−
l and d ∈ D−

l

0, otherwise

(12)

where n(d, w)l is the document-word matrix at the
lth position of the window.

b) The addition of the new document requires the
initialization of the latent-variable probability
P+(z|din)l . Clearly, for d ∈ D−

l , P+(z|d)l =
P−(z|d)l . Accordingly, one has to initialize
P+(z|din)l . Since the new document has a single
word win, we assume that the assignment of the new
document to the latent topics is driven by the single
word it contains. Thus, P+(z|din)l = P+(win|z)l ,
∀z ∈ Z . The conditional probabilities at the
right-hand side are estimated next.

c) For already seen words w ∈ W−
l , P+(w|z)l =

P−(w|z)l . For an OOV word wOOV, the correspond-
ing conditional probability P+(wOOV|z)l is initialized
by the Good-Turing estimate of the probability of
unseen words [27]. Let n(w) = ∑

d∈D−
l

n(d, w)l ,

w ∈ W−
l be the number of appearances of the

word w ∈ W−
l that has already been seen within

the documents prior to the insertion of the pivotal
document. Let Rl+1 denote the total number of words
in all documents, including the pivotal one, that is

Rl+1 =
∑

d∈D+
l

∑

w∈W +
l

n(d, w)l+1 = Rl + a. (13)

The Good-Turing estimate for an OOV word is given
by [27]

pGTl (wOOV) = n1

Rl+1
(14)

where n1 = ∑
w∈W −

l :n(w)=1 1 is the total number of
already seen words occurring exactly once (hapax
legomena). The probability given by (14) is uniformly
distributed among the topics

P+(wOOV|z)l = 1

|Z | pGTl (wOOV). (15)

The conditional probabilities of already seen words
given the topics are renormalized using

P+(w|z)l =
(
1− P+(wOOV|z)l

) P−(w|z)l∑
w∈W −

l
P−(w|z)l

(16)

where w ∈ W−
l , so that

∑
w∈W +

l
P+(w|z)l = 1.

3) Fold in the New Word for Pivotal Documents: The
PLSA model probabilities at the window position l + 1 are
estimated by updating the PLSA model probabilities at the
window position l. To achieve this, the computations between
two successive EM iterations, as described in the Appendix,
are taken into consideration. Thus, the conditional probability
P+

1 (w|z)l+1 of the word w ∈ W+
l given the latent topic z ∈ Z



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BASSIOU AND KOTROPOULOS: oPLSA: BATCH UPDATING TECHNIQUES INCLUDING OOV WORDS 5

is given by

P+
1 (w|z)l+1

= P1(w|z)l+1 + n(din, w)l+1 P+(w|z)l P+(z|din)l∑
z′∈Z P+(w|z′)l P+(z′|din)l

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1(w|z)l+1, ifw �= win

P1(w|z)l+1 + αP+(w|z)l P+(z|din)l∑
z′∈Z P+(w|z′)l P+(z′|din)l

,

ifw = win and win ∈ W−
l

αP+(w|zk)l P+(z|din)l∑
z′∈Z P+(w|z′)l P+(z′|din)l

,

ifw = win and win = wOOV

(17)

where P1(w|z)l+1 is defined in (38) in the Appendix.
Having derived (17), P+(w|z)l+1 is obtained by normaliz-

ing P+
1 (w|z)l+1 as in (39)

P+(w|z)l+1 = P+
1 (w|z)l+1∑

w′∈W +
l

P+
1 (w′|z)l+1

=

⎧
⎪⎪⎨

⎪⎪⎩

P1(w|z)l+1

Al+1(win)
, if w �= win

P+
1 (w|z)l+1

Al+1(win)
, if w = win.

(18)

The denominator in (18) is given by

Al+1(win)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
w∈W −

l
P1(w|z)l+1 + P+

1 (win|z)l+1 − P1(win|z)l+1,

if win ∈ W−
l

∑
w∈W −

l
P1(w|z)l+1 + P+

1 (win|z)l+1,

if win = wOOV.

(19)

Similarly, the conditional probability P2(z|d)l+1 of the latent
topic z ∈ Z given the document d ∈ D+

l is given by

P+
2 (z|d)l+1

= P+(z|d)l

∑

w∈W +
l

n(d, w)l+1 P+(w|z)l∑
z′∈Z P+(w|z′)l P+(z′|d)l

=
⎧
⎨

⎩

P2(z|d)l+1, if d ∈ D−
l

αP+(win|z)l P+(z|d)l∑
z′∈Z P+(win|z′)l P+(z′|d)l

, if d = din
(20)

where P2(z|d)l+1 is defined in (41) in the Appendix. When
d = din, with the help of (17), (20) takes the form

P+
2 (z|din)l+1

=
{

P+
1 (win|z)l+1 − P1(win|z)l+1, if win ∈ W−

l
P+

1 (win|z)l+1, if win = wOOV.
(21)

Finally, P+(z|d)l+1 is updated taking into consideration (20)
as follows:

P+(z|d)l+1 = P+
2 (z|d)l+1

n(d)

=

⎧
⎪⎨

⎪⎩

P2(z|d)l+1

n(d)
= P(z|d)l+1, if d ∈ D−

l

P+
2 (z|d)l+1

α
, if d = din.

(22)

B. Symmetric Formulation

1) Discard Old Documents and Terms: Following similar
lines to Section IV-A, at the (l + 1)th window advance, a
document dout and a word wout are discarded from Dl and
Wl yielding D−

l = Dl − {dout} and W−
l = Wl − {wout},

respectively. The corresponding PLSA model probabilities
for wout, Pl(wout|z), and dout, Pl(dout|z), are eliminated. The
PLSA model parameters for the remaining words w ∈ W−

l are
renormalized as in (11) and for the documents d ∈ D−

l by:

P−(d|z)l = P(d|z)l∑
z′∈Z P(d|z′)l

, z ∈ Z , d ∈ D−
l . (23)

2) Add a New Word and Document:

a) The new pivotal document din, containing a single word
win, is inserted in the existing document collection D−

l ,
yielding D+

l = D−
l + {din}. When win ∈ W−

l , the word
win is an OOV word that is appended to the vocabulary
of already seen words, yielding W+

l = W−
l + {wOOV}.

The augmented document-word matrix is given by (12).
b) After the addition of din, P+(d, d ∈ D−

l |z)l =
P−(d, d ∈ D−

l |z)l is initialized similarly to the prob-
ability P+(z|din)l of the asymmetric formulation. That
is, P+(din|z)l = P+(win|z)l , ∀z ∈ Z . For the rest,
P+(d, d ∈ D−

l |z)l = P−(d, d ∈ D−
l |z)l .

c) When the appended document contains an OOV
word, the probability of P+(wOOV|z)l is initialized as
described in Section IV-A2c.

3) Fold in the New Word for Pivotal Documents:
The PLSA model probabilities for the window position
l + 1 are estimated by updating the PLSA model probabilities
at the window position l. To achieve this, the computations
between two successive EM iterations, given in the Appendix,
are taken into consideration. Thus, the conditional probability
P+

1 (w|z)l+1 of the word w ∈ W+
l given the latent topic z ∈ Z

is given by

P+
1 (w|z)l+1

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1(w|z)l+1, if w �= win

P1(w|z)l+1+ αP+(z)P+(w|z)l P+(din|z)l∑
z′∈Z P+(z′)P+(w|z′)l P+(din|z′)l

,

if w = win and win ∈ W−
l

αP+(w|z)l P+(z)P+(din|z)l∑
z′∈Z P+(z′)P+(w|z′)l P+(din|z′)l

,

if w = win and win = wOOV

(24)

P+(w|z)l+1 are obtained by renormalizing as described in (18)
and (19).

The conditional probability P2(d|z)l+1 of the document d ∈
D+

l given the latent topic z ∈ Z is given by

P+
2 (d|z)l+1

= P+(d|z)l

∑

w∈W +
l

n(d, w)l+1 P+(z)P+(w|z)l∑
z′∈Z P+(z′)P+(w|z′)l P+(d|z′)l

=
⎧
⎨

⎩

P2(d|z)l+1, if ∈ D−
l

αP+(z)P+(win|z)l P+(d|z)l∑
z′∈Z P+(z′)P+(win|z′)l P+(d|z′)l

, if d = din

(25)
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where P2(d|z)l+1 is defined in (43) in the Appendix. One
may observe that (25) has the form of (20) written in terms
of the conditional probabilities of documents given the topics.
Accordingly for d = din, P+

2 (dN+1|zk)l+1 is updated as
in (21), that is

P+
2 (din|z)l+1

=
{

P+
1 (win|z)l+1 − P1(win|z)l+1, if win ∈ W−

l

P+
1 (win|z)l+1, if win = wOOV.

(26)

Using (25) and (26), P+(d|z)l+1 is obtained by renormalizing
P+

2 (d|z) as in (45)

P(d|z)+l+1 = P+
2 (d|z)l+1∑

d ′∈D+
l

P+
2 (d ′|z)l+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P2(d|z)l+1

B+
l+1(win)

, if d ∈ D−
l

P+
2 (d|z)l+1

B+
l+1(win)

, if d = din

(27)

where the denominator in (27) is given by

B+
l+1(win) =

∑

d∈D−
l

P+
2 (d|z)l+1+ P+

2 (din|z)l+1

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
d∈D−

l
P2(d|z)l+1+ P+

1 (win|z)l+1−
P1(win|z)l+1, if win ∈ W−

l∑
d∈D−

l
P2(d|z)l+1 + P+

1 (win|z)l+1,

if win = wOOV.

(28)

Finally, we proceed to updating P(z)l+1 as follows:

P+(z)l+1 = 1

Rl+1

[
Rl P(z)+l+1

+ n(din, win)l+1 P+(z)l P+(din|z)l P+(win|z)l∑
z′∈Z P+(z′)l P+(din|z′)l P+(win|z′)l

]

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

Rl+1

[
Rl P+(z)l+1+

P+
1 (win|z)l+1 − P1(win|z)

]
, if win ∈ W−

l

1

Rl+1

[
Rl P+(z)l+1 + P+

1 (win|z)l+1
]
,

if win = wOOV

(29)

where Rl+1 is given by (13).

C. From Pivotal Documents to Actual Ones

When the new document to be added has more than one
words, simply one has to repeat the updating procedure as
many times as the number of the words in the document.
Nothing prohibits repeating the updating equations of the
PLSA parameters document-wise to assimilate the insertion
of more than one documents during the transition phase from
the window at the lth position to the (l + 1)th position. After
having absorbed all the documents in the transition phase, one
may switch to the standard PLSA. The PLSA algorithm is

then applied in order to refine the conditional probabilities
estimated by the updating equations during the aforementioned
transition phase.

D. Initializations for PLSA

As it is widely known, the EM algorithm is an iterative
method, which is guaranteed to converge to a fixed point that
may be a local extremum or a saddle point of the likelihood
function. This fact in combination with the initialization of
the model parameters explains the sensitivity of the PLSA
algorithm. Obviously, a good initialization of the PLSA model
parameters is of great importance, since it may improve the
convergence speed and the accuracy of the updates.

In most cases, a random initialization is used, which
does not provide a satisfactory first estimate of the model
parameters. To tackle this problem, frequently results from
four/five random initializations are averaged. Such recipe
was empirically found to improve the performance [1], [14].
In [28], several initializations are examined for the term-
topic factor of the NMF algorithm, which is related to
PLSA [39], [40]. Here, the least computationally expensive
ones, namely the Random Acol and the Random C, are
selected to initialize P(w|z) in the PLSA algorithm.

In Random Acol, the probability of every word given a
topic, P(w|z), is initialized by averaging the joint probability
P(w, d) over p randomly chosen documents. Random C
initialization is similar to Random Acol. It initializes the
probability of a word given a topic, P(w|z), by averaging
the joint probability P(w, d) over p documents randomly
chosen among the N documents whose associated vectors
with elements P(w, d) have the N largest �2 norms. The
probability of a document given a topic P(z|d) and that of a
topic given a document P(d|z) is initialized by averaging the
probabilities of the words that are present in the document
given the topics P(w|z).

Obviously, the joint probability P(w, d) has to be estimated
from the training data set in both initialization schemes. By
means of the Bayes rule, it holds that P(w, d) = P(d)P(w|d),
where

P(d) = n(d)∑
d ′∈D n(d ′)

, n(d) =
∑

w∈W

n(d, w)

and P(w|d) = n(d, w)∑
w′∈W n(w′, d)

. (30)

Equation (30) usually results in many zero probability values
due to the sparseness of the document-word matrix. We choose
to smooth the zero values in P(w|d), since they produce zero
values in P(w, d), which may lead to zero initial estimates
of P(w|z) in both the Random Acol or Random C schemes.
To achieve this, a small amount of the probability mass is
removed from the seen events and it is redistributed among
the unseen events. For this purpose, absolute discounting has
been used [41]. Let us adapt the count-counts nr , also used in
Good-Turing probability estimates, as follows:

1) n0(d) = ∑
w:n(w,d)=0 1, be the number of words that are

never seen in the training document d;
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2) nr = ∑
w,d :n(w,d)=r 1, be the number of word-document

pairs that appear r times in the training document-word
matrix.

Then, absolute discounting yields

P(w|d) =

⎧
⎪⎪⎨

⎪⎪⎩

n(w, d) − b∑
w′∈W n(w′, d)

, if n(w, d) > 0

b
|W | − n0(d)∑
w′∈W n(w′, d)

P(w), if n(w, d) = 0
(31)

where P(w) = ∑
d∈D n(w, d)

/∑
w′∈W

∑
d∈D n(w′, d) and

b = n1/(n1 + 2n2).

V. EXPERIMENTAL RESULT

Let us refer by PLSA rerun from the breakpoint to the PLSA
which employs as initial model parameters those estimated
prior to the insertion of new documents. The oPLSA, the
PLSA rerun from the breakpoint, and the state of the art updat-
ing methods PLSA fold., QB PLSA, and IPLSA, described in
Sections III and IV, were implemented and their performance
is compared with that of the standard PLSA algorithm, when
applied from scratch. It is worth mentioning that the state of
the art updating methods can handle OOV words provided that
the probabilities of the OOV words given the latent topics are
initialized as described in Section IV for the oPLSA.

Both the asymmetric formulation and the symmetric one
have been implemented so that one can examine performance
variations, if any. In addition, the initialization methods for
PLSA model parameters, described in Section IV-D, have been
tested to measure how the initialization affects the PLSA and
its updating schemes.

The updating methods under study were assessed in terms of
the accuracy by estimating the average absolute error between
the model probabilities estimated by the PLSA updating meth-
ods and those estimated by the original PLSA executed from
scratch. In addition, the average log-likelihood was computed
to examine whether the PLSA updating methods converged
close to the model parameters of the original PLSA algorithm
executed from scratch. The average CPU run time per added
document was measured as well. The performance of the
PLSA, the oPLSA, the QB PLSA, the IPLSA, the PLSA rerun
from the breakpoint, and the PLSA fold. was additionally
compared with respect to the F1 measure in a document
clustering application. Finally, the performance of the oPLSA
method was also compared with that of the online LDA,
an algorithm based on online stochastic optimization, which
analyzes massive document collections that arrive in a stream
and are gradually discarded.

A. Data Sets

Two data sets were built from two standard document cor-
pora: the Reuters document corpus, Volume 11 and the TDT5
one.2 The Reuters corpus contains around 203340 documents
tagged with two topics. In the experiments, only the first
topic was taken into consideration. The vocabulary of topics

1http://about.reuters.com/researchandstandards/corpus/index.asp
2http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T18

Fig. 2. Distribution of documents in topics for (a) Reuters corpus and
(b) TDT5 corpus. For clarity, the y-axis is in logarithmic scale.

has size 79. Thus, the documents of the Reuters data set are
distributed into 79 topics. In the TDT5 corpus, only English
documents from the Agence France Presse were selected that
are tagged as news and assigned with topic relevance annota-
tions, resulting in a data set of 1039 documents distributed into
73 topics. The number of documents in each topic is shown
in Fig. 2 for both data sets. The assignment of documents
into topics is treated as ground truth. By keeping the number
of topics fixed, we leave aside its influence in the PLSA
updating procedures. All the documents were preprocessed
to have their tags removed and their words stemmed. For
stemming, the Porter stemmer was used [42]. A cut-off was
also applied to discard terms appearing less than 10 times in
each corpus, resulting into a vocabulary of 49451 and 2870
terms for the Reuters and the TDT5 corpus, respectively. The
data sets differ by two orders of magnitude (i.e., thousands
and hundreds of thousands) with respect to the number of
documents, enabling us to conduct a crude assessment how the
performance scales in terms of the just mentioned evaluation
factors (i.e., accuracy, CPU time, and document clustering
quality). The documents were further equally divided into
training and test subsets. That is, from each topic half of
the documents were randomly selected for training and the
remaining half documents were retained to form the test
subset. The documents are incrementally added to the training
subset from the test subset in each advance of the window, as
detained in Section V-B4 next. The procedure was repeated
four times, resulting in four folds with different training and
test subsets to assess performance reliably.

B. Experiment Setup

The algorithms require setting the following parameters.
1) Number of latent topics K . It corresponds to the

79 and 73 document categories for the Reuters and
TDT5 corpus, respectively. To set K , the weighted gap
(WGap) statistic was used [43], [44] that is more robust
than the gap statistic originally proposed in [45]. Let the
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total number of clusters vary from k = 1 to kmax. The
documents d1, d2, . . . , dN are partitioned into k clusters
C1, C2, . . . , Ck by the K -means clustering method. The
weighted within-dispersion measure W k , is computed by

W k =
s∑

i=1

1

2ns
Ds

=
s∑

i=1

1

2ns(ns − 1)
Ds , k = 1, 2, . . . , kmax (32)

where ns = |Cs | is the number of documents in cluster
Cs and Ds = ∑ns

t=1

∑ns
t ′=1 rt t ′ is the sum of pairwise

distances between all points in cluster Cs . Clearly, rt t ′
denotes the distance between the documents dt and dt ′ .
Each document dt is represented by a vector containing
the joint probability values P(w, dt ) of every word w
in the vocabulary and document dt . A typical choice of
distance is the squared Euclidean one. The weighted gap
statistic is then defined by

Gap(k) = E[log(W k)] − log(W k), k = 1, 2, . . . , kmax

(33)

where E[log(W k)] is the expected log(W k), when a
reference uniform distribution is assumed. The WGap
method identifies the optimal number K ∗ of clusters
according to [44]

K ∗ = arg max
k

= 2, . . . , kmax − 1
⎛

⎜⎝2Gap(k) − Gap(k − 1) − Gap(k + 1)︸ ︷︷ ︸
DDGap(k)

⎞

⎟⎠ . (34)

The plot of DDGap(k) versus the number of clusters
k shown in Fig. 3 supports the choices K ∗ = 79 and
K ∗ = 73, for the two corpora, respectively.

2) The criterion value ε used to check the convergence
of the EM algorithm. The convergence criterion, that
was used, compares the relative log-likelihood change
between two successive E M-steps, l − 1 and l, to ε,
that is

∣∣∣∣
[L]l − [L]l−1

[L]l−1

∣∣∣∣ ≤ ε. (35)

Experiments were run for different values of ε.
A typical value is 10−5.

3) The initialization method for the conditional probability
of a word given a topic P(w j |zk) according to
Section IV-D. Three different choices were considered:

a) averaged Random Initialization using the rand
function that returns uniformly distributed numbers
in the interval (0, 1). Averaged results for five
random initializations were used;

b) random Acol with p = 20 and p = 10 for the
Reuters and the TDT5 corpora, respectively;

c) random C with p = 20 and p = 10 for the
Reuters and the TDT5 corpora, respectively.

Fig. 3. DDGap(k) versus the number of clusters k, for (a) Reuters corpus
and (b) TDT5 corpus.

4) The window size and the moving step of the window.
The window size was set equal to the number of
the training documents for each data set. That is, the
window is equal to 520 documents for the TDT corpus
and 101670 documents for the Reuters corpus. The
moving step of the window was set equal to 2% of
the window size for the TDT corpus, resulting in a
moving step of 10 documents. For the Reuters corpus,
the moving step of the window was set equal to 10%,
resulting in a moving step of 10167 documents.

The experimental procedure consists of the following steps.
First, the PLSA model parameters were initialized according
to the methods described in Section IV-D and the PLSA
algorithm was executed for each training data set. Next, in
each advance of the window, old documents (as many as the
moving step of the window), and their exclusive terms were
discarded from the training subset and new documents (as
many as the discarded documents) and their exclusive words
were appended to the training subset. Then, the original PLSA
algorithm was executed from scratch for the modified set,
while the PLSA fold., the PLSA rerun from the breakpoint,
the QB PLSA, the IPLSA, and the oPLSA update the model
parameters estimated prior to the deletion and addition of the
documents. Finally, the original PLSA was applied having
been initialized by the model parameters that were updated by
the aforementioned online PLSA algorithms until convergence.

C. Evaluation

1) Accuracy of Model Parameters: For both the asymmetric
and the symmetric formulations, the oPLSA, the QB PLSA,
the IPLSA, the PLSA fold., and the PLSA rerun from the
breakpoint were compared with the original PLSA algorithm
computed from scratch, when unseen documents from the
test subset are added and old documents are removed as
the window advances. This was done, by averaging over
the K latent variables the absolute difference between the
probabilities P(w|z) and P(z|d) derived by the original PLSA
and the same probabilities estimated by the oPLSA, the QB
PLSA, the IPLSA, the PLSA fold., and the PLSA rerun
from the breakpoint, after the window advance. The Bayes’
chain rule was used to estimate the probabilities P(z|d) for
the symmetric formulation. The results obtained were further
averaged across all window advances. The above procedure
was repeated for the three initialization methods. The mean
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TABLE I

MEAN AND STANDARD DEVIATION (STD) ACROSS THE FOUR DIFFERENT FOLDS ON THE REUTERS CORPUS OF THE AVERAGE ABSOLUTE ERROR

BETWEEN THE PROBABILITY P(z/d) ESTIMATED BY THE OPLSA, THE QB PLSA, THE IPLSA, THE PLSA FROM BREAKPOINT (PLSA BRK.), OR THE

PLSA FOLD AND THAT ESTIMATED BY THE ORIGINAL PLSA EXECUTED FROM SCRATCH FOR THE THREE INITIALIZATION METHODS (RANDOM C,

RANDOM ACOL, AND AVERAGED RANDOM): (A) ASYMMETRIC. (B) SYMMETRIC FORMULATION

TABLE II

MEAN AND STANDARD DEVIATION (STD) ACROSS THE FOUR DIFFERENT FOLDS ON THE TDT5 CORPUS OF THE AVERAGE ABSOLUTE ERROR

BETWEEN THE PROBABILITY P(z/d) ESTIMATED BY THE OPLSA, THE QB PLSA, THE IPLSA, THE PLSA FROM BREAKPOINT (PLSA BRK.), OR THE

PLSA FOLD AND THAT ESTIMATED BY THE ORIGINAL PLSA EXECUTED FROM SCRATCH FOR THE THREE INITIALIZATION METHODS (RANDOM C,

RANDOM ACOL, AND AVERAGED RANDOM): (A) ASYMMETRIC AND (B) SYMMETRIC FORMULATION

and the standard deviation across the four different folds of
the average absolute error for the conditional probability of
the latent topics given the documents, P(z|d), are shown in
Tables I and II, for the Reuters and TDT5 corpora, respectively.
To keep the message conveyed to the reader clear, the errors
for the conditional probability of the words given the latent
topics, P(w|z), are not included, because they are extremely
low and the differences between the updating methods are
negligible in both formulations.

As can be seen from Tables I and II, the proposed oPLSA
yields on average model parameters closer to those estimated
by the original PLSA applied from scratch to the modified
document-word matrix due to deletions and additions of
documents and words than the other online methods under
study. For the asymmetric formulation, there is a relative
decrease ranging between 6% and 41% in the Reuters corpus
and between 14% and 50% in the TDT5 corpus in the

average absolute error of P(z|d) estimated by the oPLSA and
that estimated by the original PLSA executed from scratch
compared with the same error committed, when the other
updating methods under study replace the oPLSA. For the
symmetric formulation, there is a relative decrease in the
same average absolute error ranging between 6% and 37% in
the Reuters corpus and between 13% and 45% in the TDT5
corpus. The IPLSA and the QB PLSA exhibit the second and
third best performance, respectively. It is worth mentioning
that in all cases, the standard deviation of the average absolute
error across the different data sets is much smaller than the
performance gains, supporting the statistical significance of
the improvements.

Studying Tables I and II with respect to the initialization
method used in the PLSA, the effect of the initialization
method to each updating method is deduced. The averaged
random initialization yields the worst performance for all the
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Fig. 4. Average log-likelihood of the asymmetric and the symmetric PLSA executed from scratch, the oPLSA, the QB PLSA, the IPLSA, and the PLSA
brk., when Random C initialization was applied in the Reuters corpus.

TABLE III

AVERAGE CPU TIME (IN MS) PER DOCUMENT FOR UPDATING PLSA IN ASYMMETRIC OR SYMMETRIC FORMULATIONS UNDER STUDY AND THE

PLSA EXECUTED FROM SCRATCH. TIMINGS ARE REPORTED FOR THE THREE INITIALIZATION METHODS (RANDOM C, RANDOM ACOL, AND

AVERAGED RANDOM) AND THE (A) REUTERS AND (B) TDT5 CORPORA

updating methods in both the asymmetric and the symmetric
formulations, thus confirming the need for a more reliable
initialization. The Random C initialization yields better results
than the Random Acol initialization for either the asymmetric
or the symmetric formulations in both corpora. More precisely,
when the Random C initialization is chosen in the Reuters
corpus, there is a relative decrease in the average absolute error
of the asymmetric conditional probability of the latent topics
given the documents ranging between 4% and 8% than that
obtained with the Random Acol. The corresponding relative
decrease in the TDT5 corpus ranges between 9% and 16%.
For the average absolute error of the symmetric conditional
probability of the latent topics given the documents, the
corresponding relative decrease when the Random C initializa-
tion is chosen instead of the Random Acol ranges between 4%
and 7% in the Reuters corpus and between 9% and 15% in the
TDT5 corpus. Thus, the Random C initialization is found more
suitable than the Random Acol and the Averaged Random.

In Fig. 4, the average log-likelihood is plotted at each
iteration of the EM algorithm for the various algorithms

studied in the asymmetric and the symmetric formulation,
when Random C initialization was employed. The average
log-likelihood for the PLSA fold. is not depicted, since the
PLSA fold. converges after a just a few iterations. It is seen
that the proposed oPLSA achieves an average log-likelihood
close to that of the PLSA and higher than that of all other
updating methods under study for both the asymmetric and
the symmetric formulation in the Reuters corpus. In addition,
the oPLSA achieves a lower average absolute error than the
PLSA fold. as well as any other updating method studied here.
The oPLSA and the IPLSA need considerably less iterations
to converge than the original PLSA executed from scratch,
the PLSA rerun from the breakpoint, and the QB PLSA do.
Comparing also the average log-likelihood achieved in the
asymmetric and the symmetric formulation, it can be seen
that the average log-likelihood in the asymmetric formulation
is higher than that in the symmetric one, thus explaining the
better performance of the former. This can be attributed to the
estimation of one additional model parameter [i.e., P(z)] in
the symmetric formulation.
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2) CPU Run Time: In Table III, the average CPU run time
(in ms) per document across the four folds is summarized
when the oPLSA, the QB PLSA, the IPLSA, the PLSA rerun
from the breakpoint, the PLSA fold., or the PLSA executed
from scratch are employed for the three initialization methods
under study in both formulations. The experiments on the TDT
corpus were performed on a Intel Core 2 Duo 64-bit processor
running at 2.4 GHz with 4 GB RAM, while the experiments
on the Reuters corpus were performed on i3 64-bit processor
running at 2.3 GHz with 16 GB RAM. MATLAB R2010a for
the Mac OS X 10.6 was used. By examining Table III, it can
be seen that the original PLSA executed from scratch is the
most time consuming method, while the PLSA fold. is the least
time-consuming one. The oPLSA is proved to be faster than
all the updating methods under study except the PLSA fold.
(i.e., the QB PLSA, the IPLSA, and the PLSA rerun from the
breakpoint). More precisely, in the Reuters corpus, the oPLSA
is relatively faster than the QB PLSA approximately by 9% to
12% for the asymmetric formulation, and by 7% to 15% for
the symmetric formulation. Similarly, in the TDT5 corpus, the
oPLSA performs faster than the QB PLSA by 28% to 38%
for the asymmetric formulation, and by approximately 35% to
39% for the symmetric formulation. The oPLSA is also rela-
tively faster than the IPLSA by 12% to 19% for the asymmetric
formulation, and by 16% to 22% for the symmetric one in the
Reuters corpus. The oPLSA is relatively less time consuming
than the IPLSA by 34% to 42% for the asymmetric formu-
lation, and by 38% to 45% for the symmetric one in TDT5
corpus.

Comparing the CPU run time with respect to the initial-
ization method, it can be deduced that, when the Random C
initialization is exploited in all updating methods, updating
is faster by 11% to 21% than that when Averaged Random
is used in the Reuters corpus. Updating with Random C
initialization is faster by 4% to 12% than that when Random
Acol is chosen. In the TDT5 data set, all updating methods per-
form faster by 8% to 24%, when the Random C initialization
was employed instead of the Averaged Random initialization.
Faster updating by 3% to 21% was achieved when Random C
initialization is chosen instead of Random Acol.

Finally, all updating methods perform faster when the
asymmetric formulation is used than when the symmetric
one is employed in both data sets. In addition, despite the
two orders of magnitude difference, PLSA fold. remains at
least twice faster than the oPLSA, suggesting that the relative
performance of the proposed algorithm does not depend on
the size of the data set.

3) Document Clustering: The performance of the PLSA
updating methods under study was tested in document clus-
tering. After having estimated the model parameters, for each
document a feature vector is defined that has the conditional
probabilities of the latent topics given the documents as
elements. For each class, a prototype vector is created by
averaging the feature vectors of all the documents already
assigned to this class. The assignment of a document to a class
was determined by means of the cosine similarity between the
feature vector associated to the document and the prototype
vector of each class.

TABLE IV

DOCUMENT CLUSTER-TOPIC CONTINGENCY TABLE

Following the performance measurements described in [25],
the F1 measure was estimated. Let the 2×2 contingency table
for a document cluster-topic pair be as in Table IV, where
a, b, c, and d denote the number of document pairs in the
four cases. F1 is defined as the harmonic mean of precision
and recall, i.e., F1 = 2 · Precision · Recall/(Precision+Recall).
Clearly, the precision and the recall are given by

Precision = a

a + b
, if a + b > 0

Recall = a

a + c
, if a + c > 0. (36)

To obtain a global F1 measurement, microaveraging was
used. That is, the contingency tables of the topics were
merged by summing the corresponding cells and then
the merged table was used to derive the global F1
measurement.

Fig. 5 illustrates the average F1 measure across the four
folds for the original PLSA executed from scratch, the oPLSA,
the QB PLSA, the IPLSA, the PLSA rerun from the break-
point, or the PLSA fold., when any of the three initializations
is used in both formulations. Examining the bar plots, it
becomes clear that the oPLSA produces more descriptive
document clusters than the other updating methods in all
cases, since the F1 values for the oPLSA are the highest
among all the PLSA updating methods. More precisely, the F1
values for the oPLSA are higher than the IPLSA F1 values
by 2% to 6% on average in the Reuters corpus. Similarly,
the relative F1 improvement between the oPLSA and the
IPLSA is 1% to 3% in the TDT5 corpus. On average, the
F1 values for the oPLSA are by 2% to 7% and by 5%
to 8% higher than the QB PLSA F1 values in the Reuters
and the TDT5 corpora, respectively. Similarly, the oPLSA
outperforms the PLSA rerun from breakpoint by 8% to 13%
on the Reuters corpus and by 10% to 16% on the TDT5
corpus, while the relative improvement of oPLSA over the
PLSA fold. ranges between 5% and 8% on the Reuters corpus
and by 10% to 13% on the TDT5 corpus. It can also be
seen that the F1 values for the oPLSA are closer to those for
the original PLSA executed from scratch and the F1 values
for any other updating method, revealing thus the ability of
the proposed updating method to produce similar clusters
to the ones generated by the original PLSA executed from
scratch.

Running online LDA3 with parameters k = 0.7 and τ0 =
0.7 in the same window setting, but without updating the
OOV words, resulted in document clusterings with F1 values
equal to 0.67 for the Reuters corpus and 0.73 for the TDT
corpus. Thus, the asymmetric oPLSA outperforms online LDA
in terms of F1 by 5% and 14% on the Reuters and the TDT

3http://www.cs.princeton.edu/~blei/downloads/onlineldavb.tar
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Fig. 5. Average F1 measure for the document clustering derived by the PLSA and the PLSA updating methods when the three initializations are employed
for both formulations: (a) Reuters and (b) TDT5 corpora.

corpus, respectively. These preliminary results by no means
indicate inferiority of the online LDA, because no special
effort was paid to properly tune the online LDA parameters.

VI. CONCLUSION

A novel PLSA updating method, the so called oPLSA,
has been proposed to handle document insertions that may
potentially contain OOV words. The method works on a
moving window framework allowing for the deletion of
documents that fall outside the scope of the window as
well as the removal of the words that exclusively appear
in the documents to be discarded. Thus, the oPLSA has a
fixed memory with respect to the document-word matrix,
requiring less storage space. The oPLSA together with the
other updating methods under study (i.e., the PLSA fold.,
the PLSA rerun from the breakpoint, the QB PLSA, and
the IPLSA), have been enhanced with efficient parameter
initializations thanks to the Random C and the Random Acol
schemes. The promising experimental results demonstrated
here allow us to claim that: 1) the oPLSA method outperforms
the PLSA fold., the PLSA rerun from the breakpoint, the
QB PLSA, and the IPLSA with respect to parameter estimation
accuracy as measured by the average absolute error between
the probabilities estimated by the updating methods under
comparison and the probabilities estimated by applying the
original PLSA algorithm to the modified document collection
from scratch; 2) the oPLSA achieves a higher average log-
likelihood value upon EM convergence compared with that
of all the updating methods under study. This observation
further supports the higher parameter estimation accuracy of

the proposed method; 3) the oPLSA is the second less time
consuming method after the PLSA fold. The additional time
requirements for the oPLSA, are compensated by the better
performance as validated by the other figures of merit (i.e.,
accuracy, F1 measure in document clustering). Studying the
performance of the updating methods in document clustering,
the oPLSA algorithm has been shown to be more effective with
respect to the F1 measure than the other updating methods
under study; and 4) the oPLSA is not found to be inferior to
online LDA.

In the future, we plan to enhance the oPLSA algorithm
so that it handles documents belonging to topics that are
not seen in the initial document collection, making thus the
oPLSA algorithm even more adaptive to an online environ-
ment. Clearly LDA concepts may help addressing a number
of topics not necessarily fixed a priori.

APPENDIX

EM COMPUTATIONS BETWEEN TWO SUCCESSIVE

ITERATIONS WITHOUT ANY WINDOW ADVANCE

A. Asymmetric Formulation

The computations are presented, taking place by proceeding
from iteration l to iteration l + 1 of the EM algorithm, when
documents or words are neither removed nor added). For
w ∈ W , d ∈ D and z ∈ Z , the E-step at iteration l + 1
is given by

P̂(z|d, w)l+1 = P(w|z)l P(z|d)l∑
z′∈Z P(w|z′)l P(z′|d)l

. (37)
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Let

P1(w|z)l+1 = P(w|z)l

∑

d∈D

n(d, w)P(z|d)l∑
z′∈Z P(w|z′)l P(z′|d)l

. (38)

After the substitution of (37) into (4) and (5), the M-step
equations are rewritten as

P(w|z)l+1 = P1(w|z)l+1∑
w′∈W P1(w′|z)l+1

(39)

P(z|d)l+1 = P2(z|d)l+1

n(d)
(40)

where

P2(z|d)l+1 = P(z|d)l

∑

w∈W

n(d, w)P(w|z)l∑
z′∈Z P(w|z′)l P(z′|d)l

. (41)

B. Symmetric Formulation

Following similar lines to Section VI-A, the computations
are presented, taking place when proceeding from iteration l
to iteration l + 1 of the EM algorithm, when no documents
or words are neither removed nor are added. The E-step for
iteration l + 1 is given by

P̂(z|d, w)l+1 = P(z)l P(d|z)l P(w|z)l∑
z′∈Z P(z′)l P(d|z′)l P(w|z′)l

. (42)

Let

P2(d|z)l+1 = P(d|z)l[∑
w∈W

n(d, w)P(w|z)l∑
z′∈Z P(z′)l P(w|z′)l P(d|z′)l

]
P(z)l . (43)

After the substitution of (42) into (7)–(9), P(w|z)l+1 is given
by (40) and the remaining M-step equations take the form

P(d|z)l+1 = P2(d|z)l+1∑
d ′∈D P2(d ′|z)l+1

(44)

P(z)l+1 = 1

Rl

∑

d∈D

∑

w∈W

n(d, w)P(z)l P(d|z)l P(w|z)l∑
z′∈Z P(z′)l P(d|z′)l P(w|z′)l

.

(45)
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