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Abstract

This paper investigates the possibility of extracting nataspects of a video in
order to develop a video fingerprinting framework. Semanistial information
about humans, more specifically face occurrences in vidaods, along with a
generative probabilistic model, namely the Latent DigtHllocation (LDA), are
utilized for this purpose. The latent variables, namelyieo topics are modeled
as a mixture of distributions of faces in each video. The weihvolves also Scale
Invariant Features Transform (SIFT) based clustering tdaed faces and adapts
the bag-of-words concept into a bag-of-faces one, in omlensure exchangeabil-
ity between topics distributions. Experimental resulteviiie evidence that the

proposed method performs very efficiently for video fingerimg.
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1. Introduction

Video fingerprinting [1], also known as content-based cogtgction, or robust
perceptual hashing [2], or near replica detection [3],refe methods that try to
identify whether a given video is a replica or a near replitar® of the videos
existing in a video database. It can be used in applicatiGadigital rights man-
agement and copyright protection, multimedia databasemgement, broadcast
monitoring etc. The need for efficient video fingerprintingaithms is due to the
enormous amount of video content and the scale of illegaovitbpying and dis-
tribution. Video sharing web sites such as YouTube need algdrithms in order
to automatically check the intellectual property rights\meos that are uploaded
in their database.

Many methods exist for image perceptual hashing [4]-[8]wleer, their ex-
tension to video data (e.g. on a frame-by-frame basis) istnatghtforward and
efficient due to temporal dimension problems. A limited nembf video finger-
printing or replica detection techniques have been praposthe literature so far.
In [9], Indyk et al. have used temporal fingerprints basedhenshot boundaries
of a video sequence in order to find pirated videos on thereterOostveen et
al. have proposed a spatio-temporal fingerprint based omamoe diference in
spatiotemporal blocks [10]. B. Coskun et al. have proposen robust video

hashing algorithms for copy identification that are basedhenDiscrete Cosine



Transform (DCT) [11]. Hampapur and Bolle, have comparedbusrglobal video
descriptors based on motion, color and spatio-temporahgity distribution [12].
Law-To et al. have proposed a technique for video copy treckihich is based
on labels of local descriptor behavior computed along tlewi[13]. Their aim
was to distinguish copies between highly similar videosyal as to link similar
videos, in order to reduce redundancy in video collectionfo@ather the asso-
ciated metadata. Changick and Vasudev have proposed a etgutidn scheme,
where each video frame is partitioned irtox 2 blocks by intensity averaging
[14]. Their spatiotemporal approach combines spatial hiagcof ordinal signa-
tures obtained from the partitions of each video frame ampteal matching of
signatures from the temporal partitions trails. Finallyeland Yoo have presented
a video fingerprinting method based on 2-D Oriented Princmamponent Anal-
ysis (2D-OPCA) of affine covariant regions [15]. Accordirgthis method, in
order to achieve robustness against geometric transfamsathe fingerprints are
extracted from local regions, covariant with a class of aftirmnsformations. For
reliable local fingerprints matching, only spatio-templgraonsistent matches are
taken into account.

Latent Dirichlet Allocation (LDA) is a generative probabtic model intro-
duced in [16]. It is a powerful method for capturing statiatiproperties of a col-

lection of conditionally independent and identically disited random variables.



The main idea behind LDA is the fact that such a set of randonabigs can be
represented by a mixture of probability distributions. Thiger is known as the
de Finetti theorem [17]. This approach has already beenemhbil text modeling
with good results [18]. It has been proven that LDA perforratidy than the pLSI
(probabilistic Latent Semantic Indexing) algorithm, ie ttontext of text modeling
[16]. Moreover, this framework has been recently used incihrtext of image
[19]-[25] and video analysis and description [26]-[30].

The novelty of this paper lies mainly in the use of latent aspef the video
content, aiming at extracting the underlying video topied asing them in video

fingerprinting. In more detail, this paper includes thedaling novelties:

e The use of face occurrences in a video, to be called “facestptbat de-
scribe this video. However, this framework can be easilgmroéd to cases
without humans, since “facewords” can replaced by animelen objects

and scene artifact, provided that an adequate detectoeds us

e The use of latent semantic analysis for video fingerprintiighough many
papers are using probabilistic Latent Semantic AnalydiS# for a num-
ber of image and video processing, only very recent pulidicatlike [19]
and [28] have utilized the LDA algorithm. However, none dig this frame-

work for video fingerprinting, to the best of our knowledge.



e The face clustering technique which makes use of SIFT featavaluated

on facial images.

The paper is organized as follows: in section 2, we introdhedace detection,
facial feature extraction and face clustering methodqldigy creation of the uni-
versal vocabulary and a procedure for incrementing theovitbtabase with new
videos. Section 3 reviews the LDA framework. In section 4 gxlain the training
phase, as well as the query mechanism of the proposed fiirgergrframework.
Its computational complexity is also analyzed in the samuticee Experimental

results are presented in Section 5. Finally, conclusioagleawn in section6.

2. Facial Feature Extraction and Data Organization

This section, outlines the facewords used in order to cheniae a video and
the proposed framework for video fingerprinting. For eadatewi two steps are
undertaken:

a) Face detection. Faces are important semantic featuresdaes and hu-
mans often recognize a movie based on the actors that agmaimt Thus, we
use actors’ facial images as the basis of our video fingeipgifiramework. These
facial images are therefore interpreted adequately imfais.

b) Face clustering using SIFT features. Since the propospach is based

on face occurrences of specific actors in video frames, fatsetion is followed by



a face clustering step. This step is accomplished by evatuécial image simi-
larity based on SIFT features [31]. When applied on all vediexa video database,
face clustering will ideally produce, in the training phagehe algorithm, the set
of all actors appearing in the videos, i.e. one faceword gierzas well as the num-
ber of facial image occurrences within each video. The facgtering approach is
inspired from the work of Antonopoulos et al. [32].

The use of semantic information, namely actor appearanegged through
face detection and clustering might seem to imply that tlep@sed framework
inherits the current limitations and problems (false dide¢ erroneous matches
etc) of these techniques. However, experimental resuttes ghat the effect of
these limitations is rather small. This might be attributedhe fact that if these
analysis modules err in a similar manner in both the quentlaadatabase videos,
the influence of these errors in video fingerprinting perfance is minimal.

2.1. Face Detection

The Viola and Jones face detector [33] is used in order t@eifacial images
from a video. We use the training set defined in OpenCV forthldiaces and, thus,
the resulting facial images are frontal or nearly frontak®n The fact that other
facial poses, such as side views, are not detected doesfact thie performance
of the fingerprinting algorithm, since our aim is to charagge a video using face

occurrences and not to achieve perfect pose-independamdéection. In other



words, as long as face detection performs in the same magugempfoduces frontal
facial images only) in both the training videos and the quamgs, there is no
performance deterioration in video fingerprinting. Furthere, if both frontal and
side facial views were detected for the same person, it wbeldifficult for the
clustering step to assign them to the same cluster. Somkeprsimight arise when
false detections (i.e. detections of regions that do natespond to faces) occur.
Such detections are few and temporally sparse enough. Iticaddhis issue is
handled in the face clustering process that employs a thidksim the cardinality
of each face cluster, thus, deleting small facial imagetetssthat most probably
correspond to noise. In order to reduce processing time datection is performed
every f video frames (typicallyf = 10). Obviously, infrequent face detection
reduces both the processing time and the size of the faceworhbulary for the
database, since less faces are detected. Experimentsimgydifferent f values
verified that this parameter indeed does not alter the sestithe LDA inference,
provided thatf is kept below a reasonable threshold. For some video gdikes,
dramas, where long shots are the cinematographic rule, ameansider using
larger values off. In action movies, where shots alternate rapidly, srfialhlues

produce a more representative faceword vocabulary.



2.2. Face Clustering

The face clustering algorithm is based on the SIFT imageifeaf31], which
are robust local image descriptors associated with detguimts of interest in an
image. In our case, the SIFT image features are used to &vahm similarity
between facial images extracted from video frames throagk fietection. The
adopted approach is straightforward. First, we calculageSIFT interest points
and the corresponding features on the facial images thalttedsfrom the face
detection. Subsequently, the technique described in Bdkeéd in order to find
pairs of matching SIFT interest points across image pairke distance of the
matched SIFT feature vectors is also evaluated. In ordeedtack that two faces
belong to the same actor, two parameters are used: a) Thiel€éartldistance of
the matched SIFT feature vectors and b) the total numbereofitatched SIFT
points of interest. The two faces are considered to belogg@ame actor, only
if the numbern, of matched SIFT interest points is above a threshigldwhich
has been experimentally set to be equal’to= 5) and the arithmetic mean of
distancesl; i = 1, .., ns of the SIFT feature vectors for the matched interest points,
nls >, d; is below a certain threshol@. We have experimentally verified that
this similarity evaluation approach gives good resultsemecases where images

produce few SIFT features, as is the case of facial imageaat&tl from videos

derived either from movies or short video clips, where thialaregion of interest



(ROI) is relatively small (e.g., 80x80 pixels).

The face clustering approach, that aims to process all sidethe database in
order to extract the global faceword vocabulary, proceedslbws: The first face
I detected in a video is the seed for the first face cluster. Faeeected in subse-
guent frames are checked for similarity agaifstusing the similarity evaluation
procedure described in the previous paragraph. If thesal fimcages are found
similar to this first facial image, they are assigned to thmesaluster withF;. If
one of the subsequently detected facial images, e.g. Face found to be dis-
similar to F7, then a new face cluster, representedryis created. Subsequently,
facial images are tested agaifgtand F;, and, upon a positive match, are assigned
to the corresponding face cluster, otherwise a new clusferined and so on. This
procedure is applied to all videos in the database. Thukeiame actor appears
in several movies, this will create (ideally) only one fatéster, i.e. one faceword
in the universal vocabulary. Clusters containing few estiare considered to be
noise and, thus, are ignored.

A sample of the facial images assigned to 2 clusters (out aftal bf 951
clusters) resulting from the application of the face clste to the MUSCLE-
VCD-2007 database [35] are depicted in Figure 1. At the enith@fapplication
of the face clustering procedure over the entire video @depthe formed facial

image clusters, represented by their first element/fagialge (called facewords),



Figure 1: Sample facial images from two clusters createdetgorithm.

constitute the universal vocabulayy of this database having cardinality. The
cardinality of the universal vocabulary is equal to the nemdif the formed facial
image clusters over the entire video database.

Based on the faceword vocabulary and the facial image adgnt to each
faceword (cluster) we can create a faceword histogram fir edeo in the database.
As will be shown later on, these histograms are used as anagstiof the proba-
bility distribution of the actors facial images in each vada the database, in order
to estimate the model hyperparameters using an Expectisitoimization (EM)

algorithm. These histograms forms the rows of the so caledviord-by-video
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matrix, in analogy to the term-by-document matrix in docaimeodeling [16].
When a new video is to be added to the video database, faderahggmatching
must be applied to only to the new video.

In more detail, the case of a new entry in the database is &drad follows:
First face detection is performed on the new video and iiaffanages are matched
to the universal faceword vocabulary. In case no new clustereated (i.e. the
actors in the new video are well represented by existingadirdy existing face-
words) we do not update the universal vocabuldty If one or more new clusters
are created (i.e. new actors appear in the new video), tharpdate the universal
vocabulary, by adding the newly formed facewords. In bottesave need to run
again the training phase of the LDA algorithm (see setion, 4d as to update its
parameters and make the model accommodate the new videdditioa, one can
defer the execution of the LDA training until a certain numbgnew videos have

been gathered.

3. Latent Dirichlet Allocation

Many latent semantic analysis approaches have been pbpodar for multi-
media analysis [36]. Latent Dirichlet Allocation (LDA) [1& a recently proposed
approach within this framework that produced good analygsémodeling results.
In our case, we aim to use LDA to reveal the latent aspects adenybased on

actors appearances.As already briefly explained, LDA isunéwork used until
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now mainly in text retrieval and mining. LDA uses the followgi structures:

1. Afinite universal vocabularyy = {w!,w?,...,w"'} of V words (i.e. basic
units of discrete data). Eaak’ with i € [1..V] is a vector where théth
element is 1 and all others 0 (i.e:!(i) = 1 andw®(j) = 0 for i # j ). For
simplicity we will refer tow? (i) asw’.

2. Documents where each documeris a sequence oV words from the uni-
versal vocabularyV, v = (wf{“),wg@), . wjg\;N)), whereg is a surjective
mapg : [1..N] — [1..V] andwig(i) denotes that theth word in the sequence
v is the g(i)-th word in the vocabularyV. The fact thaty is surjective, is
because irv, we can have multiple instances of the wevil

3. A number of topics. The term topic is used to denote thetatector vari-
ablesz’, which represent probability distributions on sets of faaels. Top-
ics are abstract notions which can not be assigned any pihysieaning

other than the one just mentioned.

4. Finally, a corpug which represent a collection of documents.

In the proposed video fingerprinting framework, a wertlis a faceword (i.e. a
certain facial image, ideally corresponding to a particatzor) and each videois
a document. The universal vocabulafy is the set of all facewords, as discovered
by the application of the face clustering procedure (the felasters centers) on

all videos of the database and ideally has cardinality efguidde number of actors
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in the database.The term topic is used so as to provide ationtthat the latent
aspects of a video, which are discovered under the bageesfassumption may
reveal distinction between the videos, based on a set ofrlimel¢opics / themes.
Finally, the corpus is equivalent to the video database. ribtvation behind the
adopted approach stems from the fact that the distribufiactor face appearances
throughout a movie can provide a description of a video dlig movie, which will
be robust enough to be used for video fingerprinitng. Evedgwiis described
as a mixture of topic distributions and the mixture coeffitdeare used as the
feature vector (i.e. the fingerprint) that characterize thdeo and is utilized in
the matching/classification task typically involved in @afingerprinting.

The reason we have chosen the LDA model is because actorrappea may
be considered as a multinomial experiment. In other worfd&eihave a set of
actors, a movie can be thought as being constructed afteradexials of “drawing”
actors from a deck. Under such an assumption, the diswibati actors in a movie
may be considered as a multinomial one. Moreover, we canresshat these
multinomial distributions are not the same for all videos they are parametrized
by latent variables which are drawn from a Dirichlet diattibn. The choice of the
Dirichlet distribution in favor of others, is explained kyetfact that the Dirichlet

distribution is the conjugate prior of the multinomial disution [19].
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Figure 2: The LDA graphical model.

The graphical model of LDA is shown in Figure 2. Graphical migchre used
to represent conditional independence (exchangeabditypng the random vari-
ables of a specific problem. In such a graph each node is amamdonable, and
the missing edges between nodes represent conditiongléndence (exchange-
ability). Hence, they provide means for the representatiaine joint distribution
between random variables [37]. In the LDA graphical modé&jFe 2), the boxes
represent replicates, that is, how many times a randomblarizeeds to be sam-
pled. Thus, the outer and inner boxes represent the seleatid/ videos that
form the video database and the repeated chdictnies) of topics and facewords
within a video, respectively.

In the rest of this section the basic equations of the LDA rlgan, adapted
from [16] will be presented. A tutorial on this subject canfbend in [38].

The LDA probabilistic model consists of the following geative process that

creates a vides made up of a sequenceb’ffacewords(wf(l),wg(z), . w%N)),
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where eactw? @ is drawn from a topic distribution [16]:
e ChooseN from a Poisson distributio®oisson ()

e Choose ak-dimensional random vector variate= [0, 05, ..., 0x]" from
a Dirichlet distribution:0 ~ Dir(a), wherea is the vector hyperparameter

of the prior Dirichlet distribution.
e For each of theV facewordsw?™:

— Choose a topizﬁ(") from a multinomial distribution [39] parametrized
with 8. 2" ~ Multinomial(8), where® is a Dirichlet distributed
vector variable andv a surjective magh : [1, N] — [1, K] which
provides that the:-th word is conditioned from thg(n)-th topic in the
latent topics set of cardinaliti. The functionh is surjective because

in v, we can have multiple instances of the same tahic

— Choose a wordv?™ from p(wZ(")\zZ("),B), which will also be a

multinomial distribution.

The fact thatV (number of facewords in each video) is a Poisson randomblearia
is not critical for the algorithm. The above generative psx; suggests that each
faceword is generated with a probability conditioned orpact¢the latent variable).

The topics, in turn, are generated from a multinomial distiibn with a Dirichlet
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prior (i.e. 8), which is an assumption based on the fact that the Dirialitgtibu-
tion is a conjugate prior to the multinomial distributiondatihus the most natural
choice for a prior [19]. The dimensionaliti of the multinomial latent variable
zﬁ(") can not be known a priori, and furthermore, no methods foestamation
exist until now. In general, defining the dimensionality loé fatent variable in the
LDA model is still an open issue and certainly beyond the saafjthis paper.

Let us suppose that we fix the dimensionality of the topicaldé to K, and
thus, the latent set of topicg containsk distinct topicsZ = {z',z?,...,z%}
wherez’ is a vector where thé-th element is 1 and all others 0 (i.es’(i) =
1 andzi(j) = 0 fori # j). For simplicity z(i) will be denoted as’. The
K —dimensional Dirichlet random vector varialle which represents the mixture
of topics distributions in a video, is chosen from a disttids with probability

density function:

_ F(Zfil ai) a;—1  pag—1
p(fla) = Hfilr(az’)el 0" )

wheref lies in a(K — 1)-simplex (due to the fact thaé > 0 and>_ %, 6; = 1),
a is the K-dimensional Dirichlet vector hyperparameter with> 0 andI'(z) is
the Gamma function.

The K x N parameter matriy@ contains the probabilities(z, j) that the face-
word w/ is generated from topig’. The parameter matrig is not known and has

to be estimated, as we shall demonstrate later on, from atiaral EM algorithm.
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Given the hyperparameter and the matrix parametgt, we can calculate the joint
distribution of a topic mixtur@, a set ofN topicsZ = (z?<1>,z’2‘<2>, - z}](,(N)) and

a videov (sequence oV words) by:

=2

p(0,Z,v|a, B) = p(6|cx) H 2™z, B). 2)

The above formula is a straightforward application of thHatrens schematically
depicted in the graphical model in Figure 2 and of the prdhis product rule.
In this formula p( |0) is the probability that the tOpIZn( ") is chosen with a
Dirichlet prior and equals thie(n)-th element;,,,y of the vectord. By integrating
(2) overf and summing ovezZ("), we obtain the marginal distribution for a video

V.

p(vla, B) = / (6]cx) (HZp 0 10)p(wi™ |z >ﬂ)>d0. ©)

n=1n=1
4. Video Fingerprinting Using LDA
4.1. Training Through Variational Inference

In order to train our model we introduce into the LDA algonitthe histograms
of facewords for each video, which are produced by the fatectien/clustering
procedure. The faceword-by-video matrix created from pnaess is considered
as the first estimate of the matrix in the LDA framework. Training the model
involves in fact solving the inference problem of computihg posterior distribu-

tion of the hidden vector@ andz,, given a videov and the Dirichlet parametets
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andg:

p(6,Z,v|a, )

(4)

Unfortunately, the computation of this distribution is iargeral intractable due to

p(v|a, 3). Indeed by substituting (1) in (4) we obtain:

L(Y; i) ot} [TTS T

pvlon B) = [ )/<H91 )(HZH )da (5)
The integral in (5) is intractable, due to the coupling betwg andé [40]. How-
ever, a wide variety of approximate inference algorithms loa used to this end,
including Laplace approximation, variational approxiimaf and several Markov
chain Monte Carlo methods [41]. In our case, we use a vanakiinference
method as proposed in [16]. The idea, as in all variationathous, is to use
Jensen’s inequality [41] and find a lower bound of the logliited function [41].
To do so, a family of lower bounds, indexed by a set of vanatigarameters is
considered. The variational parameters are selectedghran optimization pro-
cedure that attempts to find the tightest possible lower tholror this purpose,
one introduces a Bayesian network graph (Figure 3), wheredges betweef,
z, andw,, are dropped to resolve the coupling@fand 3, which makes (5) in-
tractable. Two variational parametepsand~ are inserted and, thus, we obtain a

family of distributions of the latent variables:

N
9(6,Z]v, ) = a(017) [ [ a(zn, b0), (6)

n=1
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Figure 3: Variational Inference Model.

wherey is a K -dimensional Dirichlet distributed parameter vector &g, ¢, .., o)
are vectors of multinomial distributed parameters. In [#a§ proven that the val-
uesy* ande™ that lead to a tight lower bound on the log likelihood can kedeated

through the following optimization problem:

(7*7 ¢*) = arg ml(g) KL(Q(07 Z"'Ya (,b)”p(G, Z7V’a716))7 (7)

)

whereK L is the Kullback-Leibler divergence [39]. The optimizatiprocedure is
described in [16]. By taking the derivatives of (7) we have tbllowing update

functions for¢ and-~:

¢ = Bli,arg;{w] = 1}) exp(Ey[log(6;)17]), ®)
N

Vi o= ity bh, ©)
n=1
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whereg!, is the probability that the-th faceword is derived from thieth topic.

We note thaty* is a function ofv due to the fact that (7) is evaluated for fixed
v, and thus, provides a unique representation of a video frentraining set, in
the simplex formed from the topics. In other words, eachingi video is uniquely
characterized as a point in thi& — 1)-simplex.

The parametera: and3, involved in the model, are estimated by training our
model. To do so, we follow the approach in [16] which is an einal Bayes

method and consists of the following EM process:

e (E-step): For each video, find the optimal values of the tiarial parame-
ters¢™®, v*. This estimation step uses the aforementioned methoddtogy

fixed values ol and3

e (M-step): Maximize the resulting lower bound on the likeldd with respect

to parametersx and3, using (8) and (9) solved fa8 and«, respectively.

At the end of the training procedure, apart from the values, o8, the parameter
vector~ (called video fingerprint) for each of the database videdsclcharac-
terizes this video, is evaluated.

4.2. Querying the database

Assuming that the parametets, 3 have been estimated from the training

video set, we have to develop a method for finding if a quergwit a replica
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of a training video or not. The video is first subjected to fatection and,
then, each of the detected facial images is mathced to oneeodirtiversal vo-
cabulary facewords. Thus, the query video is representedsaguence of words
Viuery = (wf{“),wg@), ..,w%N)). The query video is then characterized by the
K-dimensional parametey* which is an estimate of the mixture of topics distri-
butionsp(0,Z|v, a, B) in this video and is found via inference with the trained
model using (7). Thug* is used as the feature vector (i.e., fingerprint) of the
query video.

In order to decide whethev,,.,, is a replica of one of the videos in the
database, we use the KL divergence between its variati@rahpetery* and the

ones of the videos stored in the database. By doing so, wehiimthtlexF' of the

closest database video:
F = arg miin KL('Y* (Vi) H’Y* (unery))7 (10)

wherev; is i-th video in the database. Therefoxe; is the database video that is
closest tov,,., and thus a candidate for being the corresponding origirsovi
Besides matching query videos to the ones in the video dedalsae also need
to handle videos that are not replicas of the ones in the databThis is done
in a two-level process. First, query videos whose facialgesado not match any
(or match only few) facial images stored in the databasevéusal) vocabulary

are characterized as not matching with any of the videosdrdttabase. In case
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a video has enough face matches with the database vocalftypiyally more
than 20 matches) we decide that the query videg,, matches videar in the
database only if the KL divergence in (10) is below a certhiegholdTx ;. This
threshold is experimentally found by introducing into tlgetem query videos that
are not in the database but have enough face matches witlathieade as well as
videos taken from within the database and evaluating theskimid that minimizes
the false acceptance and false rejection ratios. Thistthlgsvas found to be equal

to Tk = 0.95.

5. Experimental Results

As mentioned before, the performance of the method has beduaged on
three video data sets namely Video CIip&’§, Movies (M) and the MUSCLE-
VCD-2007 databaseMt — VCD). The VC data set includes short, low quality
videos, randomly collected over the Internet (YouTubetohsists of 332 videos,
each 2-5 minutes long (approximately 4000-7000 frames eovelip). TheM
data set consists of 8 high-quality full length movies ofrappmately 2 hours each
(approximately 150.000 video frames). The small number o¥ies in M was
due to copyright issues. Finally, thet — VCD database is a new fingerprinting
/ copy detection benchmark database [35], which consist&bofit 100 hours of
video material coming from different sources: web vide@<liTV archives and

movies. The videos have different bitrates, different haetgmns, different video
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formats and cover a very large range of genres: documesitarievies, sports
events, TV shows, cartoons etc. The three databases weoteskin order to test
three different cases that can be encountered. A datab#sedrge number of
short videos (YouTube), a movie databases and, finally, &ungf long and short
length videos in a database of a total of 100 hours of videos.

In all video data sets, we have applied face detection ev@fsaines { = 10).
Even at this, relatively low, face detection frequency (taw detection every ap-
proximately 0.5 sec) we are almost sure that we will detéetctbr faces involved
in the video. For th&C and M — VCD data sets, the length of the universal vocab-
ulary was 1088 and 951 respectively (i.e. 1088 and 951 diftefacewords, repre-
senting facial image clusters, were created, respecjiv€ly course, this number
does not correspond to the actual total number of actorafisar in these videos,
due to errors introduced by the face detector (detectiomage regions that do not
correspond to faces) and the face clustering algorithm (g or more clusters
corresponding to the same actor might be created). One rdnttiat these errors
may introduce fingerprinting errors. However, as long asféite detection and
clustering methods perform consistently, i.e., in a simi@nner, in the query and
database videos, these errors do not cause serious protuehes fingerprinting
task.

In order to evaluate the performance of the proposed methoge different
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Table 1: Fingerprinting performance metrics for the threedhmarking video sets.

TESTA TESTB

MC FR FA
Ve 211% 1.2% 0%
M 0% 0% 0%

M =VCD 5.19% 0% 0%

types of experiments have been performed:

1. Tests with query videos that are replicas of the databass (test A).
Two types of errors are expected in this case: a misclagsiiicarror (MC),
measured by the percentage of query videos that were aabgifia wrong
original video in the database and the false rejection €RRlJ), which is the
percentage of query videos that were erroneously taggedté®longing to
the database.

2. Tests with query videos that do not belong to the dataltase B). In this
case, the performance is measured in terms of the false taccep(FA)
error, i.e., the percentage of query videos that are erusigtagged as being
a replica of a database video.

3. FortheM — V(D database, we have also implemented the experiments de-
scribed in [35]. According to the evaluation protocol, spequery videos
that are provided with the database and are transformedomsrsf the

database videos, as well as videos that do not belong to thleadz are used.
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These experiments have been conducted in order to companmeibod
with other methods that have also been tested on the samealatéth the

same testing protocol.

The first set of experiments aimed at showing the system pe#iace when
gueried with videos that are identical with those in the base i.e., they have not
been manipulated. In test A, th& data set involved 332 videos which were used
to both populate the system database (and train the systehasaguery videos. In
data setM, 8 videos were used. Finally, in thet — VCD data set, 77 videos were
used. For test B, in theC data set, we trained the model and populated the system
database with 247 videos out of the original 332 and usedetinaining 85 videos
as query videos for testing. For data 84t we populated the training database with
6 videos and used 2 movies as query videos. SimilarlyMbr VCD we placed
58 videos in the training database and used 19 as queriesltfRase depicted in
Table 1

As can be seen, the MC and FR errors for @ and M — VCD database
are sufficiently low, whereas all other errors, includingeators for theM data
set, are zero. The obtained performance metrics suggesthidingerprinting
performance of the proposed framework scales well enoughindreasing the
database size five times (from th¢ to the M — VCD database ) the MC error

doubles, whereas the FR error vanishes. It should be notedthat the LDA
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model was initially introduced for document modeling, wédre number of terms
and documents are sometimes in the order of millions. Thisdaggests that the
discriminative power of the LDA model can scale to large Dates.

The false acceptance (FA) rate can be further analyzed dile tiact that, as
already mentioned in the previous section, declaring thédeo is not a replica of
a video in the database is a two step process, as describagttiors2.2. In our
experiments (test B), out of the 85 non-replica videos therewsed for querying
the VC data set, only 4 of them (that is 4.7%) were rejected at thediep, i.e.
due to the small number of face matches with the vocabularthd M database,
however, both query videos were rejected in the first steps @dn be explained
by the fact that, in high-quality movies, the face detectut the face clustering al-
gorithm perform far better than in the low-quality intern@eos, thus resulting in
a better discrimination from the first step of matchingfeg@n. In theM — VCD,
no videos were rejected at the first step.

It should be noticed that, for the test A, we have conductqukegments for
different K values (number of topics). Results for the misclassificataor, as
a function of K are presented in Figures 4 and 5. P6rthe best results were
achieved forK = 329 (MC error 2.11% and FR error 1.20%) and fon the
best results were achieved féf > 9 with an MC error 0% and FR Error 0%.

Finally, for M — VCD the best results were achieved far = 120 (MC error
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Figure 4: Misclassification error fa¢C versus the number of topids.

5.19% and FR error 0%). As mentioned before, the selectiaimehumber of
topics K that provides the best results is still an open issue for LBdm our
experiments it seems thaf values close to the number of videos in the database
are good choices, for this specific application of LDA. Expemts with varying
K should be performed to establish a galddvalue for each new training video
database.

Another set of experiments aimed to test our framework agéiaquently en-
countered attacks. Thus, we have performed tests for fiastgpvideo processing

operations (attacks):

e Histogram Equalization (HE)

e 10% Temporal Cropping (TC)
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Figure 5: Misclassification error for the feature length meswlata setM versus
versus the number of topids.

10% Spatial Frame Cropping (removal of left-right frameucohs) (SFC)

10% Frame Removal (removal of randomly selected frame®)(Fr

Spatial Subsampling (downsizing) by a factor of 2 (S)

Video Compression (C) 50% bit-rate reduction

We applied the attacks on the query videos of iiedata set and performed
both tests A, B. For the HE, TC, SFC and FrR attacks the petgfoom metrics
remained unaltered (MC=2.11%, FR=1.2%, FA=0%), due todlsethat both the
face detector and the face clustering algorithm providedttmally the same re-
sults on the attacked video clips as on the original ones. ddew in the spatial
subsampling attack (S), the face detector produced poaitsesiue to the fact
that the original video clips resolution w830 x 240 pixels and dropped down to
160 x 120 pixels, a resolution that is very small for correct face dets. In this

case, the face detector could detect faces in only 154 of3B¢®al query videos,
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and, therefore, the remaining 178 videos were automatidaltlared as not match-
ing to any of the database videos, increasing dramaticadlyfingerprinting error
(MC, FR and FA) to more than 40%.

It should be noted that our framework is rather vulnerablextensive tempo-
ral cropping, due to the fact that the proposed framework gsabal information
(faceword histograms). It is obvious that if, due to temperapping, the query
video depicts a small subset of the actors appearing in thmal video, the frame-
work will fail to recognize it as a replica.

For the video compression attack, we used tMedatabase. We have com-
pressed each video with standard lossy compression sch@ne§ Xvid and
others) to 50% of the original bitrate. Results were notrattedue to the fact that
the face detector and clustering performed correctly. dozg we where expect-
ing this behavior due to experiments performed inAe— VCD database, which
contains query videos with compression attacks. We did edbpn such attacks
to theVC database, due to the fact that the videos therein were lalitglalready
compressed ones, gathered from websites. Thus, any furthepression would
degrade them so they become useless for testing.

Finally, as previously mentioned in this section, we haveduzted experi-
ments on theM — VCD database using the ST1 query set (15 videos) defined in

the evaluation protocol described in [35]. The videos is tiiery set have been
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modified by combinations of rather sever image processingipukations, such
as color change and blurring, re-encoding, cropping anor ajlange, recording
the video with a camcorder and subtitles addition etc. Thé&34 includes also
videos that do not belong to the database. The performanti& mged in this case
was the so-called ST1 score, namely the ratio of correct arsst@ the number of
gueries. In our case, 24 out of the 101 videos of the data s&t ma included in
the database, since they did not generate a sufficient nuofidetected faces. In
addition, out of the 10 query videos that were replicas otweilin the database, 4
were replicas of the 24 videos that were excluded from theitrg database. Thus
their ground-truth tags had to be changed from “replica ¢éloase video x” to
“not existing in the database”. Finally, 3 out of the 15 queideos were excluded
from the test videos, since they did not provide sufficiesefdetections. Due to
these necessary modifications to the experiment, the ST& sf®.83 (10 out of
12 videos were recognized correctly) achieved by our meihadt directly com-
parable to the scores achieved by other fingerprinting nosthested on [35]. Nev-
ertheless, this score is a very good indication that our atettan achieve results
beyond the state of the art, since the second best ST1 scthis iexperimental
setup was 0.8. In terms of execution time, our method redu@ieminutes to pro-
cess the 12 query videos. Four teams (some with more thanppneaehes) have

tested their algorithms on this database and query set35¢eand reported ST1
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scores ranging from 0.46 (worse) to 0.86 (best) and quergugiom times from
14 minutes to 99 minutes. The method that obtained the best scdescribed in
[42].

All the experiments have been conducted on a Hewlett-Pddk& xw6600
workstation with InteR®) XeonR) CPU at 2.50GHz and 3.25GB of RAM. The time
spent for the training phase (database construction) ih egperiment was ap-
proximately 12 hours, 5 hours and 47 hours on the three visdeorespectively.
Thus, in the worst case, the training phase takes a bit marehhlf the duration
of the videos.

The testing (query) phase of the video fingerprinting frammwveonsists of first
applying face detection to the query, an operation thatalsly has the same time
complexity as the one used in the training phase. Next, thersal vocabulary
facewords, created in the training phase are matched tatied fmages produced
by the face detector, which is a relatively time consumingcpss. For a query
video of approximately 1 hour duration, more than 24 minatesneeded to create
the faceword histogram for a universal facewords vocabubrl’ = 951 face-
words in total. This time depends mainly on the size of thevensial facewords
vocabulary cardinalityy’. The LDA inference step is fast and requires less than
10 seconds. Finally, comparing the resulting feature vamtoduced by the LDA

inference with the ones stored in the database takes lesd thecond in all video
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sets. This time increases linearly with the number of vidadhe database and is
independent from the video duration.

From the complexity characteristics of the proposed mefiredented above,
we can conclude that the time required for training is liheslated to the length
of the videos in the database. The experimental resulteipied above i.e., that
the training is at worst twice as fast as realtime, verifg tonclusion. The query
phase complexity is also linearly related to the length efiiileo database. These
properties ensure that the framework scales well in termexe€ution time with

the database size.

6. Discussion, Conclusions and Future Work

In this work, a new framework for video fingerprinting has hgresented.
The intuition behind this work is that actor instances (irrapped to facewords)
can carry a significant amount of information and can be useapture very dis-
tinctive video features, thus characterizing uniquelyhe@ideo. In this context,
by applying a generative probabilistic model, namely theehaDirichlet Alloca-
tion, we aim at discovering latent aspects of a video (vidgics), based on the
semantic information related to actor appearances. THapility distribution of
these video topics, for each video, can be used efficientlyifteo fingerprinting
applications.

The experimental results provided in this paper show thatéart to adapt a
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language modeling technique to video fingerprinting, algfonot straightforward,
can be quit efficient, as proven by our experiments. In amitthe proposed
method has good scalability with respect to the database Bizterms of both
fingerprinting performance and computational effort.

The proposed framework is based on actor appearances lsaseegrovide dis-
tinctive semantic information, and because humans appeaost videos genres
(movies, news, TV series etc.). The proposed frameworktiglinectly applicable
to video content where human, appearances are rare or tigigrgxsuch as certain
documentaries, e.g., those dealing with animals. Howehisrframework can be
easily extended to such cases as well, since “actors” canib&ks, even objects
and scene artifact.

In the future, we shall further explore the proposed apprphg using a more
complex vocabulary that will include, for example, humarsggohuman interac-
tions etc. By doing so we hope to provide a better representef a video topics,

and, thus, a more robust and discriminative fingerprintiggrthm.
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