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Abstract

This paper investigates the possibility of extracting latent aspects of a video in

order to develop a video fingerprinting framework. Semanticvisual information

about humans, more specifically face occurrences in video frames, along with a

generative probabilistic model, namely the Latent Dirichlet Allocation (LDA), are

utilized for this purpose. The latent variables, namely thevideo topics are modeled

as a mixture of distributions of faces in each video. The method involves also Scale

Invariant Features Transform (SIFT) based clustering of detected faces and adapts

the bag-of-words concept into a bag-of-faces one, in order to ensure exchangeabil-

ity between topics distributions. Experimental results provide evidence that the

proposed method performs very efficiently for video fingerprinting.
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1. Introduction

Video fingerprinting [1], also known as content-based copy detection, or robust

perceptual hashing [2], or near replica detection [3], refers to methods that try to

identify whether a given video is a replica or a near replica of one of the videos

existing in a video database. It can be used in applications like digital rights man-

agement and copyright protection, multimedia databases management, broadcast

monitoring etc. The need for efficient video fingerprinting algorithms is due to the

enormous amount of video content and the scale of illegal video copying and dis-

tribution. Video sharing web sites such as YouTube need suchalgorithms in order

to automatically check the intellectual property rights for videos that are uploaded

in their database.

Many methods exist for image perceptual hashing [4]-[8]. However, their ex-

tension to video data (e.g. on a frame-by-frame basis) is notstraightforward and

efficient due to temporal dimension problems. A limited number of video finger-

printing or replica detection techniques have been proposed in the literature so far.

In [9], Indyk et al. have used temporal fingerprints based on the shot boundaries

of a video sequence in order to find pirated videos on the Internet. Oostveen et

al. have proposed a spatio-temporal fingerprint based on luminance diference in

spatiotemporal blocks [10]. B. Coskun et al. have proposed two robust video

hashing algorithms for copy identification that are based onthe Discrete Cosine
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Transform (DCT) [11]. Hampapur and Bolle, have compared various global video

descriptors based on motion, color and spatio-temporal intensity distribution [12].

Law-To et al. have proposed a technique for video copy tracking which is based

on labels of local descriptor behavior computed along the video [13]. Their aim

was to distinguish copies between highly similar videos, aswell as to link similar

videos, in order to reduce redundancy in video collections or to gather the asso-

ciated metadata. Changick and Vasudev have proposed a copy detection scheme,

where each video frame is partitioned into2 × 2 blocks by intensity averaging

[14]. Their spatiotemporal approach combines spatial matching of ordinal signa-

tures obtained from the partitions of each video frame and temporal matching of

signatures from the temporal partitions trails. Finally Lee and Yoo have presented

a video fingerprinting method based on 2-D Oriented Principal Component Anal-

ysis (2D-OPCA) of affine covariant regions [15]. According to this method, in

order to achieve robustness against geometric transformations, the fingerprints are

extracted from local regions, covariant with a class of affine transformations. For

reliable local fingerprints matching, only spatio-temporally consistent matches are

taken into account.

Latent Dirichlet Allocation (LDA) is a generative probabilistic model intro-

duced in [16]. It is a powerful method for capturing statistical properties of a col-

lection of conditionally independent and identically distributed random variables.
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The main idea behind LDA is the fact that such a set of random variables can be

represented by a mixture of probability distributions. Thelatter is known as the

de Finetti theorem [17]. This approach has already been applied in text modeling

with good results [18]. It has been proven that LDA performs better than the pLSI

(probabilistic Latent Semantic Indexing) algorithm, in the context of text modeling

[16]. Moreover, this framework has been recently used in thecontext of image

[19]-[25] and video analysis and description [26]-[30].

The novelty of this paper lies mainly in the use of latent aspects of the video

content, aiming at extracting the underlying video topics and using them in video

fingerprinting. In more detail, this paper includes the following novelties:

• The use of face occurrences in a video, to be called “facewords”, that de-

scribe this video. However, this framework can be easily extended to cases

without humans, since “facewords” can replaced by animals,even objects

and scene artifact, provided that an adequate detector is used.

• The use of latent semantic analysis for video fingerprinting. Although many

papers are using probabilistic Latent Semantic Analysis (pLSA) for a num-

ber of image and video processing, only very recent publications like [19]

and [28] have utilized the LDA algorithm. However, none did use this frame-

work for video fingerprinting, to the best of our knowledge.
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• The face clustering technique which makes use of SIFT features evaluated

on facial images.

The paper is organized as follows: in section 2, we introducethe face detection,

facial feature extraction and face clustering methodology, the creation of the uni-

versal vocabulary and a procedure for incrementing the video database with new

videos. Section 3 reviews the LDA framework. In section 4, weexplain the training

phase, as well as the query mechanism of the proposed fingerprinting framework.

Its computational complexity is also analyzed in the same section. Experimental

results are presented in Section 5. Finally, conclusions are drawn in section6.

2. Facial Feature Extraction and Data Organization

This section, outlines the facewords used in order to characterize a video and

the proposed framework for video fingerprinting. For each video, two steps are

undertaken:

a) Face detection. Faces are important semantic features for movies and hu-

mans often recognize a movie based on the actors that appear therein. Thus, we

use actors’ facial images as the basis of our video fingerprinting framework. These

facial images are therefore interpreted adequately in facewords.

b) Face clustering using SIFT features. Since the proposed approach is based

on face occurrences of specific actors in video frames, face detection is followed by
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a face clustering step. This step is accomplished by evaluating facial image simi-

larity based on SIFT features [31]. When applied on all videos in a video database,

face clustering will ideally produce, in the training phaseof the algorithm, the set

of all actors appearing in the videos, i.e. one faceword per actor, as well as the num-

ber of facial image occurrences within each video. The face clustering approach is

inspired from the work of Antonopoulos et al. [32].

The use of semantic information, namely actor appearances derived through

face detection and clustering might seem to imply that the proposed framework

inherits the current limitations and problems (false detection, erroneous matches

etc) of these techniques. However, experimental results show that the effect of

these limitations is rather small. This might be attributedto the fact that if these

analysis modules err in a similar manner in both the query andthe database videos,

the influence of these errors in video fingerprinting performance is minimal.

2.1. Face Detection

The Viola and Jones face detector [33] is used in order to extract facial images

from a video. We use the training set defined in OpenCV for frontal faces and, thus,

the resulting facial images are frontal or nearly frontal ones. The fact that other

facial poses, such as side views, are not detected does not affect the performance

of the fingerprinting algorithm, since our aim is to characterize a video using face

occurrences and not to achieve perfect pose-independent face detection. In other
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words, as long as face detection performs in the same manner (e.g. produces frontal

facial images only) in both the training videos and the queryones, there is no

performance deterioration in video fingerprinting. Furthermore, if both frontal and

side facial views were detected for the same person, it wouldbe difficult for the

clustering step to assign them to the same cluster. Some problems might arise when

false detections (i.e. detections of regions that do not correspond to faces) occur.

Such detections are few and temporally sparse enough. In addition, this issue is

handled in the face clustering process that employs a threshold on the cardinality

of each face cluster, thus, deleting small facial image clusters that most probably

correspond to noise. In order to reduce processing time, face detection is performed

every f video frames (typicallyf = 10). Obviously, infrequent face detection

reduces both the processing time and the size of the facewords vocabulary for the

database, since less faces are detected. Experiments involving differentf values

verified that this parameter indeed does not alter the results of the LDA inference,

provided thatf is kept below a reasonable threshold. For some video genres,like

dramas, where long shots are the cinematographic rule, one can consider using

larger values off . In action movies, where shots alternate rapidly, smallf values

produce a more representative faceword vocabulary.
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2.2. Face Clustering

The face clustering algorithm is based on the SIFT image features [31], which

are robust local image descriptors associated with detected points of interest in an

image. In our case, the SIFT image features are used to evaluate the similarity

between facial images extracted from video frames through face detection. The

adopted approach is straightforward. First, we calculate the SIFT interest points

and the corresponding features on the facial images that resulted from the face

detection. Subsequently, the technique described in [34] is used in order to find

pairs of matching SIFT interest points across image pairs. The distance of the

matched SIFT feature vectors is also evaluated. In order to declare that two faces

belong to the same actor, two parameters are used: a) The Euclidean distance of

the matched SIFT feature vectors and b) the total number of the matched SIFT

points of interest. The two faces are considered to belong tothe same actor, only

if the numberns of matched SIFT interest points is above a thresholdTn (which

has been experimentally set to be equal toTn = 5) and the arithmetic mean of

distancesdi i = 1, .., ns of the SIFT feature vectors for the matched interest points,

1
ns

∑ns

i=1 di is below a certain thresholdT . We have experimentally verified that

this similarity evaluation approach gives good results even in cases where images

produce few SIFT features, as is the case of facial images extracted from videos

derived either from movies or short video clips, where the facial region of interest
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(ROI) is relatively small (e.g., 80x80 pixels).

The face clustering approach, that aims to process all videos in the database in

order to extract the global faceword vocabulary, proceeds as follows: The first face

F1 detected in a video is the seed for the first face cluster. Faces detected in subse-

quent frames are checked for similarity againstF1 using the similarity evaluation

procedure described in the previous paragraph. If these facial images are found

similar to this first facial image, they are assigned to the same cluster withF1. If

one of the subsequently detected facial images, e.g. faceFk, is found to be dis-

similar toF1, then a new face cluster, represented byFk is created. Subsequently,

facial images are tested againstF1 andFk and, upon a positive match, are assigned

to the corresponding face cluster, otherwise a new cluster is formed and so on. This

procedure is applied to all videos in the database. Thus, if the same actor appears

in several movies, this will create (ideally) only one face cluster, i.e. one faceword

in the universal vocabulary. Clusters containing few entries are considered to be

noise and, thus, are ignored.

A sample of the facial images assigned to 2 clusters (out of a total of 951

clusters) resulting from the application of the face clustering to the MUSCLE-

VCD-2007 database [35] are depicted in Figure 1. At the end ofthe application

of the face clustering procedure over the entire video database, the formed facial

image clusters, represented by their first element/facial image (called facewords),
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Figure 1: Sample facial images from two clusters created by the algorithm.

constitute the universal vocabularyW of this database having cardinalityV . The

cardinality of the universal vocabulary is equal to the number of the formed facial

image clusters over the entire video database.

Based on the faceword vocabulary and the facial image associations to each

faceword (cluster) we can create a faceword histogram for each video in the database.

As will be shown later on, these histograms are used as an estimate of the proba-

bility distribution of the actors facial images in each video in the database, in order

to estimate the model hyperparameters using an Expectation-Maximization (EM)

algorithm. These histograms forms the rows of the so called faceword-by-video
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matrix, in analogy to the term-by-document matrix in document modeling [16].

When a new video is to be added to the video database, face clustering/matching

must be applied to only to the new video.

In more detail, the case of a new entry in the database is handled as follows:

First face detection is performed on the new video and its facial images are matched

to the universal faceword vocabulary. In case no new clusteris created (i.e. the

actors in the new video are well represented by existing already by existing face-

words) we do not update the universal vocabularyW. If one or more new clusters

are created (i.e. new actors appear in the new video), then weupdate the universal

vocabulary, by adding the newly formed facewords. In both cases we need to run

again the training phase of the LDA algorithm (see setion 4.1), so as to update its

parameters and make the model accommodate the new video. In addition, one can

defer the execution of the LDA training until a certain number of new videos have

been gathered.

3. Latent Dirichlet Allocation

Many latent semantic analysis approaches have been proposed so far for multi-

media analysis [36]. Latent Dirichlet Allocation (LDA) [16] is a recently proposed

approach within this framework that produced good analysisand modeling results.

In our case, we aim to use LDA to reveal the latent aspects of a video, based on

actors appearances.As already briefly explained, LDA is a framework used until
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now mainly in text retrieval and mining. LDA uses the following structures:

1. A finite universal vocabularyW = {w1,w2, ...,wV } of V words (i.e. basic

units of discrete data). Eachwi with i ∈ [1..V ] is a vector where thei-th

element is 1 and all others 0 (i.e.w
i(i) = 1 andw

i(j) = 0 for i 6= j ). For

simplicity we will refer tow
i(i) aswi.

2. Documents where each documentv is a sequence ofN words from the uni-

versal vocabularyW, v = (w
g(1)
1 ,w

g(2)
2 , ...,w

g(N)
N ), whereg is a surjective

mapg : [1..N ] → [1..V ] andwg(i)
i denotes that thei-th word in the sequence

v is theg(i)-th word in the vocabularyW. The fact thatg is surjective, is

because inv, we can have multiple instances of the wordw
i.

3. A number of topics. The term topic is used to denote the latent vector vari-

ableszi, which represent probability distributions on sets of facewords. Top-

ics are abstract notions which can not be assigned any physical meaning

other than the one just mentioned.

4. Finally, a corpusC which represent a collection of documents.

In the proposed video fingerprinting framework, a wordw
i is a faceword (i.e. a

certain facial image, ideally corresponding to a particular actor) and each videov is

a document. The universal vocabularyW is the set of all facewords, as discovered

by the application of the face clustering procedure (the face clusters centers) on

all videos of the database and ideally has cardinality equalto the number of actors
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in the database.The term topic is used so as to provide an intuition that the latent

aspects of a video, which are discovered under the bag-of-faces assumption may

reveal distinction between the videos, based on a set of underline topics / themes.

Finally, the corpus is equivalent to the video database. Themotivation behind the

adopted approach stems from the fact that the distribution of actor face appearances

throughout a movie can provide a description of a video clip or a movie, which will

be robust enough to be used for video fingerprinitng. Every video is described

as a mixture of topic distributions and the mixture coefficients are used as the

feature vector (i.e. the fingerprint) that characterize this video and is utilized in

the matching/classification task typically involved in video fingerprinting.

The reason we have chosen the LDA model is because actor appearances may

be considered as a multinomial experiment. In other words, if we have a set of

actors, a movie can be thought as being constructed after several trials of “drawing”

actors from a deck. Under such an assumption, the distribution of actors in a movie

may be considered as a multinomial one. Moreover, we can assume that these

multinomial distributions are not the same for all videos but they are parametrized

by latent variables which are drawn from a Dirichlet distribution. The choice of the

Dirichlet distribution in favor of others, is explained by the fact that the Dirichlet

distribution is the conjugate prior of the multinomial distribution [19].
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Figure 2: The LDA graphical model.

The graphical model of LDA is shown in Figure 2. Graphical models are used

to represent conditional independence (exchangeability)among the random vari-

ables of a specific problem. In such a graph each node is a random variable, and

the missing edges between nodes represent conditional independence (exchange-

ability). Hence, they provide means for the representationof the joint distribution

between random variables [37]. In the LDA graphical model (Figure 2), the boxes

represent replicates, that is, how many times a random variable needs to be sam-

pled. Thus, the outer and inner boxes represent the selection of M videos that

form the video database and the repeated choice (N times) of topics and facewords

within a video, respectively.

In the rest of this section the basic equations of the LDA algorithm, adapted

from [16] will be presented. A tutorial on this subject can befound in [38].

The LDA probabilistic model consists of the following generative process that

creates a videov made up of a sequence ofN facewords(wg(1)
1 ,w

g(2)
2 , ..,w

g(N)
N ),
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where eachwg(i)
i is drawn from a topic distribution [16]:

• ChooseN from a Poisson distributionPoisson(ξ)

• Choose aK-dimensional random vector variableθ= [θ1, θ2, ..., θK ]T from

a Dirichlet distribution:θ ∼ Dir(α), whereα is the vector hyperparameter

of the prior Dirichlet distribution.

• For each of theN facewordswg(n)
n :

– Choose a topiczh(n)
n from a multinomial distribution [39] parametrized

with θ. z
h(n)
n ∼ Multinomial(θ), whereθ is a Dirichlet distributed

vector variable andh a surjective maph : [1, N ] → [1,K] which

provides that then-th word is conditioned from theh(n)-th topic in the

latent topics set of cardinalityK. The functionh is surjective because

in v, we can have multiple instances of the same topicz
i.

– Choose a wordwg(n)
n from p(w

g(n)
n |z

h(n)
n ,β), which will also be a

multinomial distribution.

The fact thatN (number of facewords in each video) is a Poisson random variable

is not critical for the algorithm. The above generative process, suggests that each

faceword is generated with a probability conditioned on a topic (the latent variable).

The topics, in turn, are generated from a multinomial distribution with a Dirichlet
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prior (i.e. θ), which is an assumption based on the fact that the Dirichletdistribu-

tion is a conjugate prior to the multinomial distribution and thus the most natural

choice for a prior [19]. The dimensionalityK of the multinomial latent variable

z
h(n)
n can not be known a priori, and furthermore, no methods for itsestimation

exist until now. In general, defining the dimensionality of the latent variable in the

LDA model is still an open issue and certainly beyond the scope of this paper.

Let us suppose that we fix the dimensionality of the topic variable toK, and

thus, the latent set of topicsZ containsK distinct topicsZ = {z1, z2, ..., zK}

wherez
i is a vector where thei-th element is 1 and all others 0 (i.e.zi(i) =

1 and z
i(j) = 0 for i 6= j ). For simplicity z

i(i) will be denoted aszi. The

K−dimensional Dirichlet random vector variableθ, which represents the mixture

of topics distributions in a video, is chosen from a distribution with probability

density function:

p(θ|α) =
Γ(
∑K

i=1 αi)
∏K

i=1 Γ(αi)
θα1−1
1 · · · θαK−1

K , (1)

whereθ lies in a(K − 1)-simplex (due to the fact thatθi ≥ 0 and
∑K

i=1 θi = 1),

α is theK-dimensional Dirichlet vector hyperparameter withαi > 0 andΓ(x) is

the Gamma function.

TheK ×N parameter matrixβ contains the probabilitiesβ(i, j) that the face-

wordw
j is generated from topiczi. The parameter matrixβ is not known and has

to be estimated, as we shall demonstrate later on, from a variational EM algorithm.
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Given the hyperparameterα and the matrix parameterβ, we can calculate the joint

distribution of a topic mixtureθ, a set ofN topicsZ = (z
h(1)
1 , z

h(2)
2 , ..., z

h(N)
N ) and

a videov (sequence ofN words) by:

p(θ,Z,v|α,β) = p(θ|α)
N
∏

n=1

p(zh(n)
n |θ)p(wg(n)

n |zh(n)
n ,β). (2)

The above formula is a straightforward application of the relations schematically

depicted in the graphical model in Figure 2 and of the probabilities product rule.

In this formula,p(z
h(n)
n |θ) is the probability that the topiczh(n)

n is chosen with a

Dirichlet prior and equals theh(n)-th elementθh(n) of the vectorθ. By integrating

(2) overθ and summing overzh(n)
n , we obtain the marginal distribution for a video

v:

p(v|α,β) =

∫

p(θ|α)

(

N
∏

n=1

N
∑

n=1

p(zh(n)
n |θ)p(wg(n)

n |zh(n)
n ,β)

)

dθ. (3)

4. Video Fingerprinting Using LDA

4.1. Training Through Variational Inference

In order to train our model we introduce into the LDA algorithm the histograms

of facewords for each video, which are produced by the face detection/clustering

procedure. The faceword-by-video matrix created from thisprocess is considered

as the first estimate of the matrixβ in the LDA framework. Training the model

involves in fact solving the inference problem of computingthe posterior distribu-

tion of the hidden vectorsθ andzn given a videov and the Dirichlet parametersα

17



andβ:

p(θ,Z|v,α,β) =
p(θ,Z,v|α,β)

p(v|α,β)
. (4)

Unfortunately, the computation of this distribution is in general intractable due to

p(v|α,β). Indeed by substituting (1) in (4) we obtain:

p(v|α,β) =
Γ(
∑

i αi)
∏

i Γ(αi)

∫

(

K
∏

i=1

θαi−1
i

)





N
∏

n=1

K
∑

i=1

V
∏

j=1

(θi · β(i, j))w
j
n



 dθ. (5)

The integral in (5) is intractable, due to the coupling betweenβ andθ [40]. How-

ever, a wide variety of approximate inference algorithms can be used to this end,

including Laplace approximation, variational approximation, and several Markov

chain Monte Carlo methods [41]. In our case, we use a variational inference

method as proposed in [16]. The idea, as in all variational methods, is to use

Jensen’s inequality [41] and find a lower bound of the log likelihood function [41].

To do so, a family of lower bounds, indexed by a set of variational parameters is

considered. The variational parameters are selected through an optimization pro-

cedure that attempts to find the tightest possible lower bound. For this purpose,

one introduces a Bayesian network graph (Figure 3), where the edges betweenθ,

zn andwn are dropped to resolve the coupling ofθ andβ, which makes (5) in-

tractable. Two variational parametersφ andγ are inserted and, thus, we obtain a

family of distributions of the latent variables:

q(θ,Z|γ,φ) = q(θ|γ)

N
∏

n=1

q(zn,φn), (6)
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Figure 3: Variational Inference Model.

whereγ is aK-dimensional Dirichlet distributed parameter vector and(φ1,φ2, ..,φN )

are vectors of multinomial distributed parameters. In [16], it is proven that the val-

uesγ∗ andφ∗ that lead to a tight lower bound on the log likelihood can be evaluated

through the following optimization problem:

(γ∗,φ∗) = arg min
(γ ,φ)

KL(q(θ,Z|γ,φ)‖p(θ,Z,v|α,β)), (7)

whereKL is the Kullback-Leibler divergence [39]. The optimizationprocedure is

described in [16]. By taking the derivatives of (7) we have the following update

functions forφ andγ:

φi
n = β(i, argj{w

j
n = 1}) exp(Eq[log(θi)|γ]), (8)

γi = αi +

N
∑

n=1

φi
n, (9)
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whereφi
n is the probability that then-th faceword is derived from thei-th topic.

We note thatγ∗ is a function ofv due to the fact that (7) is evaluated for fixed

v, and thus, provides a unique representation of a video from the training set, in

the simplex formed from the topics. In other words, each training video is uniquely

characterized as a point in this(K − 1)-simplex.

The parametersα andβ, involved in the model, are estimated by training our

model. To do so, we follow the approach in [16] which is an empirical Bayes

method and consists of the following EM process:

• (E-step): For each video, find the optimal values of the variational parame-

tersφ∗, γ∗. This estimation step uses the aforementioned methodologyfor

fixed values ofα andβ

• (M-step): Maximize the resulting lower bound on the likelihood with respect

to parametersα andβ, using (8) and (9) solved forβ andα, respectively.

At the end of the training procedure, apart from the values ofα, β, the parameter

vectorγ (called video fingerprint) for each of the database videos, which charac-

terizes this video, is evaluated.

4.2. Querying the database

Assuming that the parametersα, β have been estimated from the training

video set, we have to develop a method for finding if a query video is a replica
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of a training video or not. The video is first subjected to facedetection and,

then, each of the detected facial images is mathced to one of the universal vo-

cabulary facewords. Thus, the query video is represented asa sequence of words

vquery = (w
g(1)
1 ,w

g(2)
2 , ..,w

g(N)
N ). The query video is then characterized by the

K-dimensional parameterγ∗ which is an estimate of the mixture of topics distri-

butionsp(θ,Z|v,α,β) in this video and is found via inference with the trained

model using (7). Thusγ∗ is used as the feature vector (i.e., fingerprint) of the

query video.

In order to decide whethervquery is a replica of one of the videos in the

database, we use the KL divergence between its variational parameterγ∗ and the

ones of the videos stored in the database. By doing so, we find the indexF of the

closest database video:

F = arg min
i

KL(γ∗(vi)‖γ
∗(vquery)), (10)

wherevi is i-th video in the database. Therefore,vF is the database video that is

closest tovquery and thus a candidate for being the corresponding original video.

Besides matching query videos to the ones in the video database, we also need

to handle videos that are not replicas of the ones in the database. This is done

in a two-level process. First, query videos whose facial images do not match any

(or match only few) facial images stored in the database (universal) vocabulary

are characterized as not matching with any of the videos in the database. In case
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a video has enough face matches with the database vocabulary(typically more

than 20 matches) we decide that the query videovquery matches videovF in the

database only if the KL divergence in (10) is below a certain thresholdTKL. This

threshold is experimentally found by introducing into the system query videos that

are not in the database but have enough face matches with the database as well as

videos taken from within the database and evaluating the threshold that minimizes

the false acceptance and false rejection ratios. This threshold was found to be equal

to TKL = 0.95.

5. Experimental Results

As mentioned before, the performance of the method has been evaluated on

three video data sets namely Video Clips (VC), Movies (M) and the MUSCLE-

VCD-2007 database (M−VCD). TheVC data set includes short, low quality

videos, randomly collected over the Internet (YouTube). Itconsists of 332 videos,

each 2-5 minutes long (approximately 4000-7000 frames per video clip). TheM

data set consists of 8 high-quality full length movies of approximately 2 hours each

(approximately 150.000 video frames). The small number of movies inM was

due to copyright issues. Finally, theM−VCD database is a new fingerprinting

/ copy detection benchmark database [35], which consists ofabout 100 hours of

video material coming from different sources: web video clips, TV archives and

movies. The videos have different bitrates, different resolutions, different video
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formats and cover a very large range of genres: documentaries, movies, sports

events, TV shows, cartoons etc. The three databases were selected in order to test

three different cases that can be encountered. A database with a large number of

short videos (YouTube), a movie databases and, finally, a mixture of long and short

length videos in a database of a total of 100 hours of videos.

In all video data sets, we have applied face detection every 10 frames (f = 10).

Even at this, relatively low, face detection frequency (oneface detection every ap-

proximately 0.5 sec) we are almost sure that we will detect all actor faces involved

in the video. For theVC andM−VCD data sets, the length of the universal vocab-

ulary was 1088 and 951 respectively (i.e. 1088 and 951 different facewords, repre-

senting facial image clusters, were created, respectively). Of course, this number

does not correspond to the actual total number of actors thatappear in these videos,

due to errors introduced by the face detector (detection of image regions that do not

correspond to faces) and the face clustering algorithm (e.g. two or more clusters

corresponding to the same actor might be created). One can think that these errors

may introduce fingerprinting errors. However, as long as theface detection and

clustering methods perform consistently, i.e., in a similar manner, in the query and

database videos, these errors do not cause serious problemsto the fingerprinting

task.

In order to evaluate the performance of the proposed method,three different
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Table 1: Fingerprinting performance metrics for the three benchmarking video sets.

TEST A TEST B
MC FR FA

VC 2.11% 1.2% 0%
M 0% 0% 0%

M−VCD 5.19% 0% 0%

types of experiments have been performed:

1. Tests with query videos that are replicas of the database videos (test A).

Two types of errors are expected in this case: a misclassification error (MC),

measured by the percentage of query videos that were classified to a wrong

original video in the database and the false rejection error(FR), which is the

percentage of query videos that were erroneously tagged as not belonging to

the database.

2. Tests with query videos that do not belong to the database (test B). In this

case, the performance is measured in terms of the false acceptance (FA)

error, i.e., the percentage of query videos that are erroneously tagged as being

a replica of a database video.

3. For theM−VCD database, we have also implemented the experiments de-

scribed in [35]. According to the evaluation protocol, specific query videos

that are provided with the database and are transformed versions of the

database videos, as well as videos that do not belong to the database are used.
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These experiments have been conducted in order to compare our method

with other methods that have also been tested on the same dataset with the

same testing protocol.

The first set of experiments aimed at showing the system performance when

queried with videos that are identical with those in the database i.e., they have not

been manipulated. In test A, theVC data set involved 332 videos which were used

to both populate the system database (and train the system) and as query videos. In

data setM, 8 videos were used. Finally, in theM−VCD data set, 77 videos were

used. For test B, in theVC data set, we trained the model and populated the system

database with 247 videos out of the original 332 and used the remaining 85 videos

as query videos for testing. For data setM, we populated the training database with

6 videos and used 2 movies as query videos. Similarly, forM−VCD we placed

58 videos in the training database and used 19 as queries. Results are depicted in

Table 1

As can be seen, the MC and FR errors for theVC andM−VCD database

are sufficiently low, whereas all other errors, including all errors for theM data

set, are zero. The obtained performance metrics suggest that the fingerprinting

performance of the proposed framework scales well enough: by increasing the

database size five times (from theVC to theM−VCD database ) the MC error

doubles, whereas the FR error vanishes. It should be noted here that the LDA
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model was initially introduced for document modeling, where the number of terms

and documents are sometimes in the order of millions. This fact suggests that the

discriminative power of the LDA model can scale to large databases.

The false acceptance (FA) rate can be further analyzed due tothe fact that, as

already mentioned in the previous section, declaring that avideo is not a replica of

a video in the database is a two step process, as described in Section 2.2. In our

experiments (test B), out of the 85 non-replica videos that were used for querying

theVC data set, only 4 of them (that is 4.7%) were rejected at the first step, i.e.

due to the small number of face matches with the vocabulary. In theM database,

however, both query videos were rejected in the first step. This can be explained

by the fact that, in high-quality movies, the face detector and the face clustering al-

gorithm perform far better than in the low-quality internetvideos, thus resulting in

a better discrimination from the first step of matching/rejection. In theM−VCD,

no videos were rejected at the first step.

It should be noticed that, for the test A, we have conducted experiments for

different K values (number of topics). Results for the misclassification error, as

a function of K are presented in Figures 4 and 5. ForVC the best results were

achieved forK = 329 (MC error 2.11% and FR error 1.20%) and forM the

best results were achieved forK > 9 with an MC error 0% and FR Error 0%.

Finally, for M−VCD the best results were achieved forK = 120 (MC error
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Figure 4: Misclassification error forVC versus the number of topicsK.

5.19% and FR error 0%). As mentioned before, the selection ofthe number of

topicsK that provides the best results is still an open issue for LDA.From our

experiments it seems thatK values close to the number of videos in the database

are good choices, for this specific application of LDA. Experiments with varying

K should be performed to establish a goodK value for each new training video

database.

Another set of experiments aimed to test our framework against frequently en-

countered attacks. Thus, we have performed tests for five types of video processing

operations (attacks):

• Histogram Equalization (HE)

• 10% Temporal Cropping (TC)
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Figure 5: Misclassification error for the feature length movies data setM versus
versus the number of topicsK.

• 10% Spatial Frame Cropping (removal of left-right frame columns) (SFC)

• 10% Frame Removal (removal of randomly selected frames) (FrR)

• Spatial Subsampling (downsizing) by a factor of 2 (S)

• Video Compression (C) 50% bit-rate reduction

We applied the attacks on the query videos of theVC data set and performed

both tests A, B. For the HE, TC, SFC and FrR attacks the performance metrics

remained unaltered (MC=2.11%, FR=1.2%, FA=0%), due to the fact that both the

face detector and the face clustering algorithm provided practically the same re-

sults on the attacked video clips as on the original ones. However, in the spatial

subsampling attack (S), the face detector produced poor results, due to the fact

that the original video clips resolution was320 × 240 pixels and dropped down to

160 × 120 pixels, a resolution that is very small for correct face detection. In this

case, the face detector could detect faces in only 154 of the 332 total query videos,
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and, therefore, the remaining 178 videos were automatically declared as not match-

ing to any of the database videos, increasing dramatically the fingerprinting error

(MC, FR and FA) to more than 40%.

It should be noted that our framework is rather vulnerable toextensive tempo-

ral cropping, due to the fact that the proposed framework uses global information

(faceword histograms). It is obvious that if, due to temporal cropping, the query

video depicts a small subset of the actors appearing in the original video, the frame-

work will fail to recognize it as a replica.

For the video compression attack, we used theM database. We have com-

pressed each video with standard lossy compression schemes(DivX, Xvid and

others) to 50% of the original bitrate. Results were not altered, due to the fact that

the face detector and clustering performed correctly. Moreover, we where expect-

ing this behavior due to experiments performed in theM−VCD database, which

contains query videos with compression attacks. We did not perform such attacks

to theVC database, due to the fact that the videos therein were low-quality, already

compressed ones, gathered from websites. Thus, any furthercompression would

degrade them so they become useless for testing.

Finally, as previously mentioned in this section, we have conducted experi-

ments on theM−VCD database using the ST1 query set (15 videos) defined in

the evaluation protocol described in [35]. The videos in this query set have been
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modified by combinations of rather sever image processing manipulations, such

as color change and blurring, re-encoding, cropping and color change, recording

the video with a camcorder and subtitles addition etc. The set ST1 includes also

videos that do not belong to the database. The performance metric used in this case

was the so-called ST1 score, namely the ratio of correct answers to the number of

queries. In our case, 24 out of the 101 videos of the data set were not included in

the database, since they did not generate a sufficient numberof detected faces. In

addition, out of the 10 query videos that were replicas of videos in the database, 4

were replicas of the 24 videos that were excluded from the training database. Thus

their ground-truth tags had to be changed from “replica of database video x” to

“not existing in the database”. Finally, 3 out of the 15 queryvideos were excluded

from the test videos, since they did not provide sufficient face detections. Due to

these necessary modifications to the experiment, the ST1 score of 0.83 (10 out of

12 videos were recognized correctly) achieved by our methodis not directly com-

parable to the scores achieved by other fingerprinting methods tested on [35]. Nev-

ertheless, this score is a very good indication that our method can achieve results

beyond the state of the art, since the second best ST1 score inthis experimental

setup was 0.8. In terms of execution time, our method required 87 minutes to pro-

cess the 12 query videos. Four teams (some with more than one approaches) have

tested their algorithms on this database and query set (see [35]) and reported ST1
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scores ranging from 0.46 (worse) to 0.86 (best) and query execution times from

14 minutes to 99 minutes. The method that obtained the best score is described in

[42].

All the experiments have been conducted on a Hewlett-Packard HP xw6600

workstation with IntelR© XeonR© CPU at 2.50GHz and 3.25GB of RAM. The time

spent for the training phase (database construction) in each experiment was ap-

proximately 12 hours, 5 hours and 47 hours on the three viedeosets respectively.

Thus, in the worst case, the training phase takes a bit more than half the duration

of the videos.

The testing (query) phase of the video fingerprinting framework consists of first

applying face detection to the query, an operation that obviously has the same time

complexity as the one used in the training phase. Next, the universal vocabulary

facewords, created in the training phase are matched to the facial images produced

by the face detector, which is a relatively time consuming process. For a query

video of approximately 1 hour duration, more than 24 minutesare needed to create

the faceword histogram for a universal facewords vocabulary of V = 951 face-

words in total. This time depends mainly on the size of the universal facewords

vocabulary cardinalityV . The LDA inference step is fast and requires less than

10 seconds. Finally, comparing the resulting feature vector produced by the LDA

inference with the ones stored in the database takes less than 1 second in all video
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sets. This time increases linearly with the number of videosin the database and is

independent from the video duration.

From the complexity characteristics of the proposed methodpresented above,

we can conclude that the time required for training is linearly related to the length

of the videos in the database. The experimental results presented above i.e., that

the training is at worst twice as fast as realtime, verify this conclusion. The query

phase complexity is also linearly related to the length of the video database. These

properties ensure that the framework scales well in terms ofexecution time with

the database size.

6. Discussion, Conclusions and Future Work

In this work, a new framework for video fingerprinting has been presented.

The intuition behind this work is that actor instances (i.e., mapped to facewords)

can carry a significant amount of information and can be used to capture very dis-

tinctive video features, thus characterizing uniquely each video. In this context,

by applying a generative probabilistic model, namely the Latent Dirichlet Alloca-

tion, we aim at discovering latent aspects of a video (video topics), based on the

semantic information related to actor appearances. The probability distribution of

these video topics, for each video, can be used efficiently for video fingerprinting

applications.

The experimental results provided in this paper show that our effort to adapt a
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language modeling technique to video fingerprinting, although not straightforward,

can be quit efficient, as proven by our experiments. In addition, the proposed

method has good scalability with respect to the database size, in terms of both

fingerprinting performance and computational effort.

The proposed framework is based on actor appearances since these provide dis-

tinctive semantic information, and because humans appear in most videos genres

(movies, news, TV series etc.). The proposed framework is not directly applicable

to video content where human, appearances are rare or non-existent such as certain

documentaries, e.g., those dealing with animals. However,this framework can be

easily extended to such cases as well, since “actors” can be animals, even objects

and scene artifact.

In the future, we shall further explore the proposed approach, by using a more

complex vocabulary that will include, for example, human pose, human interac-

tions etc. By doing so we hope to provide a better representation of a video topics,

and, thus, a more robust and discriminative fingerprinting algorithm.
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