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Abstract—Linear Discriminant Analysis (LDA) is a widely used
technique for supervised feature extraction and dimensionality
reduction. LDA determines an optimal discriminant space for
linear data projection based on certain assumptions, e.g. on using
normal distributions for each class and employing class represen-
tation by the mean class vectors. However, there might be other
vectors that can represent each class, in order to increase class
discrimination. In this paper, we propose an optimization scheme
aiming at the optimal class representation, in terms of Fisher
ratio maximization, for LDA-based data projection. Compared
to the standard LDA approach, the proposed optimization scheme
increases class discrimination in the reduced dimensionality space
and achieves higher classification rates in publicly available data
sets.

Index Terms—Linear Discriminant Analysis, Class represen-
tation, Subspace learning, Data projection.

I. INTRODUCTION

Linear Discriminant Analysis (LDA) is a well-known al-
gorithm for feature extraction and dimensionality reduction,
aiming at finding an optimal reduced dimensionality space for
data projection, in which the classes are better discriminated.
The adopted criterion is the ratio of the between-class scatter
to the within-class scatter in the projection space, which
is, usually, referred to as Fisher ratio. By maximizing this
criterion, maximal class discrimination is achieved. The main
idea in standard LDA is that in the reduced dimensionality
space the samples belonging to different classes should be as
far from one another and that the within class dispersion from
their mean should be as small as possible. LDA optimality is
based on the assumptions that: a) all classes follow normal
distributions having the same covariance structure and b) each
class is represented by the mean class vector. Although relying
on rather strong assumptions which do not hold in many
applications, it has proven very powerful and it has been
widely used in many applications, such as facial expression
recognition [1], human action recognition [2] and person
identification [3].

This work is motivated by the observation that other class
representation in the input space than the class mean, result
in different scatter matrices and, finally, in a different pro-
jection space that could provide superior class discrimination.
Consider the example illustrated in Figure 1. Figure la il-
lustrates 2D data resulted by applying Principal Component
Analysis (PCA) on 10-dimensional (10D) data forming three
classes following normal distributions. Let p;, ¢ = 1,2,3 and
qi, © = 1,2,3 represent random vectors that can be used
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as class representatives instead of the sample mean vectors
p;, © = 1,2,3 in the LDA optimization procedure. Figure
1b illustrates the projection space obtained by applying LDA
on the 10D data using the mean class vectors p, for class
representation, while Figures 1c and 1d illustrate the projection
spaces obtained by applying LDA using vectors p; and q; for
class representation, respectively.

As can be seen, the three class data projections obtained
by using three different class representations in the input
space are quite different. That is, various discriminant LDA
spaces can be formed, depending on the class representation
choice in the input space, which offer different discrimination
ability and recognition performance. Since LDA optimality
is based on Fisher ratio maximization, one may think that
the optimal class representation can be obtained by an op-
timization procedure maximizing Fisher ratio. Therefore, we
are interested in finding the class representative vectors in the
reduced dimensionality space that are as far from one another
and as close to the respective class samples as possible. As we
shall show in next sections, this can be done by performing
an iterative optimization procedure with respect to both the
projection matrix and the chosen class representation.

The paper is structured as follows. Section II presents
an overview of the standard LDA algorithm. In Section III,
we present the proposed optimization scheme. Experimental
results assessing its performance are illustrated in Section V
and conclusions are drawn in Section VII.

II. STANDARD LDA

Given a set of D-dimensional data belonging to C classes,
xij €RP i=1,..,Cj=1,..,N;, Y%, N; = N, and their
class labels I;; = 4, standard LDA aims to find a projection
matrix W € RP*4 such that y;; = WTx;; € R is the image
of x;; in a d-dimensional feature space, where classes achieve
maximal compactness and discrimination.

Let us assume that the data are centered to O, i.e.,
% ZzC:1 N:1 xi; = 0, where 0 € RP is a vector of zeros'.
The optimaf projection matrix W* is obtained by maximizing
the ratio of the between-class scatter matrix S; to that of the
within-class scatter matrix S,, in the projection space. Sy, S,
are defined as follows:
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Fig. 1. a) PCA space for data forming three classes following normal distributions and LDA spaces obtained by representing classes with b) the mean class

vectors p;, c) vectors p; and d) vectors q;.

where m; € R? is the mean vector of class i in the projection
space, i.e., m; = N% Zjvzll yij. Since y;; are not a priori
known, it is convenient to express Sy, S, by using x;;. It can
be shown that S, = W7S,W and S,, = WTS, W, where:
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n; = N% Z;V=1 x;; is the mean vector of class ¢ in the input
space.
By using the traces of Sy, S,, to measure the between-class
and within-class scatter, the optimal projection matrix W* can
be obtained by maximizing Fisher ratio:

W* = argmazx J(W), 5)
WTW=I
Tr(WTS,W)
wv) = —— 6
JW) Tr(WTS,W) ©

Tr(A) denotes the trace of matrix A. The constraint
WTW = 1 is conventionally added in order to obtain a
set of orthogonal and normalized projection vectors. Another
version of LDA [1] exploits the equality ST = Sb + Sw
in order to majygimize an equivalent to (6) criterion, i.e.,
J(W) = % Sr =30 SN xi;xT s the total
data scatter matrix.

That is, the optimal projection matrix W™ is obtained by
solving the so-called trace ratio optimization problem, leading
to the so-called Trace Ratio LDA, which has been used by a
number of dimensionality reduction algorithms [4], [5], [6],
[71, [8], [9]. However, the trace ratio problem does not have
a direct closed-form globally optimal solution. Therefore, it is
conventionally approximated by solving the ratio trace prob-
lem, i.e., 7 (W) = Tr [(WTS;,W)*(WT SwW)], which is
equivalent to the optimization problem S,,v = ASyv, A # 0,
and can be solved by performing eigenanalysis to the matrix
S = sglsw in the case where S; is invertible, or S = S[Ule
in the case where S,, is invertible.

Although the trace ratio problem does not have a closed
form solution, it has been shown in [10], [11] that the original

trace ratio problem can be converted to an equivalent frace
difference problem having the form:

FW ) =Tr [WT (8, - 28.) W], )

Tr(WTS§, W)
Tr(WTB,W)" The best
trace ratio value A* can be calculated by applying an iterative
procedure. For more details on the \* calculation, please refer
to [10], [11]. After obtaining A*, the optimal projection matrix
‘W* is obtained by:

where A > 0 is the trace ratio A =

W* = argmax Tr [WT (Sb -\ Sw) W] . )
WTw=I

That is, W* is obtained by performing eigenanalysis on the
matrix S = Sb — )\*Sw. As has been proven in [11], the so-
called Trace Difference LDA has a closed form solution and
the global optimum of the trace ratio problem can be found by
applying an efficient algorithm based on the Newton-Raphson
method.

III. OPTIMAL LDA CLASS REPRESENTATION

In this paper, we relax the assumption of class representation
by the mean class vector and assume that each class can be
represented by any vector fi; € RP, called class representative
vector. In order to obtain both the optimal projection matrix
W* and the optimal class representation fi;, we propose to
minimize the following criterion with respect to both W and
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Since both Sy (ft;), Sw(f1;) are positive semidefinite for
any f1;, « = 1,...,C, (9) can be converted to the following
equivalent trace difference problem:

(WA i) = Tr [WT (8u() = Au()) W] (12)
The best trace ratio value \*, for known f,, can be efficiently
calculated by applying the iterative procedure described in
[11]. The optimal projection matrix W* can be, subsequently,
calculated by:
W* = argmaz Tr [WT (éb(ﬁi) - )\*Sw(ﬁi)) W] . 13)
WTw=I

That is, W™ is obtained by performing eigenanalysis on the
matrix S(g;) = Sp(fr;) — A*Sw(f1;)-

Let us denote by ﬂ;‘)t the vector representing class ¢ that
is calculated at the t-th iteration of the proposed optimization



scheme. Clearly, the obtained best trace ratio value A; and
the optimal projection matrix W7 depend on the class rep-
resentation choice f; ;. By usmg )\*, Wt, the optimal class
representation vectors Biip1, @ =1,...,C, which maximize
(12), can be obtained by:

B = iy, (14
C,N;

T
211 Y X, WW, Xij
C,Ny

The derivation of (14),
S xEWiwrT
as well as the convergence analysis of the above described
optimization scheme are discussed in Appendix A.

In this procedure, the class representative vectors are ini-
tialized to the mean class vectors 1, = p;, ¢ =1,...,C, ie,
to the class representation of the standard LDA algorithm.
In the general case of class representation using vectors f; 4,
where ¢ denotes the iteration of the proposed optimization
scheme, the scatter matrices Sb(p,z +)> Suw(f1; ;) are calculated
and employed to calculate the corresponding best trace ratio
value A} and the optimal projection matrix W;. The vectors
f; 41 are, subsequently calculated using (14). The above
described iterative procedure is performed multiple times 7',
until Jo(W, X, ;)41 — J2o(W, A f1;)r < €, where € is a
small positive value. In general, we would expect the class
representative vectors to be close to mean class vectors in the
cases where the LDA assumptions are met. In these cases,
a small number of iterations is required for convergence. In
different cases, the class representative vectors may be quite
different from the mean class vectors and a higher number of
iterations are required.

In the above described procedure we assume that the rank
of S(f1;) is larger than D — d, i.e., the dimensionality of the
null space of S(fz;) is smaller than d, similar to [11]. This is
to make the trace ratio value finite. When the dimensionality
of the null space of S(fz;) is greater than d, i.e., greater than
the dimensionality of the resulted space, the optimal trace ratio
value goes to infinity. In this case a natural alternative solution
is to maximize the trace of the between scatter matrix, i.e., to

solve for mazxz Tr [WTgb([l,i)W], to find the appropriate

transform matrix in the null space of S,,(f;) [12].

where o} =

IV. TIME COMPLEXITY

Clearly, in the test phase, the time complexity of the
proposed approach is equal to that of the standard LDA- based
data projection, i.e., equal to O(dD). In order to calculate
the computational complexity of the proposed optimization
scheme in the training phase, we should consider the following
facts:

o The iterative optimization scheme is performed for T’

iterations, until convergence.

o Each of these T iteration involves the following two steps:

— Solution of the Trace Difference optimization prob-
lem.
— Adaptation of f1;,, i =1,...,C.

Since the complexity of fi; adaptation is lower compared to
that of the Trace Difference optimization problem solution, we
can conclude that the complexity of the proposed optimization
scheme is equal to 7' times the complexity of the trace
difference algorithm, i.e., O(T D?).

V. EXPERIMENTS

In this section, we present experiments conducted in or-
der to evaluate the proposed LDA optimization scheme. We
have conducted experiments on synthetic data, as well as
on publicly available data sets. In all these experiments, we
compare the performance of the proposed Reference Vector
LDA (RV-LDA) algorithm to that of the Ratio Trace LDA
(RT-LDA) and Trace Difference LDA (TD-LDA) algorithms.
In all the cases, classification is performed by employing a
modified nearest class centroid classification algorithm. That
is, a given test sample X;.s; iS projected to the decision
space by applying yiest = W*Tx,.q and is assigned to
the class of the nearest vector m; = W*Tﬂi by using the
Euclidean distance l;.; = arg min||m; —yest||2, 1 = 1, ..., C.

7

A parameter value € = 0.001 has been used for both the
Trace Difference LDA and the proposed Reference Vector
LDA algorithms. All the experiments have been run on a 32bit,
2.40GHz, 3.48GB PC, using a Matlab implementation.

A. Experiments on synthetic data

In our first set of experiments, in order to qualitatively
assess the impact of the proposed optimization scheme on
the representative class vector choice, we created two data
classes centered at pu; = [0,0]7, py, = [0,4]7, following
normal and uniform distributions, as illustrated in Figure 2.
As can be seen in this Figure, in the case where the two
classes follow normal distributions having the same covariance
structure (Figures 2a,b) only three iterations are sufficient for
the convergence of the proposed iterative optimization scheme.
The obtained representative class vectors fi,, + = 1,2 are
quite similar to the mean class vectors. In the cases where
the LDA assumptions are not met, i.e., in the case where the
two classes do not have the same covariance structure (Figure
2¢) or the two classes follow uniform distributions (Figure
2d) the representative class vectors are quite different from
the mean class vectors, while a higher number of iterations, 5
and 6 respectively, are required for convergence.

B. Experiments on Standard Classification Problems

We have conducted experiments on publicly available classi-
fication data sets coming from the machine learning repository
of University of California Irvine (UCI) [13]. Table I provides
information concerning the data sets used. This table, also,
includes two factors R, F' related to the LDA assumptions
for each data set. We have used the Shapiro-Wilk parametric
hypothesis test of composite normality, in order to determine if
the null hypothesis of composite normality of data along each
class principal direction is a reasonable assumption, according
to a significance level o = 0.05. R is the mean ratio of
the number of class principal directions following normal
distribution to the total number of class principal directions.
A value R ~ 1 denotes that the class data follow normal
distributions, while a value R ~ 0 denotes that the data
along most class principal directions do not follow a normal
distribution. Furthermore, we calculated the Frobenius norm F'
of the difference of covariance matrices referring to different
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Fig. 2. 2D data forming two classes, mean class vectors p; (asterisks), obtained representative class vectors [i; (triangles) and Jo values obtained by
applying the proposed optimization scheme: a) normal distributions of 1000 samples each, b) normal distributions of 1000 and 500 samples, ¢) normal
distributions of 1000 samples each with different covariance structure and d) uniform distributions of 1000 samples each.

TABLE I
UCI DATA SETS DETAILS.

Data set Samples | Dimensions | Classes R F
Australian 690 14 2 0.5714 | 2.0726
German 1000 24 2 0.1667 | 14.3162
Heart 270 13 2 0.5 26.1194
Indians 768 8 2 0.125 591.145
Ionosphere 351 34 2 0.6764 0.049
Iris 150 4 3 1 0.0653
Letter 20000 16 26 0.1995 1.3529
Madelon 2600 500 2 0.941 15.7274
Relax 182 12 2 0.7917 | 0.0157
Sat 6435 64 6 0.8796 | 64.6407
Spect 267 22 2 0.2955 | 0.0234
Spectf 267 44 2 0.7614 | 22.0091
Tic-tac-toe 958 9 2 0.2222 0.0479
Vertebral2c 310 6 2 0.25 160.149
Wine 178 13 3 0.7436 1.2096

classes, normalized with respect to the number of classes and
data dimensions. A value F' ~ 0 denotes that the classes
forming a data set have the same covariance structure, while
a value F' > 0 denotes that the class covariance structure is
quite different.

The 5-fold cross-validation procedure has been performed
for the standard RT-LDA, the TD-LDA and the proposed RV-
LDA algorithm. The mean classification rate over all folds has
been used to measure the performance of each algorithm in one
experiment. 100 experiments have been performed for each
data set. The mean classification rates, the observed standard
deviations over all experiments and the mean training time
for all three methods, as well as the mean optimal Fisher ratio
values for the standard LDA (6) and the proposed RV-LDA
(9) algorithms are illustrated in Table II. By observing this
Table, it can be seen that the proposed RV-LDA algorithm
outperforms the TD-LDA algorithm in all the cases and
outperforms the RT-LDA algorithm in all but three cases.
Furthermore, it can be seen that, in the cases where the
Fisher ratio is low, meaning that the classes are not well

separated in the projection subspace, the proposed RV-LDA
algorithm supplies consistently better results. Finally, we see
that the optimal choice of the representative class vectors leads
to a much bigger trace ratio, and, hence to increased class
separability in the projection space. In order to compare the
computational cost of the TD-LDA and the proposed RV-LDA
algorithms, the mean number of iterations 7' required for the
convergence of the RV-LDA algorithm is, also, provided.

C. Experiments on Human Action Recognition

We have conducted experiments on a publicly available
human action recognition database, named AITA-MOBISERV
eating and drinking database [14]. 12 persons were recorded
during four meals, each in a different day. The persons eat
using spoon, cutlery and fork and drink from a cup or a glass.
Several actions, such as slicing food and rest appear between
eating and drinking periods. That is, a three-class classification
problem can be formulated containing the action classes: "eat’,
’drink’ and ’apraxia’. We have employed the dyneme-based
action representation [15] for action description.

The Leave-One-Person-Out cross-validation procedure has
been performed for the RT-LDA, the TD-LDA and the pro-
posed RV-LDA algorithms. That is, the algorithms have been
trained multiple times (folds) by using the action videos
depicting all but one persons in the database and tested by
using the action videos of the remaining person. Twelve folds,
one for each test person, have been performed in order to
complete an experiment. The mean correct classification rate
over all folds has been used to measure the performance
of each algorithm in one experiment. 100 experiments have
been performed, in order to assess the performance of the
three LDA-based classification schemes. This procedure has
been repeated 10 times, for different numbers of dynemes
K =5k, k=1,...,10, as illustrated in Figure 3.

As can be seen, the proposed RV-LDA algorithm outper-
forms both the RT- and the TD-LDA algorithms in most cases.
The best action classification rate (88.34%) has been obtained



TABLE I
COMPARISON RESULTS ON STANDARD CLASSIFICATION PROBLEMS.

Classification Rate (%) Computation Time
TrW?! S, W] TrW*T S, W*]
Data set T W T Sy V] T W TS W] T RT-LDA TD-LDA. RV-LDA RT-LDA | TD-LDA. RV-LDA
Australian 1.4866 2.4259 4.28 85.92 (+0.14) 84.05 (j:2.46) 84.81 (i2.42) 0.24ms 0.49ms 2.21ms
German 0.3501 1.501 4.31 72.09 (i0.53) 72.09 (j:().53) 76.53 (+0.53) 0.46ms 0.77ms 3.32ms
Heart 1.2343 2.2343 2.84 | 83.68 (:|:0.67) 83.68 (10.67) 83.81 (+0.67) 0.12ms 0.26ms 1ms
Indians 0.4402 1.4402 5.09 75.87 (:|:0.52) 75.87 (10.53) 77 (+0.5) 0.21ms 0.32ms 1.63ms
Tonosphere 1.764 2.764 3.57 | 86.5 (+0.94) 86.5 (£0.94) 86.51 (+0.86) 0.47ms 0.7ms 2.5ms
Tris 16.522 25.037 4 | 97.85 (£0.39) | 97.39 (£0.5) | 98.11(£0.6) | 0.07ms | 0.1lms | 0.4dms
Letter 0.7446 1.4793 5.66 70.19 (+0.06) 57.5 (£0.07) 62.03 (£0.08) 65ms 68ms 38.54ms
Madelon 0.4253 1.4253 3.03 55.52 (:|:O.78) 55.52 (:t0.78) 55.53 (+0.78) 11.12s 14.28s 43.34s
Relax 0.0415 1.414 3.73 44.43 (:|:3.28) 44.41 (:t3.2) 69.9 (+1.26) 0.01lms 0.19ms 0.71lms
Sat 3.1324 7.9127 2.83 84.12 (£0.13) 73.41 (:i:(].5) 75.36 (:|:0.49) 4.29ms 7.7Tms 22.05ms
Spect 0.4167 1.4167 3.77 72.56 (:|:1.28) 72.56 (:t1.28) 81.77 (+1.67) 0.17ms 0.31ms 1.17ms
Spectf 0.4201 1.4201 3.27 | 66.11 (:|:2.01) 66.11 (:t2.01) 76.72 (+0.13) 0.42ms 1.2ms 3.93ms
Tic-tac-toe 0.069 1.07 5.89 | 57.72 (£0.77) | 57.72 (£0.77) 68 (£0.7) 0.26ms 0.29ms 1.71ms
Vertebral2c 0.5437 1.544 4.66 79.32 (:|:0.97) 79.29 (:t0.85) 83.32 (+0.93) 0.1ms 0.15ms 0.7ms
Wine 6.8345 9.8594 3.34 98.3 (£0.6) 92.37 (£1.03) 98.34 (+0.86) 0.11ms 0.32ms 1.07ms
1 TABLE III
9sf COMPARISON RESULTS ON THE ORL DATABASE OF FACES.
90
& e RT-LDA TD-LDA RV-LDA
s | 95.97% (£0.85) | 95.43% (£0.77) | 97.00% (L0.76)
['4
é 75
% 70
o VI. STATISTICAL SIGNIFICANCE ANALYSIS OF
" P EXPERIMENTAL RESULTS
TR
=5 L A The Friedman test was used, in order to test the null
hypothesis that all the three classifiers perform equally well
Fig. 3. Action classification rates on the AHA-MOBISERV database for — and the observed differences are merely random [17]. After

different values of k.

by using 50 dynemes and the RV-LDA algorithm. The best
action classification rates for the RT-LDA and the TD-LDA
algorithms have been obtained by using 30 and 50 dynemes
and are equal to 86.88% and 85.56%, respectively. Further-
more, it can be seen that the RV-LDA algorithm outperforms
both the RT-LDA and the TD-LDA algorithms in most of the
classification problems illustrated in Figure 3.

D. Experiments on Face Recognition

We have conducted experiments on a publicly available face
recognition database, namely ORL Database of Faces [16]. It
contains 400 images from 40 persons, each person is depicted
in 10 images. Each image has been downsized to 40 x 30
pixels for computation speed consideration and vectorized to
produce a 1200 dimensional facial vector. The dimensionality
of the facial vectors has been reduced by applying PCA
so that 90% of the energy is preserved. The 5-fold cross-
validation procedure has been performed for the RT-LDA, the
TD-LDA and the RV-LDA algorithms. The mean classification
rate over all folds has been used to measure the performance
of each algorithm in one experiment. 100 experiments have
been performed in total. The obtained mean classification rates
and the observed standard deviations over all experiments are
illustrated in Table III. As can be seen, the proposed RV-LDA
algorithm outperforms both the competing LDA algorithms.

ordering the algorithms according to their performance on each
data set, the obtained mean ranks are equal to Rrp = 2.0756,
Rrp = 2.7308 and Rry = 1.1932 for the RT-LDA, the TD-
LDA and the RV-LDA algorithms, respectively. The overall
mean rank is equal to R; = 2. The Friedman statistic is equal
to x% = 20.213 and Fp = 23.4574. With k = 3 classifiers
and N = 17 data sets, Fr is distributed according to an F
distribution with (3—1) = 2 and (3—1)x(17—1) = 32 degrees
of freedom. The critical value of F'(2, 32) for & = 0.05 is 3.32,
so we reject the null hypothesis that all the classifiers perform
the same.

Following the Nemenyi test for pairwise comparisons, we
obtain a critical value equal to 2.343 and, thus, the critical

difference is equal to CD = 2.343(/*®1 — (8284, By
calculating the differences between the ranks of the three
classifiers, we obtain Prr — Pry = 0.8824 > CD, Prp —
Pry = 1.5376 > CD and Prp — Prr = 0.6552 < CD.
Thus, the proposed RV-LDA performs significantly better than
the two competing ones, while the Ratio Trace LDA and the

Trace Difference LDA perform the same.

VII. CONCLUSION

In this paper, we presented an optimization scheme aiming
at the optimal class representation for LDA based data pro-
jection. By optimizing the LDA criterion with respect to both
the data projection matrix and the class representation in the
projection space, the optimal discriminant projection space, in
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Fig. 4. Ja(«) for different values of \*: a) \* = 0.4175 and b) \* =
2.0281.

terms of Fisher ratio maximization, is obtained. Experimental
results on synthetic and real data show that the proposed
optimization scheme increases class discrimination compared
to the standard LDA approach.

APPENDIX A

The proposed optimization scheme consists of two steps.
The first one, for given class representative vectors fi;, i =
1,...,C, determines the optimal parameter A* value and the
optimal projection matrix W*, while the second one updates
ft; by using the obtained \* and W*. Since the convergence
of the first step has been proven in [11], we focus on proving
the convergence of the second step.

Let us denote as S, ; and S,,; the scatter matrices corre-
sponding to the class representative vectors £, , calculated for
the t¢-th iteration of the proposed optimization scheme. (12)
can be written in the form:

Joli,,) = Tr [w;‘TS@tw;‘] — X Tr [w;‘Téw,th] .

Using (10), (11) and (A.1), the first derivative of jg(ﬂi,t)
with respect to fi; , can be expressed by:

aj? (p’i,t)

- =2N;W;W; "
Of; 4

(=) B+ Ap] - (A
8j2(p‘i,t)

ap’i,t ~
formed by the eigenvectors of S; = Sy 4

(1 _)\:)/:Li,t +)‘:/Li =0.

When solving for = 0 and by exploiting that W7 is

— ;'S¢ we obtain:

(A.2)

It is obvious from (A.2) that fi;, is in the direction of p,,
ie, ﬁzt = azp;, o € R. In Figure 4, we illustrate J2(ay)
for two choices of A}. As can be seen, J2(a), typically, has
two stationary points. The first one is its global minimum for
oy = 0, i.e., when fi; = p and, thus, Tr |[WiTS,W?| = 0
The second one is the global maximum, obtained by using a
value «] that corresponds to the optimal, in terms of J2(c)
maximization, representative class Vectors

By us1ng (3), (4) and setting b = Z Nl uTW*W*Tul,

= Z 1 TW* W;Tx;; and d = 22” 1 TW*W*T
., Tr |[Ws swwg} —c—d+band Tr [W:stwg -
b. By substituting fp,, = ozp; in (10), (11),
obtain T'r {WZ‘Tgw(at)WZ‘} = ¢ — aud + o?b and
Tr [W;‘st(at)w;f] -
T () with respect to oy is given by:

0J2(ar)  2aube — aibd
day (b — aud +c)?’

a?b. Thus, the first derivative of

AZb—aid+c¢>0. (A3)

By solving for %ﬁm = 0, two stationary points are

obtained, of; = 0, aj, = =. It is straightforward to show

that dj’-’((;”) > 0 and Lﬂ’”) < 0 and that Jo(ay) — 1
for iy — 4oo. That is, aﬂt, oy correspond to the global
minimum and maximum of [J>(c), respectively. Since we
aim at maximizing J>(ca;), the representative class vectors

3 o — *
are given by f1; ;1 = afpp;.
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