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Abstract—The state of the art classification methods which
employ non-negative matrix factorization (NMF) employ two
consecutive independent steps, the first one which performs data
transformation (dimensionality reduction) and the second one
which classifies the transformed data using classification methods,
such as nearest neighbor/centroid or support vector machines
(SVM). In the following, we focus on using NMF factorization
followed by SVM classification. Typically, the parameters of
these two steps, e.g. the NMF bases/coefficients and the support
vectors are optimized independently, thus leading to suboptimal
classification performance. In this paper, we merge these two
steps into one by incorporating maximum margin classification
constraints to the standard NMF optimization. The notion behind
the proposed framework is to perform non-negative matrix
factorization, while ensuring that the margin between the pro-
jected data of the two classes is maximal. The concurrent NMF
factorization and support vector optimization are performed
through a set of multiplicative update rules. In the same context,
the maximum margin classification constraints are imposed on
the NMF problem with additional discriminant constraints and
respective multiplicative update rules are extracted. The impact
of the maximum margin classification constraints on the NMF
factorization problem is addressed in the experiments section.
Experimental results in several databases indicate that the
incorporation of the maximum margin classification constraints
to the NMF and discriminant NMF objective functions improves
the accuracy of the classification.

Index Terms—Non-negative Matrix Factorization, Support
Vector Machines, Joint Optimization, Maximum Margin Clas-
sification

I. INTRODUCTION

Non-negative matrix factorization (NMF) is a popular
method for representing a non-negative matrix X ∈ ℜN×M ,
Xij ≥ 0 as a product of two other non-negative matrices:

X = ZH, (1)

where Z ∈ ℜN×L, Zil ≥ 0, H ∈ ℜL×M , Hlj ≥ 0. If we
consider the matrix X as a data matrix, whose j-th column is
the j-th element vector of dimension N , then the matrix Z can
be considered as a basis matrix, whose l-th column is the l-th
base vector of dimension N . The projection of the data to the
space defined by Z are the columns of the coefficient matrix
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H with dimension L. By choosing L << N we reduce the
dimensionality of the original data. Therefore, NMF is often
used as a data representation and dimensionality reduction
technique for mainly image data in various applications in
machine learning, computer vision and signal processing [1]-
[5]. In this case, each j-th column xj of matrix X represents
an image of N = Nx ×Ny pixels, scanned in a column-wise
manner.

NMF was first employed by Lee and Seung in [1] for
learning facial image parts and semantic text features. They
also introduced two sets of multiplicative update rules for the
estimation of the matrices Z and H in [6]. These update rules
are derived from the minimization of a cost function which
represents the error of the factorization. The factorization error
is computed by either the Frobenius norm:

∥X− ZH∥2F (2)

or the Kullback-Leibler divergence [1]:∑
ij

[
xij ln

(
xij∑
l zilhlj

)
− xij +

∑
l

zilhlj

]
(3)

The cost function is non-convex with respect to both variables
Z and H. However, it is convex with respect to either Z or
H. Therefore, the multiplicative update rules of [6] converge
to a local minimum of the cost function. An extensive study
on the convergence of the multiplicative update rules of NMF
is presented in [7].

After NMF is performed on the original data, classification
methods, such as Support Vector Machines (SVMs) [8], can
be applied on the projected data. SVMs find the hyperplane
in the high dimensional projection space, which has the
maximum distance to the closest projected data of each class.
This hyperplane is called a maximum-margin hyperplane.
Consequently, SVMs are maximum-margin classifiers. As in
the NMF case, SVMs optimize an objective function under
certain constraints. In the case of linear classification, the
formulation of the SVM optimization problem depends only
on dot products of the data. By applying the kernel trick,
the data are projected on a transformed feature space and the
dot products are substituted by a non-linear kernel function.
The maximum-margin hyperplane is still linear in the feature
space but forms a non-linear surface in the original data space,
hence achieving non-linear data classification. The number of
Support Vectors of SVM classifiers can be reduced by the
separable case approximation (SCA) algorithm [9]. SCA first
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computes Vapnik’s SVM solution on the training data. Then,
the training data are modified so that they become separable.
Finally, the SVM is recomputed on the modified training data.
Moreover, SVM has been combined with independent compo-
nent analysis (ICA) in [10], in order to perform dimensionality
reduction.

There are two ways for selecting the classification model.
In-sample and out-of-sample methods. The in-sample ap-
proach employs the same data set for model selection and
error estimation, while the out-of-sample approach employs
two separate sets for training and validating the classification
model. The majority of the classification models, including the
proposed one, are selected based on out-of-sample methods.
In [11], two in-sample methods for model selection and
estimation of the SVM error are introduced, based on the data-
dependent structural risk minimization (SRM), that outperform
out-of-sample methods in the case where only a small number
of data are available.

In the current state of the art methods, first data repre-
sentation methods are optimized, in a way that enhance data
separability and, then, classification methods are optimized in
order to discriminate the projected data classes, thus leading
in suboptimal classification performance. In this paper, we
address the problem of data representation and classification
optimization in a novel unified framework, i.e., our objective
is to find the NMF data projections which maximize the
classification accuracy of the SVM classifier. More precisely,
we combine the NMF optimization problem and the dual
formulation of the SVM optimization problem in a single
objective function, under the non-negativity constraints of
the NMF basis and coefficient matrices and the Lagrange
multipliers of the SVM. An auxiliary function is found and
minimized and multiplicative update rules for the NMF bases
and coefficients and the Lagrange multipliers of SVM are
extracted. Furthermore, we add the Fisher constraint of Dis-
criminant NMF (DNMF) [12] in the proposed framework,
leading to even more enhanced classification results.

The rest of the paper is organized as follows. Related works
in the field are presented in Section II. A review on the
theory of non-negative matrix factorization, discriminant non-
negative matrix factorization and support vector machines is
introduced in Section III. The proposed non-negative matrix
factorization algorithm with maximum margin classification
constraints is introduced in Section IV. The incorporation of
the maximum margin classification constraints to the problem
of discriminant non-negative matrix factorization is introduced
in Section V. Section VI presents the experimental results.
Finally, conclusions are drawn in Section VII.

II. RELATED WORKS

Several NMF modifications exist, which incorporate ad-
ditional constraints to the initial problem of NMF, in order
to enhance its discrimination ability. In [12] DNMF was
introduced, which adds the Fisher constraint to the original
cost function of NMF. The Fisher constraints maximize the
distance between the mean class values and minimize class
dispersion after data projection to the reduced dimensionality

space. Experimental results on a facial expression recognition
database showed that the basis images produced by the DNMF
algorithm comprise a parts-based representation of the face,
which corresponds better to the intuitive notion of facial
regions, e.g. lips, eyebrows, than their NMF counterparts
[12]. DNMF will be discussed more thoroughly in section
III. The Fisher constraint was also employed by Wang et al.
in [13]. They named their method Fisher NMF (FNMF). In
[14], the principal components analysis constraint, i.e., the
maximization of the coefficient matrix covariance, was added
to the formulation of NMF, creating the so called PCA-NMF
(PNMF). Similarly to the FNMF and the DNMF algorithms,
when applied to facial images, the PNMF basis images can
be interpreted as corresponding to facial regions. In [15],
the original data matrix X is first mapped into a higher
order reproducing Hilbert space by a non-linear polynomial
kernel transformation Φ(·) and, then, NMF is applied on the
produced feature space. The new cost function of the produced
polynomial kernel-NMF (PKNMF) is given by:

∥Φ(X)− ZH∥2F . (4)

This way, the non-negative constraints of the basis images
and the coefficients are maintained for features with non-linear
dependencies.

Instead of formulating multiplicative update rules, the min-
imization of the NMF cost function (2) may also be achieved
by employing projected gradient methods. Projected gradient
methods for the problem of NMF were first employed in [16].
In [17], projected gradients are used to solve the problem of
DNMF [12] with the difference that, instead of employing
the Fisher constraint to the projection coefficient matrix H
of the NMF algorithm, it is applied on the basis matrix Z, by
substituting H with ZTX. Projected gradients are also used in
[18], in order to extend the PKNMF algorithm for any kernel
function. Other approaches in solving the NMF optimization
problem include quadratic programming [19] or the gradient
projection conjugate gradient (GPCG) algorithms [20]. The
NMF computation of large-scale data sets is handled through
online learning. In [21] an online algorithm for learning
the NMF of large-scale datasets is introduced, called online
robust stochastic approximation (RSA) NMF (OR-NMF). At
each step, the method receives one new sample, computes its
projection onto the learned subspace and, then, updates the
NMF basis based on a RSA method.

Experimental results showed that the resulting basis images
often form a sparse image representation [1]. However, this
sparseness is not guaranteed [22]. Several methods have been
proposed, which incorporate sparseness constraints to the cost
function of NMF. The simple sparseness constraint used in [1]
is the L1-normalization of the basis vectors, i.e., to impose that
the sum of the columns of the basis matrix to be equal to 1.
A spatially localized NMF algorithm (LNMF) is introduced in
[23]. The constraints of LNMF impose that the resulting basis
vectors should be sparse and orthogonal to each other and the
coefficient matrix should be non-sparse. Therefore, the basis
matrix of LNMF is sparse and represents local image features.
In [22], the sparseness level of the base matrix Z is regulated
by measuring the relationship between the L1-norm and the
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L2-norm of its columns:

sparseness(zl) =

√
N −

(∑
i |zil|/

√∑
i z

2
il

)
√
N − 1

. (5)

The sparseness of the coefficient matrix H is regulated ac-
cordingly, by using the relationship between the L1-norm and
the L2-norm of its rows. Sparseness regularization constraints
were also imposed in [24], with additional prior information
incorporated into the basis features. A non-smooth NMF
(nsNMF) algorithm which imposes sparseness constraints is
introduced in [25]. The idea behind nsNMF is that, by forcing
non-negativity constraints to both the basis and coefficient
matrices, the factorization performance is reduced, leading to
bad data representation. nsNMF deals with this drawback by
adding a third non-sparse matrix S ∈ ℜL×L, called smoothing
matrix, to the factorization formulation:

X = ZSH, (6)

which enforces sparseness to both the bases and coefficient
matrices. The smoothing matrix is positive and symmetric
and regulates the level of sparseness to the bases and coeffi-
cient matrices. In [26], sparseness constraints are imposed on
the bases and coefficient matrices, by employing sequential
quadratic and second order cone programming. New multi-
plicative update rules for non-negative matrix factorization are
introduced in [27], by substituting the Frobenius norm in (2)
or the KL divergence in (3) with the Csiszár’s divergence.
Additional constraints, which regulate the sparseness of the
basis and coefficient matrices may also be added to these
methods.

In this paper, our objective is to find the NMF data projec-
tions which maximize the classification accuracy of the SVM
classifier. To our knowledge, the first and only other attempt
in combining NMF with SVM was introduced in [28]. The
differences between the proposed framework and the one in
[28] are:

a) we employ the dual formulation of SVM, which
is the traditional method for solving the problem
of SVM, instead of the primal problem of SVM
used in [28], which requires strong assumptions for
the derivation of the update rules of the coefficients
matrix,

b) we employ hinge-loss SVMs instead of the least-
squares SVMs used in [28].

III. REVIEW OF NMF AND SVM OPTIMIZATION
PROBLEMS

In this section we review the basic theory on NMF and SVM
optimization. More precisely, in Subsection III-A, we describe
the problem of NMF and how the multiplicative update rules
are derived. Furthermore, in Subsection III-B, we review how
the Fisher constraint is applied to NMF for the formulation of
Discriminant NMF (DNMF). Finally, we present the theory of
Support Vector Machines (SVM) in Subsection III-C. These
optimization problems form the current state of the art to be
used for comparisons with the proposed novel framework in
the experiments section.

A. The NMF algorithm

The objective of NMF is to find a pair of matrices Z ∈
ℜN×L, H ∈ ℜL×M , minimizing the cost function which
measures the Frobenius norm of error between the initial data
matrix X ∈ ℜN×M , xij ≥ 0, i = 1, . . . , N , j = 1, . . . ,M
and its approximation by a matrix product ZH:

arg min
zil,hlj

N∑
i=1

M∑
j=1

(
xij −

L∑
l=1

zilhlj

)2

, (7)

subject to the constraints:

zil ≥ 0, hlj ≥ 0 and
N∑
i=1

zil = 1, ∀l = 1, . . . , L. (8)

We notice that (7) is the element-wise formulation of (2).
Lee and Seung in [6] solved the optimization problem (7), by
using the Expectation-Maximization (EM) algorithm [29][30],
leading to the following multiplicative update rules:

h
(t+1)
lj = h

(t)
lj

∑N
i=1 xijz

(t)
il∑N

i=1

∑L
k=1 z

(t)
il z

(t)
ik h

(t)
kj

(9)

z
′(t+1)
il = z

(t)
il

∑M
j=1 xijh

(t+1)
lj∑L

k=1

∑M
j=1 z

(t)
ik h

(t+1)
kj h

(t+1)
lj

(10)

z
(t+1)
il =

z
′(t+1)
il∑N

i=1 z
′(t+1)
il

, (11)

where the upper scripts (t) and (t + 1) denote the t-th and
(t + 1)-th iteration. It is obvious from the above formulation
that, in each iteration, the updates (9)-(11) are performed
sequentially. Furthermore, another set of multiplicative update
rules is presented in [6], for minimizing of the Kullback-
Leibler divergence:

arg min
zil,hlj

N∑
i=1

M∑
j=1

[
xij ln

(
xij∑L

l=1 zilhlj

)
+

L∑
l=1

zilhlj − xij

]
,

(12)
subject to the constraints given in (8). The corresponding
multiplicative update rules, which are also derived by the EM
algorithm, are given by (11) and:

h
(t+1)
lj = h

(t)
lj

∑N
i=1 z

(t)
il

xij∑L
l=1 z

(t)
il h

(t)
lj∑N

i=1 z
(t)
il

(13)

z
′(t+1)
il = z

(t)
il

∑M
j=1 h

(t+1)
lj

xij∑L
l=1 z

(t)
il h

(t+1)
lj∑M

j=1 h
(t+1)
lj

. (14)

According to [6], the two sets of multiplicative update rules
converge to a locally optimal matrix factorization.

B. The DNMF algorithm

Additional constraints were imposed in [12] on the NMF
optimization problem, in order to enhance data discrimination.
DNMF is motivated by Fisher’s linear discriminant and aims
at minimizing the trace of the within-class scatter matrix SW

and maximizing the trace of the between-class scatter matrix
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SB of the projected data. Given that the columns hc
j of the

coefficient matrix H define the projected data, which belong
to class c, the matrices SW and SB are defined by:

SW =
C∑

c=1

Mc∑
j=1

(hc
j − h̄c)(h

c
j − h̄c)

T (15)

SB =

C∑
c=1

Mc(h̄c − h̄)(h̄c − h̄)T , (16)

where C denotes the total number of classes, Mc is the
cardinality of the data class c, h̄c is the mean vector of class c
and h̄ is the mean vector of all classes. Finally, the objective
function of DNMF is defined by:

arg min
zil,hlj

N∑
i=1

M∑
j=1

[
xij ln

(
xij∑L

l=1 zilhlj

)
+

L∑
l=1

zilhlj − xij

]
+γtr[SW ]− δtr[SB ], (17)

where tr[A] defines the trace of matrix A. The parameters
γ and δ determine the weight of the discriminant constraints
tr[SW ] and tr[SB ] in the factorization problem. The classical
NMF problem is a subcase of (17) for γ = 0 and δ = 0.
More details on the choice of γ and δ can be found in [12].
Since SW and SB depend only on the columns of matrix H,
the multiplicative update rules for the basis matrix Z remain
the same with that of NMF algorithm, namely equations (14),
(11). The update rule of H can be found by employing the
EM algorithm:

h
(t+1)
lj =

T1 +
√

T 2
1 + 4T2h

(t)
lj

∑
i z

(t)
il

xij∑
l z

(t)
il

h
(t)
lj

2T2
, (18)

where T1, T2 are given by:

T1 = (2γ+2δ)

 1

Mc

Mc∑
k,k ̸=j

hlk

−2δ
1

M

M∑
k,k ̸=j

hlk−1, (19)

and
T2 = 2γ − (2γ + 2δ)

1

Mc
+ 2δ

1

M
. (20)

C. Support Vector Machines

Let us consider a set D = {{xj , yj}, j = 1, ...,M,xj ∈
ℜN , yj ∈ {−1, 1}} of M training data, where xj denote the
data points and yj the corresponding labels. Our objective
is to separate the positive data points from the negative
ones, by finding the maximum-margin hyperplane, i.e., the
hyperplane, whose distance from the nearest points of each
class is maximal. Let us consider the vector w ∈ ℜN , which
is normal to the hyperplane and the constant b, such as |b|/∥w∥
is equal to the perpendicular distance between the hyperplane
and the origin. The objective of SVM is the minimization of:

argmin
w

1

2
∥w∥2 (21)

subject to the constraint:

yj(w
Txj − b)− 1 ≥ 0,∀j = 1, . . . ,M. (22)

The mathematical analysis on the derivation of the objective
function of SVM can be found in [8]. A point xj is called a
support vector, if the equality in (22) holds. Intuitively, support
vectors are the points whose removal from the training data set
would change the maximum-margin hyperplane. The solution
to the problem of SVM is found by minimizing the Lagrangian
function:

argmin
w,b

max
aj

1

2
∥w∥2 −

M∑
j=1

ajyj(w
Txj − b) +

M∑
j=1

aj

 ,

(23)
subject to aj ≥ 0, where aj denote the Lagrange multipliers.
By computing the Karush-Kuhn-Tucker (KKT) conditions and
substituting them to equation (23) we extract the Wolf dual
formulation:

argmax
aj


M∑
j=1

aj −
1

2

M∑
j=1

M∑
k=1

ajakyjykx
T
j xk

 , (24)

or equivalently:

argmin
aj

1

2

M∑
j=1

M∑
k=1

ajakyjykx
T
j xk −

M∑
j=1

aj

 . (25)

We notice that equation (25) is a non-negative quadratic
programming problem, which depends only on the Lagrange
multipliers aj . After we find the Lagrange multipliers, the
maximum-margin hyperplane w and the margin b are esti-
mated by using the following equations:

w =

M∑
j=1

ajyjxj (26)

b =
1

n(MSV )

∑
j∈MSV

(wTxj − yj), (27)

where MSV is the set of the indices of the support vectors and
n(MSV ) is their number. Finally, the decision about the class
of a testing sample x is computed by the decision function:

sign(wTx+ b). (28)

IV. JOINT NMF AND SVM OPTIMIZATION

In conventional methods, first the NMF algorithm is applied
on the data and then, SVM is performed on the projected data,
for the final data classification decision. In this section, we
explore how the classification decision of SVM can influence
the NMF factorization, in order to enhance the performance of
a cascaded NMF/SVM framework. Intuitively, we want to find
a base Z, so that the projected data hj belonging to the two
classes minimize the reconstruction error of the original data
xj and they are separated with maximum margin by a certain
hyperplane w =

∑M
j=1 ajyjhj , which lies in the span of the

projected data, according to the representer theorem [31].
In the standard NMF/SVM approach, first we solve the

optimization problem given by (12) under the constraints (8)
and, then, we solve the optimization problem in (25) where
we replace the train data xi with the NMF projections hj . By
combining the two optimization problems (12), (25) in one,
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we formulate a novel cost function, which must be minimized
with respect to both zil, hlj and aj :

F (zil, hlj , aj) = λ
∑N,M

i,j

[
xij ln

(
xij∑

l zilhlj

)
+
∑

l zilhlj − xij

]
+
1

2

M∑
jk

akajykyj

L∑
l

hljhlk −
M∑
j

aj (29)

subject to the constraints:

zil ≥ 0, hlj ≥ 0, aj ≥ 0, and
N∑
i=1

zil = 1, ∀l = 1, . . . , L.

(30)
The factor λ in the NMF part of the cost function initially
has a large value and then decreases at each iteration. This
way, during the first iterations, the algorithm gives increased
weight to the data representation, whereas, as time passes,
its weight decreases exponentially according to λ0/(1 + e)t,
where t is the iteration number. Parameter e << 1 regulates
the decrease rate, hence increasing the importance of the SVM
part of the objective function. By employing the EM algorithm,
the following theorem holds for the optimization problem (29):

Theorem 1: The cost function F (zil, hlj , aj) (29), subject
to the constraints (30), is non-increasing under the following
iterative update rules:

h
(t+1)
lj =

−λ+

√√√√λ+4
∑

k B+
jkh

(t)
lk

(
λ
∑

i xij
zil∑

m zimh
(t)
mj

+
∑

k B−
jkh

(t)
lk

)
2
∑

k B+
jkh

(t)
lk

h
(t)
lj

(31)

z
′(t+1)
il =

∑
j

xij
hlj∑

m z
′(t)
im hmj

1∑
j hlj

z
′(t)
il (32)

z
(t+1)
il =

z
′(t+1)
il∑N

i=1 z
′(t+1)
il

(33)

a
(t+1)
j =

1 +
√
1 + 4

∑
k A

+
jka

(t)
k

∑
k A

−
jka

(t)
k

2
∑

k A
+
jka

(t)
k

a
(t)
j ,(34)

where Ajk = yjyk
∑

l hljhlk, A+
jk = max(Ajk, 0), A−

jk =

max(−Ajk, 0), Bjk = ajakyjyk, B+
jk = max(Bjk, 0), B−

jk =
max(−Bjk, 0).

Since the cost function F (zil, hlj , aj) cannot be minimized
directly, the proof of Theorem 1 is based on the minimiza-
tion of three auxiliary functions G(zil, z

(t)
il ), G(hlj , h

(t)
lj ) and

G(aj , a
(t)
j ). Before we proceed to the proof of Theorem 1 we

need to write the following preliminary propositions. Their
proofs are included in Appendix A.

Proposition 1: The cost function F (zil, hlj , aj) (29) subject
to the constraints (30) is convex with respect to either zil, hlj ,
or aj .

Let us define the functions F (zil) =
F (zil, hlj , aj)|hlj ,aj=constant, F (hlj) =
F (zil, hlj , aj)|zil,aj=constant and F (aj) =
F (zil, hlj , aj)|zil,hlj=constant. Then Proposition 1 implies
that the functions F (zil), F (hlj) and F (aj) are convex.

Definition 1: The function G(hlj , h
(t)
lj ) is an auxiliary func-

tion for F (hlj) if G(hlj , h
(t)
lj ) ≥ F (hlj) and G(hlj , hlj) =

F (hlj).

Theorem 2: If G(hlj , h
(t)
lj ) is an auxiliary function for the

cost function F (hlj), then the minimization of G(hlj , h
(t)
lj )

with respect to hlj leads to minimization of F (hlj). Conse-
quently, F (hlj) is monotonically decreasing under the update
rule:

h
(t+1)
lj = argmin

hlj

{G(hlj , h
(t)
lj )}. (35)

The proof of Theorem 2 can be found in [32].
Proposition 2: The function:

G(aj , a
t
j) = λ

∑
ij

[
xij ln

(
xij∑
l zilhlj

+
∑
l

zilhlj − xij

)]

+
1

2

∑
jk

A+
jka

t
k

at
j

a2
j −

1

2

∑
jk

A−
jka

t
ja

t
k

(
1 + ln

ajak

at
ja

t
k

)
−

∑
j

aj , (36)

where Ajk = yjyk
∑

l hljhlk, A+
jk = max(Ajk, 0) and

A−
jk = max(−Ajk, 0), is an auxiliary function for the cost

function F (aj).
Proposition 3: The function:

G(zil, z
t
il) = λ

∑
ij

(xij lnxij − xij)

−
∑
ijl

xij
ztilhlj∑

m ztimhmj

(
ln zilhlj − ln

ztilhlj∑
m ztimhmj

)

+
∑
ijl

zilhlj

+
1

2

M∑
jk

akajykyj

M∑
l

hljhlk −
M∑
j

aj (37)

is an auxiliary function for the cost function F (zil).
The proof of Proposition 3 is derived by the proof of the

update rule of zil in NMF which can be found in [6].
Proposition 4: The function:

G(hlj , h
t
lj) = λ

∑
ij

(xij lnxij − xij)

−
∑
ijl

xij

zijh
t
lj∑

m zimht
mj

(
ln zilhlj − ln

zilh
t
lj∑

m zimht
mj

)

+
∑
ijl

zilhlj

+
1

2

∑
ljk

B+
jkh

t
lk

ht
lj

h2
lj

−1

2

∑
ljk

B−
jkh

t
ljh

t
lk

(
1 + ln

hljhlk

ht
ljh

t
lk

)
−
∑
j

aj (38)

where Bjk = ajakyjyk, B+
jk = max(Bjk, 0) and B−

jk =
max(−Bjk, 0) is an auxiliary function for the cost function
F (hlj).

Propositions 2, 3 and 4 prove that the functions (36), (37)
and (38) are auxiliary functions for the cost function (29) with
respect to aj , zil and hlj , respectively. Therefore, the iterative
update rules are extracted by setting the partial derivatives of
the auxiliary functions to zero. The derivation of the update
rules is given in Appendix B.
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The multiplicative update rules of Theorem 1 are computed
sequentially for every iteration, until the convergence of the
cost function. Experimental results in image databases showed
that the cost function converges to a local minimum in approx-
imately 1000 iterations. The classification results are sensitive
to λ. Typical values for λ0 and e are λ0 = 100 or 1000 and
e = 10−2. When the algorithm stops, the training data are
projected to the space defined by the extracted basis matrix
Z, either by using the pseudo-inverse Z† = (ZTZ)−1ZT , the
transpose ZT , or with more iterations of (31). Then, the new
projections of the data are used in equations (26) and (27) in
order to compute the resulting maximum-margin hyperplane
and the margin, respectively. Finally, the test data are classified
according to equation (28).

V. JOINT DNMF AND SVM OPTIMIZATION

The joint DNMF and SVM cost function is the following:

F (zil, hlj , aj) = λ
∑N,M

i,j

[
xij ln

(
xij∑

l zilhlj

)
+
∑

l zilhlj − xij

]
+γtr(SW )−δtr(SB)+

1

2

M∑
j,k=1

akajykyj
∑
l

hlkhlj −
∑
j

aj ,

(39)
where the within-class and the between-class scatter matri-

ces SW , SB are given by (15) and (16), respectively. Since
the additional terms in (39) depend only on hlj , the update
rules of zil and aj remain unchanged. The new update rule of
hlj is given by:

hlj =
−T2+

√
T 2
2 +4T3

[
λ
∑

i xij

zilh
t
lj∑

m zimht
mj

+
∑

k B−
jkh

t
jlh

t
lk

]
2T3

,
(40)

where:

T2 = λ− 2γ 1
Mr

∑Mr

k=1,k ̸=j hlk − 2δ 1
Mr

∑Mr

k=1,k ̸=j hlk + 2δ 1
M

∑M
k=1,k ̸=j hlk

(41)
and:

T3 =
∑
k

B+
jkh

t
lk

ht
lj

+2γ

(
1− 1

Mr

)
−2δ

(
1

Mr
− 1

M

)
, (42)

as proven in Appendix C. When the algorithm stops, the
training data are projected on the space produced by the basis
matrix Z, the maximum-margin hyperplane w and the margin
b are estimated from (26) and (27) and the classification
decision of the test data is extracted according to (28).

VI. EXPERIMENTAL RESULTS

In this section, we examine the influence of the SVM
constraint to the objective function of NMF and DNMF. At
first, we present an experimental analysis on synthetic data.
Then, the performance of the proposed methods is compared
with the performance of the standard algorithms in six UCI
databases. Furthermore, the proposed methods are employed
on the Cohn-Kanade database for facial expression recognition
and on the AIIA/MOBISERV database for eating and drinking
activity recognition.
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Fig. 1. Projections of (a) joint NMF/SVM and (b) disjoint NMF+SVM
iterative update rules

A. Synthetic Data

In this section, we analyze the proposed NMF/SVM algo-
rithm on synthetic data in the 10-dimensional space coming
from two classes, having Gaussian distributions with the same
covariance matrix I (the identity matrix), but different mean
vectors m1 = 10 · 110 and m2 = 11 · 110, where 110

is the 10-dimensional vector of ones, which ensure positive
data values. We notice that the two class samples are not
linearly separable and overlap. For the sake of visualization,
the chosen data are projected to the two-dimensional space.
For each class we generate 100 training samples. Furthermore,
we generate 75 samples of class 1 and 25 of class 2 for
testing. The scatter plot of the coefficient matrix H after 5000
iterations of the update rules and the produced maximum-
margin hyperplane are shown in Figure 1a. The maximum-
margin hyperplane is computed from equations (26) and (27),
where xj are the columns of H. We notice that the joint NMF
and SVM enforces the linear separation of the training data.
The classification accuracy in this case is 100%. In Figure 1b,
the corresponding projections of the simple NMF methods and
the resulting maximum margin hyperplane from the disjoint
SVM method are depicted. We notice that, in this state of the
art method, the projections H are no longer linearly separable.
The classification accuracy in this case is 95.5%.

In Figure 2a the norm of the cost function of the joint
NMF/SVM optimization problem is plotted. The plot shows
that the cost function converges exponentially to some local
minimum, which, in our case, is −217. Furthermore, the
convergence of the first part of the cost function which
corresponds to the cost of NMF and λ = 1 is shown in
Figure 2b. It converges exponentially, until it reaches the local
minimal value of 9030. The reason for which the cost function
of NMF does not converge to zero is the SVM constraint,
which dissociates the data of the two classes and prevents their
proper reconstruction through the NMF bases and coefficients.

B. UCI Databases

In this section, we test the performance of the proposed
NMF/SVM and DNMF/SVM methods in five UCI data sets
and compare them against the standard disjoint optimization
algorithms NMF+SVM and DNMF+SVM. We use the follow-
ing two-class UCI data sets: liver disorders, ionosphere, hill-
valley, Pima Indians Diabetes and Breast Cancer Wisconsin
(Prognostic).
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Fig. 2. (a) Plot of cost function (29) of joint NMF/SVM. (b) Plot of the first
part of the cost function of NMF/SVM which corresponds to the NMF error.

TABLE I
CLASSIFICATION ACCURACY (%) OF NMF+SVM, NMF/SVM,

DNMF+SVM AND DNMF/SVM ALGORITHMS FOR VARIABLE L FOR THE
LIVER DISORDERS DATA SET.

L NMF+SVM NMF/SVM DNMF+SVM DNMF/SVM
1 61.47 66.47 61.76 56.18
2 60.59 67.65 62.65 67.65
3 59.12 68.24 61.18 67.94
4 62.35 68.82 60.59 69.41
5 61.18 70.00 61.76 71.18
6 57.06 71.47 59.12 70.88

At first, we test the performance of the algorithms for vary-
ing dimensionality L of the projected data. For the experiments
we use the liver disorders data set [33]. The classification
performance is estimated through ten-fold-validation, i.e., the
data set is partitioned into ten subsets, the nine subsets are
used for training and the remaining for testing. The procedure
is repeated 10 times, for all combinations of training and
test subsets. At each iteration, the four factorization and clas-
sification algorithms NMF/SVM, DNMF/SVM, NMF+SVM,
DNMF+SVM are performed and their classification accuracies
are calculated. The final classification accuracy of each algo-
rithm is computed by averaging the classification accuracies
at each iteration. The classification accuracy for different
values of the reduced dimensionality L are shown in Table
I. We notice that the classification accuracy of the proposed
NMF/SVM and DNMF/SVM algorithms increases by in-
creasing dimensionality L. On the contrary, the classification
accuracy of the state of the art NMF+SVM and DNMF+SVM
methods does not seem to increase, as the dimension L
increases. We also notice that, for all checked values of L,
the proposed NMF/SVM method achieves better performance
than the corresponding state of the art NMF+SVM algorithm.
The same goes for the proposed DNMF/SVM vs the state
of the art DNMF+SVM methods. Finally, by comparing the
performances of the proposed NMF/SVM and DNMF/SVM
methods we notice that, NMF/SVM achieves better classifi-
cation performance, i.e., higher classification accuracy, than
DNMF/SVM when the dimensionality L of the projected data
is lower or equal to half the original data dimensionality
N = 6. On the contrary, when the dimensionality L increases,
DNMF/SVM achieves better performance.

Next, we test the general performance of the proposed and
the state of the art algorithms in four other UCI data sets.

TABLE II
CLASSIFICATION ACCURACY (%) OF NMF+SVM, NMF/SVM,

DNMF+SVM AND DNMF/SVM ALGORITHMS FOR SIX UCI DATA SETS

database NMF+SVM NMF/SVM DNMF+SVM DNMF/SVM

ionosphere 54.86±3.65 81.14±1.71 57.14±5.08 70.86±3.22
hill/valley 70.30±0.5 92.85±0.22 92.95±0.21 93.00±0.26
h/v noise 61.06±0.5 90.92±0.1 90.92±0.1 90.92±0.1

pima 80.53±8.41 86.84±3.67 85.26±3.91 71.58±8.58
wdbc 64.04±1.58 85.61±2.04 66.84±3.57 86.49±2.5
wpbc 94.74±0.94 98.95±0.42 97.89±0.7 97.89±0.7

Now, our goal is to compare the performance of the proposed
algorithms with their corresponding state of the art methods
for some L, in order to examine the effect of the imposition of
the maximum margin constraint to the classification accuracy.
For this reason, the weights γ and δ in the DNMF/SVM and
DNMF+SVM algorithms are held constant and equal to 0.1
and 0.05, respectively.

The first data set used is the Ionosphere data set [34],
where we reduce the dimensionality of the projected data from
N = 34 to L = 2. As in the liver data set, ten-fold-cross-
validation is employed for calculating classification perfor-
mance. The results are shown in the first row of Table II. We
notice that the mean classification accuracy of the state of the
art methods NMF+SVM and DNMF+SVM is low, due to the
very small dimensionality value L = 2. On the contrary, the
proposed NMF/SVM and DNMF/SVM methods achieve much
higher classification accuracy and smaller standard deviation,
especially NMF/SVM, whose error rate (18.86%) is less than
half that of the NMF+SVM algorithm (45.14%).

The second data set used is the Hill-Valley data set [33],
which contains artificial data of plots, which create either a
Hill (a bump in the terrain) or a Valley (a dip in the terrain).
The data dimensionality is N = 100. The data set has two
versions, one containing smooth plots and one containing plots
contaminated by noise. We perform the experiment to both
the noiseless and the noisy data sets ten times with different
initializations of matrices Z and H. The data dimensionality
is reduced to L = 10. The results are shown in the second and
third row of Table II. We notice that, in both cases of noisy and
noiseless data sets, the algorithms NMF/SVM, DNMF+SVM
and DNMF/SVM have similar standard deviation and the same
mean classification accuracy which is equal to 92.74% for
the noiseless case and 90.92% for the noisy case. On the
other hand, the classification accuracy of NMF+SVM is much
lower (70.30% and 61.06% for the noiseless and noisy cases,
respectively).

The third data set used is the Pima Indians Diabetes data
set [35] where we reduced data dimensionality from N = 8
to L = 2. The classification performance was calculated again
through ten fold cross validation. The experimental results are
given in the fourth row of Table II. We notice that the proposed
NMF/SVM method has higher mean classification accuracy
(86.84%) than the state of the art NMF+SVM (80.53%) and
smaller standard deviation. On the contrary, the proposed
DNMF/SVM algorithm has lower mean classification accuracy
(71.58%) than the state of the art DNMF+SVM. This is
the only case in our experiments, when the standard method
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predominates the proposed one.
Finally, the classification performance is tested on the

Breast Cancer Wisconsin (Prognostic) data set [36]. It consists
of two data sets: the Wisconsin Prognostic Breast Cancer
(WPBC) data set and the Wisconsin Diagnostic Breast Cancer
(WDBC) data set. In both data sets, ten fold cross validation
is performed, while the reduced dimensionality is L = 2.
The results are shown in the last two rows of Table II.
We notice that, in these data, the proposed algorithm has a
higher classification accuracy than the corresponding standard
algorithm, except once in the WPBC data set, where the
DNMF/SVM method achieves the same classification accuracy
with the DNMF+SVM method.

C. Cohn-Kanade Database

In this section, we test the performance of the proposed
NMF/SVM and DNMF/SVM algorithms in the problem of
facial expression recognition. In facial expression recognition,
our goal is the recognition of the six universal expressions, as
they were defined by Ekman [37]: anger, disgust, fear, happi-
ness, sadness and surprise. The experiments were conducted in
the Cohn-Kanade database [38]. The Cohn-Kanade database
was released in 2000. It consists of 486 image sequences
from 97 University students aged between 18 to 30 years,
performing the six universal expressions. Female students were
65% of the subjects, 15% were African-American and 3%
originated from Asia or Latin America. Each image sequence
starts from the neutral expression and evolves until it reaches
an expression apex. The expression apex is coded according
to the Facial Action Codding System (FACS) and is assigned
an emotion label that indicates the target expression (and not
the expression that was actually performed).

In our experiments we used the five-fold cross validation
method, i.e., each class data were partitioned into five com-
plementary subsets and, in each iteration (of the total five),
one subset was left for testing and the rest were used for
training. Since the proposed framework is a two-class one and
the experimental data are multi-class, we decompose the multi-
classification task into two-class classification sub-tasks, by
selecting 2-combinations from the set of 6 facial expressions.
For each sub-task we perform five-fold cross validation and,
finally, the overall classification accuracy of each method is
estimated by averaging the accuracies of each run. The size of
the initial images is 30× 40 pixels, meaning that the original
data dimensionality is N = 1200. In our experiment we
reduce the data dimensionality to L = 100. The first 25 basis
images of the proposed NMF/SVM and DNMF/SVM methods
and the standard NMF+SVM and DNMF+SVM methods are
depicted in Figure 3. From Figure 3 we notice that, for the
proposed NMF/SVM and DNMF/SVM methods, the basis
images sparseness is greater than that of NMF and lower than
that of DNMF. Finally, the error rates of the four methods are
shown in Table III. We notice that the highest classification
accuracy is achieved for the proposed DNMF/SVM method
(78.10%), followed by the standard DNMF+SVM method
(75.71%), while the proposed NMF/SVM algorithm with
classification accuracy 74.77% only marginally improves the

TABLE III
CLASSIFICATION ACCURACY (%) OF NMF+SVM, NMF/SVM,

DNMF+SVM AND DNMF/SVM ALGORITHMS FOR THE COHN-KANADE
DATABASE

NMF+SVM NMF/SVM DNMF+SVM DNMF/SVM
74.48% 74.77% 75.71% 78.10%

(a) (b)

(c) (d)
Fig. 3. A set of 25 basis images for (a) NMF/SVM, (b) NMF+SVM, (c)
DNMF/SVM, (d) DNMF+SVM.

accuracy of the corresponding NMF+SVM algorithm, which
is 74.48%

D. AIIA/MOBISERV database

In this section we test the performance of the proposed
NMF/SVM and DNMF/SVM algorithms in the problem of
activity recognition, namely eating and drinking activity recog-
nition. This problem is an important one in automatic nutrition
support/reporting systems for frail groups, such as patients
and elder population. The experiments were conducted in
the AIIA/MOBISERV eating and drinking activity recognition
database [39]. It consists of videos depicting 12 subjects, 6
male and 6 female, during four meal sessions recorded in four
different days. In each session, the subject performs eating and
drinking activities in all possible ways: eating with a spoon,
or a fork, knife and fork, with one hand, or with both hands;
drinking from a cup, or from a glass, or from a glass with
a straw. In each video, the skin color information is used, in
order to extract the area of the hands and face, creating binary
masks, as the ones shown in Figure 4. [40]. Finally, the Motion
History Images (MHI) [41] of each activity are extracted and
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(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 4. Masks of video frames depicting (a) eating with spoon, (b) eating
with knife and fork, (c) eating with fork, (d) eating with one hand, (e) eating
with two hands, (f) drinking from cup, (g) drinking from glass, (h) drinking
from glass with straw.

(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 5. MHIs of videos depicting (a) eating with spoon, (b) eating with knife
and fork, (c) eating with fork, (d) eating with one hand, (e) eating with two
hands, (f) drinking from cup, (g) drinking from glass, (h) drinking from glass
with straw.

down-scaled to 32 × 32 pixels. In total, 3969 MHIs where
created. Examples of these MHIs for each activity are depicted
in Figure 5.

Then, we tested the performance of the proposed algorithms
using the leave-one-day-out cross validation method: in each
iteration, we use the MHIs of three days for training and
the MHIs of the remaining day for testing. Finally, the
classification accuracy of the four methods are shown in
Table IV. We notice that the highest classification accura-
cies are achieved for the proposed NMF/SVM (79.42%) and
DNMF/SVM (79.30%) methods. The error of the standard
NMF+SVM (21.68%) is 5.34% higher than the one of the
proposed NMF/SVM method (20.58%), while the standard
DNMF+SVM has the lowest classification accuracy (64.60%).

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose novel multiplicative update rules
for performing joint non-negative matrix factorization and
maximum margin classification. We introduce two sets of
update rules. The first set incorporates the maximum margin
constraint in the objective function of the standard NMF. The
second set, incorporates the maximum margin constraint in the
objective function of discriminant NMF. Experimental results
in various real-data sets showed that the use of the maximum
margin constraint enhances the performance of the standard
factorization and classification framework.

An important variant of SVM classifiers are the kernel
SVMs, which perform classification of non-linear data. Kernel
SVMs employ the kernel trick for mapping the data on a
transformed feature space where, hopefully, the projected data
will be linearly separable. In this case, the inner product of the
data projections in (29) will be replaced by the kernel function.
However, the unknown form of the kernel prohibits us from
following the same procedure in order to derive closed-form

TABLE IV
CLASSIFICATION ACCURACY (%) OF NMF+SVM, NMF/SVM,

DNMF+SVM AND DNMF/SVM ALGORITHMS FOR THE
AIIA/MOBISERV DATABASE

NMF+SVM NMF/SVM DNMF+SVM DNMF/SVM
78.32% 79.42% 64.60% 79.30%

update rules for the data projections, as in the linear case.
This is a serious limitation of the proposed method. In this
case, other approaches such as the projected gradients can be
employed, for derivation of the update rules. Moreover, the
proposed framework can be extended for the case of joint
non-negative matrix factorization and multi-class maximum
margin classification. It has been proven that the Wolf dual
formulation of the linear multi-class SVM problem can be
written in quadratic form similar to (25) [42]. Therefore, the
extension of the proposed two-class framework on the multi-
class case is straight forward. These topics are the subject of
ongoing research.

APPENDIX A
PROOF OF PROPOSITIONS 1,2,4

A. Proof of Proposition 1:

A function F (x) is convex if and only if ∂2F (x)/∂x2 ≥ 0,
∀x ≥ 0. In our case, the following equations hold:

∂2F (zil)

∂z2il
= λ

∑
j

xijh
2
lj

(
∑

k zikhkj)
2 ≥ 0, ∀zil ≥ 0 (43)

∂2F (hlj)

∂h2
lj

= λ
∑
i

xijz
2
il

(
∑

k zikhkj)
2 + a2j ≥ 0, ∀hlj ≥ 0

(44)
∂2F (aj)

∂a2j
=

∑
l

h2
lj ≥ 0, ∀aj ≥ 0. (45)

Therefore, Lema 1 holds.

B. Proof of Proposition 2:

The proof of the second condition of Definition 1
G(aj , aj) = F (aj) is straightforward. In order to prove the
first condition, we compute the difference G(aj , a

t
j)−F (aj):

G(aj , a
t
j)− F (aj) =

1

2

∑
jk

A+
jka

t
k

atj
a2j−

−1

2

∑
jk

A−
jka

t
ja

t
k

(
1 + ln

ajak
atja

t
k

)
− 1

2

M∑
jk

Akjakaj . (46)

The proof of the positiveness of equation (46) can be found
in [43].

C. Proof of Proposition 4:

It is straightforward to show that G(hlj , hlj) = F (hlj)
which means that the second condition of definition 1 holds.
In order to prove the first condition, we write:

G(hlj , h
(t)
lj ) = G1(hlj , h

(t)
lj ) +G2(hlj , h

(t)
lj ), (47)
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where

G1(hlj , h
(t)
lj ) = λ

∑
ij

(xij lnxij − xij) −

−
∑
ijl

xij

zijh
t
lj∑

m zimht
mj

(
ln zilhlj − ln

zilh
t
lj∑

m zimht
mj

)
+

+
∑
ijl

zilhlj

, (48)

G2(hlj , h
(t)
lj ) =

1

2

∑
ljk

B+
jkh

t
lk

ht
lj

h2
lj −

−1

2

∑
ljk

B−
jkh

t
ljh

t
lk

(
1 + ln

hljhlk

ht
ljh

t
lk

)
−
∑
j

aj , (49)

and Bjk = ajakyjyk, B+ = max{B, 0}, B− =
−min{B, 0}. Accordingly, we write:

F (hlj) = F1(hlj) + F2(hlj), (50)

where

F1(hlj) = λ
∑N,M

i,j

[
xij ln

(
xij∑

l zilhlj

)∑
l zilhlj − xij

]
,

(51)

F2(hlj) =
1

2

M∑
jk

akajykyj

L∑
l

hljhlk −
M∑
j

aj (52)

=
1

2

L∑
l

M∑
jk

hljakajykyjhlk −
∑
j

aj (53)

=
1

2

L∑
l

M∑
jk

hljBhlk −
∑
j

aj (54)

=
1

2

L∑
l

h̃T
l Bh̃l −

∑
j

aj , (55)

where h̃l ∈ ℜM×1 denotes the vector whose elements are the
l-th row of matrix H. The proof will be complete if we show
that the following inequalities hold:

G1(hlj , h
(t)
lj ) ≥ F1(hlj) (56)

G2(hlj , h
(t)
lj ) ≥ F2(hlj). (57)

The proof of inequality (56) can be found in [6] and, for a
given l, the proof of inequality (57) can be derived by [43].

APPENDIX B
DERIVATION OF THE NMF/SVM UPDATE RULES

Update rule for Lagrange multipliers a:

∂G(a, at)

∂aj
= 0 (58)

∑
k

A+
jka

t
k

atj
aj −

∑
k

A−
jka

t
ja

t
k

1

aj
− 1 = 0 (59)

∑
k

A+
jka

t
k

atj
a2j − aj −

∑
k

A−
jka

t
ja

t
k = 0 (60)

at+1
j =

1 +
√
1 + 4

∑
k A

+
jka

t
k

∑
k A

−
jka

t
k

2
∑

k A
+
jka

t
k

atj (61)

Update rule for coefficient matrix H:

∂G(h, ht)

∂hlj
= 0 (62)

λ

[
−
∑
i

xij

zilh
t
lj∑

m zimht
mj

1

hlj
+
∑
i

zil

]
+

+
∑
k

B+
jkh

t
lk

ht
lj

hlj −
∑
k

B−
jkh

t
ljh

t
lk

1

hlj
= 0 (63)

∑
k

B+
jkh

t
lk

ht
lj

h2
lj + λ

∑
i

zilhlj −

−

[
λ
∑
i

xij

zilh
t
lj∑

m zimht
mj

+
∑
k

B−
jkh

t
ljh

t
lk

]
= 0 (64)

ht+1
lj =

λ+

√
λ+4

∑
k B+

jkh
t
lk

(
λ
∑

i xij
zil∑

m zimht
mj

+
∑

k B−
jkh

t
lk

)
2
∑

k B+
jkh

t
lk

ht
lj

(65)
Update rule for basis matrix Z:

∂G(z, zt)

∂zil
= 0 (66)

−
∑
j

xij
ztilhlj∑

m ztimhmj

1

zil
+
∑
j

hlj = 0 (67)

∑
j

hljzil −
∑
j

xij
ztilhlj∑

m ztimhmj
= 0 (68)

zt+1
il =

∑
j

xij
hlj∑

m ztimhmj

1∑
j hlj

ztil (69)

APPENDIX C
DERIVATION OF THE UPDATE RULES FOR DNMF/SVM

We shall use the EM algorithm. First, we prove that the
cost function (39) is convex with respect to hlj , meaning that
∂2F (hlj)

∂h2
lj

≥ 0. We consider that hc
lj belongs to class c. We

need to calculate the second order partial derivatives ∂2tr[SW ]
∂h2

lj
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and ∂2tr[SB ]
∂h2

lj
:

∂tr[SW ]

∂hc
lj

=
∂

∂hc
lj

tr

[
C∑

r=1

Mc∑
k=1

(hr
k − h̄r)(hr

k − h̄r)T

]

=
∂
∑L

l=1

∑C
r=1

∑Mc

k=1 (h
r
lk − h̄r

l )
2

∂hr
lj

=

L∑
l=1

C∑
r=1

Mc∑
k=1

∂(hr
lk − h̄r

l )
2

∂hr
lj

=

Mc∑
k=1,̸=j

∂(hc
lk − h̄c

l )
2

∂hc
lj

+
∂(hc

lj − h̄c
l )

2

∂hc
lj

=

Mc∑
k=1,̸=j

2(hc
lk − h̄c

l )

(
− 1

Mc

)
+

+ 2(hc
lj − h̄c

l )

(
1− 1

Mc

)
= 2(hc

lj − h̄c
l )−

1

Mc

Mc∑
k=1

2(hc
lk − h̄c

l )

= 2(hc
lj − h̄c

l )−
2

Mc

Mc∑
k=1

(hc
lk)−

2

Mc
(Mc · h̄c

l )

= 2(hc
lj − h̄c

l ), (70)
∂2tr[SW ]

∂hc2
lj

=
∂

∂hc
lj

[2(hc
lj − h̄c

l )] = 2

(
1− 1

Mc

)
≥ 0 (71)

where we used the equality h̄c
l = 1

Mc

∑Mc

k=1 h
c
lk, Mc the

number of elements of class c and C the total number of
classes,

∂tr[SB ]

∂hc
lj

=
∂

∂hc
lj

tr

[
C∑

r=1

Mr(h̄
r − h̄)(h̄r − h̄)T

]

=
∂

∂hc
lj

L∑
l=1

C∑
r=1

Mr(h̄
r
l − h̄l)

2

=
C∑

r=1

Mr
∂(h̄r

l − h̄l)
2

∂hc
lj

=

C∑
r=1, ̸=c

Mr
∂(h̄r

l − h̄l)
2

∂hc
lj

+Mc
∂(h̄c

l − h̄l)
2

∂hc
lj

=

C∑
r=1, ̸=c

Mr2(h̄
r
l − h̄l)

(
− 1

M

)
+ Mc2(h̄

c
l − h̄l)

(
1

Mc
− 1

M

)
= 2(h̄c

l − h̄l)−
2

M

C∑
r=1

Mr(h̄
r
l − h̄l)

= 2(h̄c
l − h̄l)−

2

M

C∑
r=1

Mrh̄
r
l +

2

M
Mh̄l

= 2(h̄c
l − h̄l) (72)

∂2tr[SW ]
∂hc2

lj
= ∂

∂hc
lj
[2(h̄c

l − h̄l)] = 2
(

1
Mc

− 1
M

)
≥ 0,

(73)

where we used the inequality h̄l = 1
M

∑C
r=1 Mrh̄

r
l . The

second order partial derivative of F (hlj) is then given by:

∂2F (hlj

∂hc2
lj

=
∑
i

xij

hc2
lj

+2γ

(
1− 1

Mc

)
−2δ

(
1

Mc
− 1

M

)
+a2jy

2
j

(74)
which is ≥ 0 for hlj ≥ 0 and Mc ≥ 1 + δ

γ . If we choose
γ ≥ δ then the second condition becomes Mc ≥ 2, which
means that in order for the convexity to hold each class must
have at least two samples. This restriction is very loose and it
is satisfied in all the conducted experiments.

We define the following auxiliary function (with respect to
hlj) for the cost function (39):

G(hlj , h
(t)
lj ) = λ

[∑
ij

(xij lnxij − xij)−

−
∑

ijl xij
zijh

t
lj∑

m zimht
mj

(
ln zilhlj − ln

zilh
t
lj∑

m zimht
mj

)

+
∑
ijl

zilhlj


+ γtr[SW ]− δtr[SB ] +

1

2

∑
ljk

B+
jkh

t
lk

ht
lj

h2
lj −

− 1
2

∑
ljk B

−
jkh

t
ljh

t
lk

(
1 + ln

hljhlk

ht
lj

ht
lk

)
−
∑

j aj .

(75)

The update rule for hlj is extracted by setting the partial
derivative of (75) to zero:

∂G(hlj , h
c(t)
lj )

∂hc
lj

= λ
∑
i

xij

zilh
ct
lj∑

m zimhct
mj

1

hc
jl

+ λ
∑
i

zil +

+ γ2(hc
lj − h̄c

l )− δ2(h̄c
l − h̄l) +

∑
k

B+
jkh

ct
lk

hct
lj

hc
lj

−
∑
k

B−
jkh

ct
ljh

ct
lk

1

hc
lj

=

[
2γ − 2γ 1

Mc
− 2δ 1

Mc
+ 2δ 1

M
+

∑
k

B+
jk

hct
lk

hct
lj

]
hc
lj

+

λ∑
i

zil − 2γ
1

Mc

Mc∑
k=1, ̸=j

hc
lk−

− 2δ
1

Mc

Mc∑
k=1, ̸=j

hc
lk + 2δ

1

M

M∑
k=1, ̸=j

hc
lk


+

[
λ
∑

i xij
zilh

ct
lj∑

m zimhct
mj

+
∑

k B−
jkh

ct
ljh

ct
lk

]
1

hc
lj

= 0

(76)

[
2γ

(
1− 1

Mc

)
− 2δ

(
1

Mc
− 1

M

)
+
∑
k

B+
jkh

ct
lk

hct
lj

]
hc2
lj +

+

λ∑
i

zil − 2γ
1

Mc

Mc∑
k=1, ̸=j

hc
lk −

− 2δ
1

Mc

Mc∑
k=1, ̸=j

hc
lk + 2δ

1

M

M∑
k=1, ̸=j

hc
lk

hc
lj +

+

[
λ
∑
i

xij

zilh
ct
lj∑

m zimhct
mj

+
∑
k

B−
jkh

ct
ljh

ct
lk

]
= 0 (77)
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By solving the second order polynomial equation (77) we
obtain the update rule given in (40).
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