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Abstract

In this paper, we present a view-independent action recognition method exploiting a
low computational-cost volumetric action representation. Binary images depicting the
human body during action execution are accumulated in order to produce the so-called
action volumes. A novel time-invariant action representation is obtained by exploiting
the circular shift invariance property of the magnitudes of the Discrete Fourier Trans-
form coefficients. The similarity of an action volume with representative action vol-
umes is exploited in order to map it to a lower-dimensional feature space that preserves
the action class properties. Discriminant learning is, subsequently, employed for fur-
ther dimensionality reduction and action class discrimination. By using such an action
representation, the proposed approach performs fast action recognition. By combining
action recognition results coming from different view angles, high recognition rates are
obtained. The proposed method is extended to interaction recognition, i.e., to human
action recognition involving two persons. The proposed approach is evaluated on a
publicly available action recognition database using experimental settings simulating
situations that may appear in real-life applications, as well as on a new nutrition support
action recognition database.

Keywords: Action Recognition; Action Volumes; Fuzzy Vector Quantization; Cluster
Discriminant Analysis

1. Introduction

Human action recognition is a very active research topic in computer vision, finding
applications in many important tasks, including visual surveillance, human—computer
interaction and games, model-based compression, augmented reality and semantic video
annotation. Human motion can be graded in several levels, depending on its complex-
ity. In this paper, we adopt the taxonomy used in [1], where an action refers to a
middle-level human motion pattern, such as walk or run. Depending on the number
of cameras used to obtain the visual information, action recognition techniques can be
categorized in single-view and multi-view ones [2]. Single-view methods utilize one
camera, while multi-view ones utilize a multiple camera setup. Most methods pro-
posed in the literature belong to the single-view category. Their main disadvantage is
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the assumption of the same view angle during both training and recognition phases,
which leads to a restrictive action recognition framework. If this assumption is not
met, their performance decreases. This is the well known view angle effect [3]. Using
multiple cameras, the human body is captured from multiple view angles, and, thus,
view-independent action recognition can be achieved. This advantage is mitigated by
the higher computational cost, as a result of the increased data need to be processed.

Action recognition is not a trivial task. Inter- and/or intra-class variations are usual
in action classes. An action recognition method should be able to take into account
variations in human body proportions, action speed and execution style, observed in
different people, when they execute the same action. At the same time, it should be able
to discriminate different action classes. Sometimes, such a discrimination is quite dif-
ficult, as execution style variations may result in one action, performed by one person,
being similar to another one performed by another person. Furthermore, the human
body may be (partially) occluded, which will result in poor human body visualization.
The position of the person, as well as his/her orientation should not be assumed a pri-
ori known. That is, the human body representation should be view-invariant and not
affected by the distance between the camera(s) and the person. Finally, the specifica-
tion of the adopted camera setup should not be restricted. Sometimes, the camera(s)
used in training and recognition phases may differ in resolution and frame rate. In the
cases where a multi-camera setup is used, synchronization errors might occur. Further-
more, a multiple camera setup may require camera calibration, which means that the
algorithms should be re-trained for different camera setups.

Actions are usually described by using either features based on motion information
and optical flow [4, 5], or features devised mainly for action representation [6, 7, 8, 9].
Although the use of such features leads to satisfactory action recognition results, their
computation is expensive. Thus, in order to perform action recognition at high frame
rates, the use of simpler action representations is required. Neurobiological studies
[10] have concluded that the human brain can perceive actions by observing only the
human body poses (postures) during action execution. Thus, actions can be described
as sequences of consecutive human body poses, in terms of human body silhouettes
[11, 12]. Such human body representation has also been widely used in the relating
task of human gait recognition [13, 14, 15, 16]. Such poses are obtained either by
applying image segmentation techniques, such as background substraction [17], or by
performing human body pose estimation on video frames. The result of this prepro-
cessing is the generation of binary human body images (human body silhouettes), such
as the one illustrated in Figure 1b. These images can either be seen as 2D human body
representations or in a multi-view setting, they can be be combined in order to produce
3D human body representations. By combining human body silhouettes depicting the
same body pose from different view angles, a 3D human body representation is ob-
tained, e.g. by calculating the corresponding visual hull. This approach is known as
shape from silhouettes [18] and requires a synchronized and calibrated camera setup.
An alternative approach is the use of 3D human pose estimation techniques [19]. A
3D human body pose is illustrated in Figure 1c. By simply concatenating the human
body silhouettes coming from different view angles, a multi-view human body pose is
obtained [20], like the one illustrated in Figure 2. This is a low-computational cost hu-
man body representation, which does not require a calibrated camera setup. However,



the cameras forming the camera setup should be synchronized.

By combining 2D human body postures coming from the same view angle, a 3D ac-
tion representation, in which the third dimension refers to time, can be obtained. When
accumulating 2D human body poses, Motion History Images (MHIs) [21] and Action
Volumes (AVs) [12] are obtained. MHIs are 2D grayscale images, in which the pixel
intensity is a function of time. AVs are 3D action representations, in which consecutive
human body poses are placed in consecutive volume sections. Finally, by combining
3D human body poses corresponding to subsequent time instances, a 4D action rep-
resentation can be obtained. By accumulating 3D human body poses Motion History
Volumes (MHVs) [22] are obtained, which is the 4D extension of MHIs. Figure 1d illus-
trates a MHI depicting a person running, while Figure 1e illustrates a MHV depicting a
person bending. A major disadvantage of volumetric action representations is their di-
mensionality. For example, an action depicted in a 20 frame video consisting 240 x 320
pixels video frames is represented by a 240 x 320 x 20 = 1536000-dimensional vec-
tor. Because the size all available action recognition databases is small, compared to
the dimensionality of volumetric action representations, these representations become
sparse, posing serious problems in action recognition accuracy.

After describing actions, most action recognition methods employ dimensionality
reduction techniques in order to reduce the action representation dimensionality and
enhance the action classes discrimination. Popular choices to this end include Lin-
ear Discriminant Analysis (LDA) [22, 23, 24] and Non-Negative Matrix Factorization
(NMF) [25, 26]. In the cases where multiple descriptions are provided, for example
in the case where actions are described by using two different action representations,
two approaches have been adopted. In the first one, the available action representa-
tions are concatenated in order to form a new, enhanced action representation, while
in the second one, the available action representations are employed in order to de-
termine a new, more discriminant, feature space for data projection and classification
[27, 28]. Finally, action class representation and classification of new, unknown, action
instances is performed in the reduced dimensionality feature space by employing su-
pervised classification schemes, such as Support Vector Machines (SVMs) [29, 30, 31],
Atrtificial Neural Networks (ANNSs) [32, 33], or Nearest Class Centroid based classifi-
cation [11, 20, 22].

In this paper, a novel view-independent method that exploits information captured
by a multi-camera setup is proposed. Binary human body silhouettes corresponding to
the same view angle are accumulated, in order to produce an AV-based action represen-
tation. Each AV is mapped to a vector denoting its similarity with representative AVs
determined in the training phase. This non-linear mapping results in a low-dimensional
action representation, which is further mapped to a lower-dimensional feature space,
in which action classes are more discriminant. We employ CDA to this end, in order to
handle the multimodality usually appearing in action classes. The proposed discrim-
inant action representation takes into account inter- and intra-class variations. In the
cases of high intra-class variations, the number of clusters forming an action class can
be high for better action class representation. At the same time, discriminant action
vectors belonging to different action classes are quite different in the decision space.
The use of a low-dimensional discriminant action representation results in fast and
accurate action recognition.



The proposed method provides view-independent action recognition. It can oper-
ate using one camera, or an uncalibrated multi-camera setup. In the case of multiple
cameras, action recognition results obtained from different view angles are combined
to form the final action recognition decision. By following this approach, the per-
son under consideration is not assumed to be visible from all the cameras forming the
recognition camera setup. The method assumes that the person can freely move at an
arbitrary distance from the camera(s) and that he/she is observed by an arbitrary num-
ber of cameras. The cameras forming the multi-camera setup may differ in resolution
and synchronization errors are proven not to affect its performance.

The main novel contributions of this paper are the following ones: a) we propose
a novel time-invariant volumetric action representation. We represent an action by a
fixed size AV. By exploiting the circular shift invariance property of the magnitude of
the Discrete Fourier Transform (DFT), we obtain a time-invariant action representation.
This means that the resulting action representation is independent of the action duration
and the initial human body pose. b) We propose a non-linear mapping for volumetric
action representation in a reduced dimensionality space, called AV space, that preserves
the action class properties. This space is determined by the training AVs. c) We propose
the use of CDA for dimensionality reduction in the AV space. By exploiting the CDA
properties, we obtain a discriminant low-dimensional action representation, which can
handle the action class multimodality. d) We show that the proposed method can, easily,
be extended in order to take into account interactions among two persons.

Compared with our previous work [34], the proposed multi-view action recognition
method has the following advantages: 1) in the proposed method each action video is
processed independently and, thus, the number of action videos used in the recognition
phase may vary. Furthermore, the number of training videos are much more than those
used in [34], avoiding the Small Sample Size (SSS) problem [35] that is related to sta-
tistical learning techniques, such as LDA and CDA. 2) The adopted camera setup needs
not to be synchronized. 3) The proposed method is extended to interaction recognition,
i.e., to human action recognition involving two persons. 4) An experimental study of
discriminant ability of different view angles in the proposed multi-view framework is
provided.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the recognition framework used in the proposed approach. Section 3 presents tech-
nical details that clarify the processing steps performed in the proposed method. Sec-
tion 4 presents experiments conducted for assessing the performance of the proposed
method. Finally, conclusions are drawn in Section 5.

2. Problem Statement

Let an arbitrary number of N > 1 cameras form a multi-view camera setup. Let
A ={ay,a1,...,an, } be an action class set consisting of N4 action classes, such as
"walk’, 'run’, “jump’, etc. Let a person, captured by 1 < N < N¢ cameras, perform
an action belonging to the action class set .A. This results to the production of N
videos depicting this person performing the same action from different view angles.
These videos are referred as action videos. A complete action period, e.g., a walking
step, is referred as elementary action. Action videos are split to smaller videos, each



depicting one elementary action. These videos are referred as elementary action videos.
Elementary actions differ in duration, e.g. a walk step is depicted in 9 — 15 video
frames in a 25 fps video depending on walk speed, whereas a bend sequence requires
at least 30 video frames per bend cycle. This is also observed in elementary action
videos depicting the same action performed by different persons, as well as different
elementary action videos depicting the same action performed by the same person in
different time periods. Thus, elementary action videos may differ in duration.

Action recognition is the recognition of an elementary action video set V = {uy,...,un},
consisting of NV elementary action videos depicting a person performing an elementary
action from N different view angles, to one of the action classes o, j = 1,..., N4.
Needless to say that the case where No = 1 refers to single-view action recogni-
tion, whereas N¢o > 1 refers to multi-view action recognition. It should be noted
that multi-view action recognition contains also the special case, when the algorithm
is trained using multiple cameras and recognition is performed using only one camera,
ie., No > 1and N = 1, e.g. when during testing the person is visible only by one
camera.

3. Proposed Method

3.1. Preprocessing

During the training phase, action videos coming from all N cameras depicting a
number of consecutive action periods are manually split in elementary action videos,
which are subsequently used to train and test the algorithm. In the case of continuous
action recognition, i.e., in action videos depicting multiple action instances, we adopt
the approach followed in [12]. That is, action videos are, automatically, temporally
split in smaller videos using a sliding window of an appropriately chosen length N .
Thus, overlapping action video segments are used to train the algorithm. In the test
phase, elementary action videos are obtained by using a sliding window consisting of
the same number of video frames V;, and action recognition is performed at each
sliding window position.

Image segmentation techniques are applied to the elementary action video frames
to create binary human body images (silhouettes). This is a low computational cost
human body representation which has been widely adopted by action, as well as gait,
recognition methods aiming at fast operation. In the cases where the obtained binary
masks are of low quality due to noise or inaccurate body segmentation, post-processing
techniques, such as morphological operations (erosion/dilation), filtering, or more ad-
vanced ones, can be applied in order to improve their quality. In cases where im-
age segmentation techniques cannot provide binary images of adequate quality, human
body posture/pose estimation techniques can be used in order to provide the human
silhouettes. These images are centered at the center of mass of the person mask. Then
the size of the maximal bounding box (ROI) that encloses the person body mask in the
various video frames of each elementary action video is determined. Binary images
of size equal to this maximal bounding box corresponding to each elementary action
video are created and rescaled accordingly to H x W pixels to produce binary posture
images of fixed size. Binary posture images corresponding to one elementary action



video are accumulated in order to produce an AV which represents this video. As AVs
may differ in size, they are rescaled to fixed size volumes containing H x W xT" pixels.
Essentially, this step is a low pass filtering procedure, which reduces the effect of the
local shape errors in the human body images. In the experiments presented in this pa-
per, we have used the values H = W = 32 and T' = 16. However, these values are not
restricted and one can create AVs of different size. We have experimentally found that
these values provide satisfactory action classification results, requiring a relatively low
computational cost. Figure 3a-h illustrate eight AVs representing elementary action
videos depicting the same person performing eight actions.

AVs are vectorized in order to produce action vectors p; € R?, Q = W x H x
T. This is done by representing the 7" binary images forming the AVs as matrices.
These matrices are column-wise vectorized and concatenated to produce the action
vector p; = [P, Pl -y P11, where p;j, j = 1,..., T denotes the vector produced
by vectorizing the j-th binary image belonging to the i-th AV. After vectorizing the
AVs, elementary action videos are represented by the corresponding action vectors p;.
However, by using the above described approach, elementary videos depicting action
instances of the same action class starting from different human body poses result in
different action vectors representation.

To ignore any temporal information concerning the starting frame of the elementary
action videos, we exploit the circular sift invariance property of the magnitudes of
Discrete Fourier Transform (DFT):

c 271k

Q-1
pik) =1 _pi(n)e ™ Z ", k=1,..,Q 1. (1)
n=0

That is, each AV is represented by a vector p; which contains the magnitudes of the
DFT of the corresponding action vector p;, which is referred as action vector hereafter.
It should be noted here that, by selecting the dimensionality of p; being power of 2,
DFT-based AV representation can be efficiently calculated using FFT. Furthermore, by
exploiting the symmetric property of the DFT transform for real-valued discrete-time
signals, the resulted p; can be reduced in dimensionality by exploiting only the first
D = (Q/2) + 1 DFT coefficients obtained by (1).

The dimensionality of this AV representation is high. For example, in our experi-
ments D = 8193. This will affect any procedure that will be used for action recognition
using this action representation [36]. In order to avoid this, we propose to perform a
non-linear mapping of the resulting action vectors to a lower-dimensional space, deter-
mined by the training AVs. This involves the determination of representative AVs and
the calculation of the similarity between action vectors and these representative AVs.
These procedures are described in subsections 3.2 and 3.3, respectively.

3.2. Calculation of Representative AVs

In the training phase, the AVs representing all Ny training elementary action videos
are clustered to K clusters, without using the available action and view angle la-
bels. This can be done by applying any clustering algorithm on the training AVs
[37, 38, 39, 40]. Spectral Clustering [41] has proven to be a clustering algorithm which
preserves the intrinsic data structure. Training action vectors p;, ¢ = 1,..., Ny are



assumed to form the nodes of a similarity graph (P, £), where P = {P1, D2, ..., PNy }
is the set of training action vectors and £ is a set of edges between the graph nodes.
The weights of the edges are calculated using a parametric monotonically decreasing
function f;;(0) = f(d(P;, P;), o), which measures the similarity between every pair
of action vectors. In our experiments, we used the Gaussian similarity function, i.e.,
fij(o) = erlo%Hz, where the value of o was empirically set to o = 0.25- ||p; — P, |2
The weights of the graph edges constitute a symmetric, non-negative matrix W. The
degree matrix D is defined as the diagonal matrix having entries D;; = Zf\fl fij (o).
Using W and D, the affinity matrix Q is calculated by Q = D~'W. Qisa Ny x Nr
matrix, which contains the neighboring information of the action vectors p; and can
be interpreted as the transition table of a random walk among the set of vertices P.
Spectral clustering performs eigenanalysis on Q and constructs a new N7 x K matrix
consisting of the K eigenvectors corresponding to the highest eigenvalues of Q. It has
been shown [41] that the rows of this matrix form a new representation of the training
AVs, which is more useful for clustering. After determining this representation, a K-
Means algorithm [42] is applied in order to assign each of the action vectors to one of
the K clusters. Finally, the K representative AV vectors vi, k = 1, ..., K are chosen
to be the mean vectors of each cluster.

The optimal number K of representative AVs is determined by applying the cross-
validation procedure [43]. This is a procedure used to determine the ability of a learn-
ing algorithm to generalize upon data it was not trained on. During its operation, the
algorithm is trained on all but some data, which are subsequently used for testing. An
experiment consists of multiple training and test cycles (folds). Depending on the data
used for testing, several cross-validation procedures exist. In order to determine the
ability of the proposed method to generalize upon action videos depicting different
persons, we perform the leave-one-person-out cross-validation. That is, at each fold
of the cross-validation procedure we used the elementary action videos depicting all
but one persons in the database. The remaining elementary action videos were sub-
sequently used for testing. This procedure was applied multiple times, equal to the
number of the persons appearing in the database, in order to complete an experiment.
The cross-validation procedure is performed for multiple values of K and the optimal
is the one providing the best action recognition accuracy.

3.3. Action Representation

After the representative AVs calculation, the fuzzy distances between the action
vectors p; and all the representative AVs vy, are calculated:
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q is the fuzzification parameter (¢ > 1). Its value is also determined by applying
the cross-validation procedure on the training action vectors p;. Each action vector is
mapped to a low-dimensional distance vector d; = [d;1, d;2, ..., d; K]T e RK, typically
K <« H x W x T. The resulting vector is subsequently normalized to produce the
membership vector u; € RE ie.,u; = &
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Finally, the membership vectors u; representing the training elementary action
videos are normalized to have zero mean and unit standard deviation. Membership
vectors of test elementary action videos are normalized accordingly.

3.4. CDA Projection

In order to discriminate action classes, the action class label information available
in the training phase is exploited. The dimensionality of training membership vectors
u; € RX canbe reduced to C' < K dimensions, using a discriminant subspace method.
As it was previously discussed, we expect that AVs belonging to the same action class
captured by different view angles will be quite different. Thus, the adopted dimen-
sionality reduction method should not set the assumption of unimodal action classes.
Cluster Discriminant Analysis (CDA) looks for a linear transform W,;, which maps
the membership vectors u; to a low-dimensional space, where the action classes are lin-
early separable. The dimensionality of the resulting space is equal to C' < b— 1, where
b is the total number of clusters of all action classes. By applying CDA, membership
vectors are mapped to the so-called discriminant action vectors s; = Wfptui e RC.
W, is determined as the linear transform minimizing Fisher criterion:

trace{®TS, ¥
Wope = arg mqiln trace{{\IlTS:}lIl;’ )

where S, is the within-class and Sy is the between-class scatter matrices. Let us denote
by b, the number of clusters inside the action class a;, by p?* the mean vector for the
k-th cluster of action class «; and set ¥ —1,if the i-th membership vector u; belongs
to the k-th cluster of «;, or zero otherwise. Then:
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The solution of (3) is given by the generalized eigenvalue decomposition of S;;1Sy.
W,,: consists of the eigenvectors which correspond to the largest eigenvalues. In our
experiments, we have used the eigenvectors corresponding to the b — 1 largest eigen-
values. However, one can use fewer eigenvectors for the discriminant action represen-
tation. After obtaining W ,;, each membership vector is mapped to the CDA space by
applying z; = \Il?;ptui. In this space, action class j is represented by the b; cluster
centers m/* = WL pik j =1 Na k=1,..,0b;.

Obviously, the number of clusters b; forming the action classes is not a-priori
known and, probably, differs among action classes. In order to automatically define
b;, several criteria have been proposed in the literature. In our experiments we fol-
lowed the procedure described in [44].

3.5. Action Recognition

To classify an unknown elementary action video containing V¢, _, binary images,
each binary image is centered to the person mask center of mass and binary posture
images of size equal to that of the maximum bounding box that encloses the person
body mask in all video frames are created and rescaled accordingly to H x W pixels



to produce binary posture images of fixed size. These Ny, , binary posture images
are accumulated to produce the corresponding AV, which is rescaled to a fixed size AV
consisting of H x W x T pixels. The action vector p;.s; is produced by vectorizing
the resulting AV and calculating the magnitudes of its DFT. The similarity of Psegt
with all the representative AVs is calculated and p¢.s; is mapped to the corresponding
distance vector dyes;, Which is subsequently normalized to produce the membership
Vector Ugest. Ugest 1S projected to the CDA space and the discriminant action vector
Stest 18 obtained. In this space, action classification can be performed by applying any
classification algorithm, such as SVM, ANN, Nearest Neighbor based classification,
etc. However, by assuming that the two previously performed dimensionality reduction
steps, i.e., FVQ and CDA projection, have successfully revealed the action classes
structure, s, is assigned to the action class label of the nearest cluster centroid using
the Euclidean distance, i.e.,:

Oltest = argmjinHmjk - Ztest||27 J = 17 "'aNA7 k= 17 7bj (5)

When multiple cameras are used in the action recognition procedure, multiple ele-
mentary action videos are produced, each capturing the elementary action from a dif-
ferent view angle. We perform action recognition to each elementary action video in-
dependently and we obtain multiple action recognition results. Finally, the recognition
results obtained for each view angle are combined, in order to classify the elementary
action to one of the action classes belonging to action class set A. To this end, we
perform a majority voting procedure over the recognition results provided by all the
available cameras. Figure 4 illustrates the procedure followed in the recognition phase.
It should be noted here that video frame resolution differences and synchronization er-
rors between the cameras forming the camera setup do not influence the performance
of the proposed method, as each elementary action video is processed independently.
Furthermore, the proposed multi-view approach does not require a calibrated camera
setup.

4. Experimental Results

In this section, we present experiments conducted on two action recognition databases,
in order to evaluate the performance of the proposed method. We perform multi-view
action recognition on the i3DPost eight-view action recognition database [45], by using
different experimental settings in order to demonstrate the ability of the proposed ap-
proach to address several issues that may appear in real applications. We show that the
proposed approach can easily be extended in order to recognize person interactions,
i.e., actions that involve two persons. Finally, we conducted experiments on a new
single-view nutrition support action recognition database, which has been created for
the needs of the European R&D project MOBISERV.

4.1. Experiments on the i3DPost multi-view database

The i3DPost multi-view action recognition database contains 80 high-resolution,
1920 x 1080 pixel, image sequences depicting eight persons (six males and two fe-
males) performing eight actions and two person interactions. The actions appearing



in the database are: walk’ (wk), ‘run’ (rn), ’jump in place’ (jp), ‘jump forward’ (jf),
’bend’ (bd), *fall’ (1), ’sit’ (st) and *wave one hand’ (wo), while the two interactions
are: ’hand shaking’ (hs) and ’pull’ (pl). An 8-view converging camera setup which
provides a 360° coverage of the capture volume, was used to capture each action se-
quence. The studio background was of uniform blue color. Binary body images were
extracted by thresholding the blue color in the HSV color space. Figure 5 illustrates an
example of eight synchronized frames of the i3DPost database.

4.2. Cross-validation on i3DPost multi-view database

The leave-one-person-out cross-validation procedure has been performed using the
elementary action videos depicting the eight persons performing the previously men-
tioned actions. Multiple experiments have been conducted for varying number of repre-
sentative AVs. Figures 6a,b illustrate the obtained mean action recognition accuracies
for different numbers of representative AVs and fuzzification parameter ¢ values, re-
spectively. As can be seen in Figure 6b, the performance of the proposed method is
quite stable concerning the value of g. Since we are interested to the best action classi-
fication performance, we use the value ¢ = 1.1 in all the experiments illustrated here-
after. In this Figure, we also present the mean action recognition accuracies obtained
by applying PCA to the action vectors p; for unsupervised dimensionality reduction
and LDA or CDA followed by nearest class, or cluster, centroid for recognition. The
horizontal axis, refers to the dimensionality of the action representation after applying
unsupervised dimensionality reduction. In the PCA case, it refers to the dimension-
ality of the projected action vectors in the PCA space, while in the case of AV-based
unsupervised dimensionality reduction procedure, it refers to the number of represen-
tative AVs. As can be seen, the PCA-based dimensionality reduction approach out-
performs the AV-based one in the cases of low-dimensionality feature space. A mean
action recognition accuracy equal to 91.67% was observed by mapping action vec-
tors p; to a 20-dimensional feature space by applying PCA and by performing action
recognition using CDA and 2 clusters per action class. The corresponding mean action
recognition accuracy for the LDA approach was equal to 89.95%, while the proposed
approach achieves recognition accuracy equal to 76.21%. In the same Figure, it can be
observed that the performance of AV-based unsupervised dimensionality reduction ap-
proach increases for higher AV space dimensionality. The best mean action recognition
accuracy, equal to 96.34%, was observed for 120 representative AVs and one cluster
per action class. This was expected, as by using a higher number of representative
AVs, actions can be described in more detail. This means that differences appearing
in human body proportions and action execution style are better preserved by using a
high number of representative AVs. Overall, the proposed approach outperforms the
competing ones (PCA+LDA, PCA+CDA).

Figure 7a illustrates the confusion matrix corresponding to the optimal parameters
of the proposed method. As can be seen, actions "walk’, run’, bend’, *fall’ and "wave
one hand’ are perfectly recognized, while the actions "jump in place’, ’jump forward’
and ’sit’ are confused. This is reasonable, as these three actions share a large num-
ber of human body poses. In Table 1, we compare the performance of the proposed
method with other state-of-the-art methods aiming at multi-view action recognition on
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the i3DPost database. As can be seen, the proposed approach achieves state-of-the-
art performance in this camera setting, providing 6 to 8% higher recognition accuracy
compared to other competing methods.

4.3. Recognition using different camera setups

In this experiment, we investigate the effect of using different camera setups in the
training and recognition phases. We have performed the leave-one-person-out cross-
validation procedure on the i3DPost database using the elementary action videos de-
picting the eight persons in the database for 120 representative AVs. The training
camera setup consisted of all eight available cameras. In the test phase, the employed
camera setup consisted of fewer cameras. The test camera setups and the mean action
recognition rates obtained for each experiment are illustrated in Figure 8a. As can be
seen, even with two cameras placed in arbitrary positions, mean action recognition rates
greater than 82.9% were observed. By using three cameras, this accuracy increased to
90.24%, when using four cameras having viewpoint angle at multiples of 90° a mean
action recognition accuracy equal to 91.46% was obtained.

4.4. Recognition at different video frame rates

To simulate the situation of recognizing actions using cameras at different video
frame rates between training and test phases, an experiment was set up as follows. The
leave-one-person-out cross-validation procedure has been performed on the i3DPost
database using the elementary action videos depicting the eight persons in the database
for 120 AVs. During one fold of this procedure, the elementary action videos depict-
ing seven persons were used to train the algorithm using their actual number of video
frames. In the test phase, the elementary action videos depicting the eighth person con-
sisted of fewer video frames, in order to achieve action recognition at lower frame rate.
We performed this experiment for various numbers of frame rate ratio (1) between the
training and testing elementary action videos. That is, the test to training video frame
rate was equal to %. This means that the test elementary videos were consisted by the
video frames satisfying n; mod R = 0, where n; denotes the frame number and mod
the modulo operator. Figure 6c¢ illustrates the results of this experiment. As can be
seen, a frame rate ratio equal to R = 2, i.e., when performing recognition using cam-
eras operating at 13 fps, while performing training using cameras operating at 25 fps,
causes only a moderate drop on the performance of the proposed method, as a mean
action recognition accuracy equal to 90.24% was observed. However, a frame rate ratio
equal to % i.e., when performing recognition at 8 fps, reduces the recognition accuracy
to 70.7%. This is reasonable, as when R > 2 the AVs representing the test elementary
action videos differ significantly from the ones used to train the algorithm.

4.5. Discriminant ability of different view angles

This experiment was performed in order to evaluate the action recognition abil-
ity at different view angles. We performed the leave-one-person-out cross-validation
procedure on the i3DPost database, using the elementary action videos depicting the
eight persons in the database for 120 representative AVs. At every fold of this proce-
dure, the elementary videos depicting seven persons of the database coming from all
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the eight cameras were used to train the algorithm. In the test phase, the elementary
videos depicting the eighth person from a specific view angle were used. That is, the
experimental setup No = 8 and N = 1 has been used. Figure 8b illustrates the results
of this experiment. As can be seen, the front and back view angles provide the poor-
est recognition accuracies (equal to 70.12% and 71.95%, respectively), while the side
views provide better recognition performance. The optimal view angle was found to be
the 350° side-view, which provided a recognition accuracy equal to 84.75%. It should
be noted though, that a simple majority voting procedure on these recognition results
increases the recognition accuracy to 96.34%, as mentioned in subsection 4.2.

4.6. Recognition of person interactions

The leave-one-person-out cross-validation procedure has been performed on the
i3DPost database using the elementary action videos depicting actions and interactions
between two persons. A mean recognition accuracy equal to 94.44% has been observed
for 160 representative AVs and one cluster per action class. The corresponding con-
fusion matrix is illustrated in Figure 7b. As can be observed, actions are not confused
with interactions. This is due to the fact that the AVs resulting from human interactions
are very different from the ones resulting from actions, as the first involve two hu-
man body silhouettes. Figures 3i,j illustrates AVs describing two human interactions.
Moreover, it can be observed that there is a confusion between the two interactions.
However, high recognition rates were observed even for these cases. As can be seen,
the proposed approach can be directly applied to recognize human actions as well as
interactions.

4.7. Experiments on eating and drinking action recognition

Eating and drinking action recognition is a very important task, e.g. for monitoring
the status of the elderly people in the early stages of dementia, while still living inde-
pendently, to proven dehydration. In the framework of EU R&D project MOBISERYV,
we created an eating and drinking action recognition database, depicting twelve per-
sons (six females and six males) taking a meal. A camera was placed at a distance of 2
meters in front of them. Two meals have been recorded, each for a different day. The
actions appearing in the database are: ’eat’, ’drink’ and ’apraxia’. Each action class
contains several subclasses. That is, action class ’eat’ contains the cases where the
persons eats using a cutlery, a fork, or takes a bite, while action class ’drink’ contains
the cases where the persons drinks using a cup, a glass, or a straw. Finally, action class
“apraxia’ contains the cases where the person is slicing food or chewing it. This is why
we named this action class "apraxia’, instead of ‘rest’.

Each person performed multiple instances of these actions at each meal. A color-
based image segmentation technique has been applied to the video frames in order to
create binary images depicting the head and the hands of the depicted person. Specif-
ically, the video frames were converted to the HSV color-space and pixels with HSV
values similar to the human skin denoted the human skin regions. Example video
frames and binary skin-colored regions are illustrated in Figure 9a. Videos depicting
each meal were manually split to produce elementary action videos. This procedure
resulted in the creation of 1288 elementary action videos. Figure 9a also illustrates
sample AVs resulting from elementary action videos in the database.
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The leave-one-person-out cross-validation procedure has been performed for differ-
ent numbers of representative AVs. Figure 9b illustrates the mean action recognition
rates obtained for these experiments. As can be seen, by using few representative AVs,
the performance of the proposed method is moderate. For example by using only one
representative AV, a mean action recognition accuracy equal to 41.45% was obtained.
By using 10 representative AVs, the action classes were better described in the AV
space resulting to an mean action recognition accuracy equal to 69.95%. The optimal
number of representative AVs was found to be 200 providing a mean action recogni-
tion accuracy equal to 89.37%. The confusion matrix of this experiment is illustrated
in Figure 9c. As can be seen, eating and drinking action recognition is quite difficult.
This is due to the fact that the differences between the body movements involved dur-
ing such action execution belonging to different classes are small. However, even for
this case, high action recognition rates have been obtained.

5. Conclusion

In this paper, a novel view-independent human action recognition method that ex-
ploits a 3D action representation was presented. The human body poses, in the manner
of binary human body images, are temporally concatenated in order to produce AVs
which represent the action. The similarity of an AV to representative AVs, determined
in the training phase, is exploited in order to map a test AV to a low-dimensional space.
CDA is employed in order to further project the action representation on a discrimi-
nant subspace. By allowing multiple clusters per action class, intra-class variations are
taken into account, leading to a convenient action class representation. The use of a
multi-camera setup allows the action description from different view angles, leading to
view-independent action representation and recognition. The use of low-computational
3D action representation combined with dimensionality reduction results in fast and ac-
curate action recognition. Experimental results show that the proposed approach can
properly address several issues that may appear in action recognition.
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(a) (b) (e)

Figure 1: a) A video frame depicting a person, b) a binary human body image, c) a 3D human body pose
(visual hull), d) a MHI depicting action 'run’ and e) a MHV depicting action "bend’.
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Figure 2: A multi-view human body pose.
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(e)

(h) ® @

Figure 3: AVs depicting actions: a) 'walk’, b) 'run’, ¢) ’jump in place’, d) ‘jump forward’, e) ’bend’, f) ’sit’,
g) 'fall’ and h) 'wave one hand’, and interactions i) "hand shaking’ and j) "pull’.
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Figure 4: Action recognition procedure.
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Figure 5: Eight synchronized video frames of the i3DPost database.
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Table 1: Recognition accuracy on the i3DPost database.

Method

5 actions | 8 actions | 6 actions
Method [48] 90% - -
Method [47] - 90.88% -
Method [29] - 94.37% -
Method [18] - - 89.58%
Proposed method 97.8% 96.34% 98.16 %
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