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a b s t r a c t

In this paper, a novel Support Vector Machine (SVM) variant, which makes use of robust statistics, is
proposed. We investigate the use of statistically robust location and dispersion estimators, in order
to enhance the performance of SVMs and test it in two-class and multi-class classification problems.
Moreover, we propose a novel method for class specific multi-class SVM, which makes use of the
covariance matrix of only one class, i.e., the class that we are interested in separating from the others,
while ignoring the dispersion of other classes. We performed experiments in artificial data, as well as
in many real world publicly available databases used for classification. The proposed approach performs
better than other SVM variants, especially in cases where the training data contain outliers. Finally, we
applied the proposed method for facial expression recognition in three well known facial expression
databases, showing that it outperforms previously published attempts.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The most recent and successful classification methods, in
terms of generalization capabilities, are the margin machines [1],
which maximize the margin between the data and the empirically
calculated separation hyperplane. Support vector machines
(SVMs) are a special case of margin machines that achieve good
classification performance by maximizing the margin of the planes
separating the different classes. SVMs has been used so far in
many and diverse applications such as [2–10]. Many alternatives
exist that make use of the margin maximization technique for
classification purposes [1,11–13]. The Fisher ratio was embedded
in the SVM optimization problem, so that class dispersion can be
taken into account for a more accurate calculation of the separa-
tion hyperplane and, subsequently, the support vectors in [13]. In
[14], a solution for the nonlinear class separation, using kernel
PCA, was proposed. A multi-class version was proposed in [15].
Based on a similar idea, the so-called maximum relative margin
machines (RMMs) were introduced in [1], proposing a trade-off
between standard and dispersion-based SVMs. In [1], it is argued
that even a slight affine data transformation can produce major
changes in the SVM classification performance and, thus, embed-
ding the data dispersion data in the SVM framework can tackle
such problems. However, when first and second order statistics are
used in order to calculate the location and dispersion and the
location, an underlying Gaussianity assumption is made on the
ll rights reserved.

(I. Pitas).
data, which is not always true. Based on these two remarks, a
trade off between standard and dispersion-based SVMs is pro-
posed in [1]. It has to be mentioned, that although in a theoretical
point of view a change in regularization will have benefits in
limited cases only, it has been shown in many publications, as the
ones before mentioned, that such changes are useful in a vast area
of applications.

There has been some attempts to tackle the outlier problem in
SVMs so far. In [16], the authors propose a novel soft margin SVM
formulation that includes an outlier indicator function to remove
outliers. This approach differs from the one proposed here since in
our approach we do not remove outliers, which can potentially
be support vectors, but we only use them to better estimate the
covariance matrix. On the other hand in [17], an approach that
makes use of the Mahalanobis distance to calculate the covariance
matrix is used to tackle outlying sample. In this approach the
authors propose an one-class dispersion based SVM and show that
they achieve better results by handling outliers with the mahala-
nobis formulation of the covariance. The proposed method is
different in two aspects from the one proposed in [17] : first, in
the robust calculation of the dispersion measure, where in our
case we use the minimum covariance determinant and second, the
fact that we propose one-class, multi-class as well as a specific-
class SVM variants.

It is well known that data dispersion estimators suffer in the
presence of outliers [18]. Sample covariance estimation may vastly
degenerate in the presence of only one outlier. Many approaches
exist, which deal with data outliers [19–21]. Their main goal is,
firstly, to find a robust location and/or dispersion estimator with
high breakdown value (i.e., the percentage of outlying samples
that the estimator can tolerate) and, secondly, to construct an
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estimator possessing the affine equivariance property [18]. A good
survey for multivariate robust estimators can be found in [18]. The
minimum covariance determinant (MCD) estimator is a robust
multivariate dispersion estimator proposed in [22]. Given an initial
data set X , the objective is to find a data subset EDX , which
possesses minimum covariance determinant. Then, its sample
covariance estimation is used for covariance matrix estimation
of the initial set X . It is proven that MCD possess the affine
equivariance property and, also, outperforms other estimators, in
terms of breakdown value [23]. The main drawback of this
approach is that it has a proven NP complexity. Hence, MCD was
not applicable, until a fast version was developed in [24].

In this paper, we integrate the MCD robust covariance estima-
tor in the SVM optimization problem. It will be proven that such
an integration makes sense only when using robust estimators
that possess the affine equivariance property. In the opposite case,
no physical interpretation of the integration can be deduced, as
will be detailed later on. This interpretation summarizes in that in
the projective space the data dispersion needs to be optimized
through the SVM optimization problem. If affine equivariance does
not hold for the dispersion estimator, the corresponding criterion
does not represent the robustly estimated projected data disper-
sion. Other dispersion estimators can be used as long as affine
equivariance property holds. Although, MCD was chosen in that it
has a fast implementation as well as better breakdown value
than other. Moreover, we shall demonstrate that the use of MCD
addresses the problematic Gaussian data assumption in a sys-
tematic way. Furthermore, we show that using class-specific
covariance matrices outperforms the more global scatter matrix
model, which takes into consideration all data classes. We shall
also demonstrate that the solution of the SVM optimization
problem for the multi-class case, using class-specific minimum
covariance SVMs, follows the solution of the standard multi-class
SVMs to some extent. This provides easy implementation schemes,
due to the fact that a simple transformation of the input space can
be made and the use of standard multi-class SVMs implementa-
tions can be used.

The novelty of this paper lies mainly in the integration of
robust covariance estimators in the SVM optimization problem.
More specifically, the MCD estimator is used to tackle problems of
outlying samples in the training data space. We show that the use
of robust statistics can be applied in such a framework, only under
the affine equivariance property of the dispersion and location
estimation. Class-specific minimum covariance SVMs are pro-
posed, in contrast to the use of the standard scatter matrix firstly
proposed in [13]. Based on these two major contributions, we
also propose a novel multi-class SVM in a class-specific minimum
covariance framework. We prove in this paper that the class-
specific minimum variance SVMs optimization problem can be
solved analytically. Finally, we prove that the nonlinear separation
hyperplanes can be deduced in the case of robust statistics SVMs,
under a mild assumption on the kernel function. This assumption
is that the kernel function conforms to the Mercer conditions,
which is the case for the most common kernel functions such as
RBF and polynomial ones.

In summary the paper novelties are the following:
�
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Fig. 1. Tolerance ellipse for a bivariate distribution.
Introducing the class specific minimum covariance SVMs. In
contrast to the multi-class minimum covariance based SVMs
proposed in [15], which make use of the scatter matrix of all
classes.
�
 Minimum covariance determinant estimation for the class
specific minimum covariance SVM.

The paper is organized as follows. The Minimum Covariance
Determinant procedure is analyzed in 2.1. The SVM optimization
problem is outlined in Section 2.2. The integration of a robust
dispersion estimator and the corresponding SVM optimization
problem is solved in Section 3 for the two-class problem. In the
same Section, we show that nonlinear kernel SVMs can be handled
using MCD. In Section 4, the optimization problem for the multi-
class cases of the class-specific minimum variance SVMs is solved.
It is proven that the solution is similar to that of the standard
multi-class SVMs. Experimental results are shown and discussed
in Section 5. Finally, conclusions are drawn in Section 6.
2. Problem statement

2.1. Minimum covariance determinant

Let X ¼ fx1;…; xNg be a sample of N observations in Rd also
forming the data matrix X¼ ½x1;…; xN�T . Moreover, take h≤N.
By definition, the MCD problem consists of finding a subset E
such that

E ¼ arg min
E⊂X ;jEj ¼ h

detðŜEÞ; ð1Þ

where j � j the set cardinality, detð�Þ the determinant of a matrix
and ŜE is the sample covariance matrix based on the observations
xi∈E. The MCD estimates [25] are then given by

μ̂ ¼ ∑
xi∈X

pixi ð2Þ

ŜX ¼ ∑
xi∈X

piðxi−μ̂Þðxi−μ̂ÞT ; ð3Þ

where pi ¼ 1=h for i such that xi∈E and pi¼0 for xi∉E .
The minimum covariance determinant dispersion and location

estimator finds the subset EDX , that has a covariance matrix with
minimal determinant among all possible subsets of X [22]. There-
fore, the sample covariance matrix and the sample mean of this
subset E are returned as dispersion and location estimations of the
original data. As it is proven in [22], MCD is optimal for the class of
elliptical distributions, which is a broaden class of distribution
than the Gaussian. In Fig. 1, the robust and classical tolerance
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ellipse of a bivariate distribution are shown. The tolerance ellipse
is defined as the set of points xi whose Mahalanobis distance
equals the square root of the 0.975 quantile of the χ2 distribution

with 2 degrees of freedom
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ22;0:975

q
[22].

The value h is considered as the minimum number of points
which must not outlay and it is an input parameter of the
MCD algorithm. The MCD has its highest possible breakdown at
h¼ ⌈ðnþ dþ 1Þ=2⌉, where ⌈ � ⌉ is the “smallest integer greater
than” function. Although MCD calculation is proven to be
NP-hard [26], a fast version has been proposed in [24]. Since then,
MCD has attracted a lot of attention [27–29].

Our aim is to use this definition of the covariance matrix for a
robust estimation of the covariance matrices, which are involved
in the case of dispersion based SVMs, such as in [13,14].

2.2. Minimum covariance support vector machines

In a two-class classification problem, SVM classification is
defined as follows: let fðx1; y1Þ; ðx2; y2Þ;…; ðxN ; yNÞg, be a set of N
labeled d-dimensional vectors xi∈Rd and their corresponding class
labels yi∈f−1;1g, i¼ ½1; ‥;N�. The aim is to find an optimal separa-
tion hyperplane in Rd, which can separate the two-class data with
a maximum margin, leading to the following optimization pro-
blem [30]:

min
w;b

1
2 w

Tw; ð4Þ

subject to (s.t.)

yiðwTxi þ bÞ≥1; with i¼ 1;‥;N; ð5Þ
where w,b are the normal vector and the corresponding bias term
of the SVM hyperplane. Throughout the paper, we have omitted
proofs related to error bounds (slack variables) for better paper
readability, since all proofs that follow can be easily transformed
to integrate slack variables. However, we have to mention that
the slack variables trick has some well known implication on the
Lagrange multipliers, which, in the case of nonseparable classes,
will be bounded from above by a positive constant [30]. In [13], the
authors, inspired from the Fisher discriminant ratio [31], proposed
its integration in the SVM optimization problem, by modifying (4)
to become:

min
w;b

wTSww: ð6Þ

The minimization of (6) subject to (5) leads to the so-called
minimum covariance SVMs (MCVSVMs), where Sw is the within
class scatter matrix, as defined in [13]. That is

Sw ¼ ∑
K

k ¼ 1
∑
Nk

i ¼ 1
ðxi−μkÞðxi−μkÞT ; ð7Þ

where K the number of classes in the classification problem, Nk is
class cardinality and μk is the mean vector of each class.

By using practically the same idea, i.e., using training data
dispersion, a generalized approach was proposed in [1], which
measure margins relative only to the data spread in any projection
direction. Therein, the Gaussian assumption on the data is dropped
and a more general optimization problem is defined consisting of
(4) and (5) and a constraint on the radius of the projected data [1]:

min
w;b

1
2 w

Tw; ð8Þ

s.t.

yiðwTxi þ bÞ≥1 ð9Þ

1
2
ðwTxi þ bÞ2≤B2

2
; ð10Þ
where B bounds the projected data. In their approach, the quad-
ratic constraint in (10) is simplified and replaced by two linear
constraints, for implementation purposes. Although this method
provides better results, data outliers are not treated systematically
in the statistical sense. However, a solution is proposed to relax
the minimization problem using an arbitrary multivariate variable
[1]. Although this approach is proposed to handle outliers and also
deals in some way with the non-Gaussianity of data, it is based on
assumptions which may or may not hold in all cases. On the other
hand, our method tries to solve these issues in a more systematic
way by using solid, statistically correct, robust techniques.

In our approach, we modify the SVM optimization problem (6)
using the MCD estimator in order to handle outlying training data
in a more systematic way. Moreover, the use of MCD assumes only
that the data follow an elliptical distribution, which is a much
larger class of distributions than the Gaussians ones. This relaxes the
Gaussian assumption in [1] to the more general class of elliptical
distributions.

The general SVM optimization can be written as follows:

min
w;b

wTAw; ð11Þ

under the same separability criterion as in (5), where A is a
dispersion matrix of the initial data, e.g., the intra-scatter matrix
[13], or a whitening operator [1], or MCD (in our case). It can be
solved using the Lagrangian function:

LðA;w; b;αÞ ¼wTAw− ∑
N

i ¼ 1
αiyiðwT

i xi þ b−1Þ: ð12Þ

Its gradient with respect to w must be equal to 0:

∂LðA;w; b;αÞ
∂w

¼ 2Aw− ∑
N

i ¼ 1
αiyixi ¼ 0; ð13Þ

in order to find the optimal hyperplane wo, assuming that A is
nonsingular:

wo ¼ 1
2
A−1 ∑

N

i ¼ 1
αi;oyixi; ð14Þ

where αi;o are the Lagrange multipliers for the optimal solution
that can be found by the dual problem defined as

max
α

∑
N

i ¼ 1
αi−

1
2

∑
N

i ¼ 1
∑
N

j ¼ 1
αiαjyiyjx

T
i A

−1xj; ð15Þ

subject to the constraints:

∑
N

i ¼ 1
αiyi ¼ 0 and αi≥0: ð16Þ

By writing (15) in a matrix form, we obtain:

max
α

αT1−1
2α

TGα; ð17Þ

where matrix G, has elements Gij ¼ yiyjxT
i A

−1xj and 1 is a vector
containing ones. By comparing the dual of the SVM optimization
problem (15) with the one in the standard SVM case, we deduce
that samples xi can be transformed with the use of A:

x′i ¼A−1=2xi; ð18Þ
since in the standard SVM formulation, the matrix G′ is used,
having elements G′ij ¼ yiyjxT

i xj.
The criterion of the dual problem is derived from the well

known Karush–Kuhn–Tucker conditions (KKT) [32]. These condi-
tions imply that, for a saddle point, the followings equations must
hold:

∇wLjw ¼ wo
¼ 0

∂L
∂b

���
b ¼ bo

¼ 0
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αi;o≥0; bi;o≥0 ð19Þ
Finally, the optimal separation hyperplane parameter bo can
be easily deduced by averaging Eq. (5) for all support vectors
xi; i∈D¼ fi : ao;i40g :

bo ¼ 1
N

∑
i∈D

yi−
1
2

∑
N

j ¼ 1
yjαjx

T
j A

−1xi

 !
ð20Þ

As can be seen in (14), matrix A must be nonsingular. This
constraint, though, is very restrictive in many problems especially
in image processing due to the so-called “curse of dimensionality”,
when we have less training samples than data dimensions. We
shall see later on, in detail, how to overcome this issue in the
proposed SVM scheme. A second more subtle constraint for A is
that it has to operate in the same way on both the data and on
their projections, in order to be able to formulate the SVM
optimization problem as in (11) and minimize the robust disper-
sion of the projected samples. This interpretation summarizes in
that in the projective space the data dispersion needs to be
optimized through the SVM optimization problem. If affine equiv-
ariance does not hold for the dispersion estimator, the correspond-
ing criterion does not represents the robustly estimated projected
data dispersion. A is an affine equivariant estimator of the
data dispersion [18], if it can be properly transformed under data
rotation, translation and scaling. If Sð�Þ, mð�Þ are a dispersion and
location estimator respectively, they are affine equivariant iff:

mðRXþ tÞ ¼ RmðXÞ þ t ð21Þ

SðRXþ tÞ ¼ RSðXÞRT ; ð22Þ
where R is a nonsingular matrix and t, is arbitrary translation
vector, respectively, while X denotes the matrix of all samples xi,
i¼ 1; ‥;N. Unfortunately, most of the univariate robust estimators
for location and dispersion are not affine equivariant in their
multivariate form. As an example, the median and the associated
Median Absolute Deviation (MAD) location and dispersion esti-
mators, which are the best robust estimators in terms of break-
down values, are not affine equivariant in their multivariate
version. A good review for statistical robust dispersion and
location estimators can be found in [18]. On the other hand, the
usual sample covariance matrix, is affine equivariant but not
robust [18]. Many robust affine equivariant estimators have been
proposed in the literature [18]. In our case we shall use the MCD
covariance estimator, due to its high breakdown value, in compar-
ison to other covariance estimators and then integrate it to the
support vector minimization problem (11). We propose two novel
variants for the SVM, one that makes use of the robust estimation
of the covariance matrix and therefore follows the same path as
in [13], and a second one where we are only interested in the
covariance matrix of just one data class.
3. MCVSVM with robust statistics (RobMCVSVM)

In the case of RobMCVSVM for the two class problem, the
inner-class scatter matrix AR is defined as

AR ¼MCDðC1Þ þMCDðC2Þ; ð23Þ
where Ck (with k∈f1;2g) is the subset of X containing samples
from the first and second class respectively, and, MCDðCkÞ is the
robustly estimated dispersion of the first and second class respec-
tively calculated by the MCD estimator. It has to be noted that
summing the covariance matrix estimates of each class estimated
using MCD, is equivalent to calculating an MCD-wise robust within
class scatter matrix. It is straightforward to apply AR to the SVM
minimization problem (11). There is a subtle difference between
outlier trimming before using MCVSVM and RobMCVSVM. The
latter uses (23) for robust dispersion estimation and, therefore,
uses all training samples in (15), whereas outlier trimming
followed by MCVSVM can possibly result in support vector trim-
ming, since true support vectors are in class periphery and tend to
outly. Therefore, it can be easily guessed that outlying samples are
probable candidates for support vectors. Therefore, their exclusion
may lead in classification accuracy drop.

3.1. Nonlinear SVMs with robust statistics

We shall show that robustly calculated covariance matrices can
be used as well with nonlinear decision surfaces. Nonlinear SVMs
are formulated as a minimization problem in a Hilbert space H
(feature space) induced by a kernel function under the Mercer
conditions [30]. Let us define a mapping ϕ : Rd-H, which maps
the samples from X to an arbitrary Hilbert space. For the case of
RobMCVSVM, Eq. (23) takes the form:

Aϕ
R ¼

1
h1

∑
x∈E1

ðϕðxÞ−μ̂ϕ
E1
ÞðϕðxÞ−μ̂ϕ

E1
ÞT

þ 1
h2

∑
x∈E2

ðϕðxÞ−μ̂ϕ
E2
ÞðϕðxÞ−μ̂ϕ

E2 Þ
T ; ð24Þ

where Ek with k∈f1;2g are the subsets calculated from the MCD
optimization problem in (1) for each class with cardinality h1 and
h2 respectively, and μ̂ϕ

Ek
is the robustly calculated mean vector of

each class in the feature space H according to (2). In [14], kernel
Principal Components Analysis (KPCA) is performed and it is
proven that the application of linear MCVSVM with KPCA scores
is equivalent with kernel MCVSVM. In our case though, we want to
create a robust SVM framework, which is not the case in [14], due
to the non-robust nature of KPCA. To handle kernel versions, we
propose the following procedure. As it is discussed in [33], in order
for kernelized methods to be able to classify data in the feature
space, samples must preserve their topographic ordering in the
feature space as well. Therein the authors claim that this is true if
the mapping ϕ is smooth and continuous, which is the case for all
Mercer kernels. Under this assumption, it is reasonable to consider
that outliers detected through MCD in the sample space will be
equivalently MCD wise outliers in the feature space as well. In
order to solve the problem in the kernel space, we first perform
the MCD algorithm in the sample space, in order to find the subset
E of the samples and subsequently, we calculate the mean and
covariance matrix in the feature space using the previously
calculated E and the same approach as in [14]. As discussed in
[14], to do so, we need to find a transformation P which projects
samples from the feature space to another of lower dimensions
as x′i ¼ PTϕðxiÞ, ϕðxiÞ∈H. They prove that this is equivalent with
projecting the sample space through the KPCA transform. Thus, x′i
are the KPCA score. Under these conditions, the mean vector in the
feature space can be calculated as

μ̂ϕ
Ek ¼

1
hk

∑
x′i∈Ek

x′i; ð25Þ

where Ek is the subset of samples belonging to X which are not
outliers of class k, according to the MCD algorithm. In a second
step we map all samples through the transformation operator P (i.
e., the KPCA) and, in the minimization problem, we use the mean
vectors found earlier to calculate the scatter matrix using (24).

3.2. The “curse” of dimensionality

One often refers to the “curse” of dimensionality for cases,
where the number of training samples is less than the data
dimension. Its implication is the singularity of the sample covar-
iance matrix. A typical way to tackle such problems is the use of
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dimensionality reduction methods such as Principal Components
Analysis (PCA). In [14], the authors prove that an equivalent
minimization problem can be deduced through PCA projections,
which subsequently leads to the optimal separating hyperplanes.
Since PCA uses the non-robust sample covariance matrix, in the
case of robust SVMs, we propose to use a robust version of PCA
proposed in [21]. Therein, a MCD-based calculation of PCA is
proposed, with an additional criterion of a projection pursuit
calculated mean, firstly proposed in [34]. This robust PCA method,
uses the same approach as the one in MCD, in order to find the
covariance matrix for PCA. Therefore, this approach is better suited
to our case. Nevertheless, we use this method only for dimension-
ality reduction, while the rest of the RobMCVSVM method is
applied with the MCD as previously described. This is done,
because, once we robustly find the principal components, we
project all (i.e., outliers included) data samples to the principal
axes. Therefore, RobMVCSVM can be calculated efficiently using
(23), with the robust PCA-wise projected samples.
4. MultiClass robust support vector machines

In the case of multi-class SVMs, the minimization problem is
defined so that all separation hyperplanes are integrated in the
same minimization problem.

In [15], the minimization problem was enriched with the data
dispersion information in the same manner as in [14], with the
exception that multi-class SVMs were considered. Therein, the
minimization problem for multiclass SVMs is solved and decision
functions are extracted for the multi class case. In the case of
RobMCVSVM, the application is straightforward by simply using
an equivalent equation to (23) to calculate the multi class AR in the
place of Sw.
4.1. Class specific minimum variance support vector machines
(CSMVSVM)

As discussed earlier, the use of intra-class scatter matrix in the
SVM optimization creates a condensed class representation along
a specific projection direction. We propose to create a more
specific classification framework to treat each class separately, by
using k SVMs, one for each class. In this approach, each class
specific SVM can ignores the dispersion of the other classes and,
at the same time, condense only the projected samples of this
specific class. To this end, we estimate the sample covariance
matrix for each class as

Ak ¼
1
jCkj

∑
x∈Ck

ðx−μCk Þðx−μCk ÞT ; ð26Þ

to be integrated in the minimization framework:

min
wk ;bk

∑
K

k ¼ 1
wT

kAkwk; ð27Þ

s.t.

ðwT
li
xi þ bli Þ≥ðwT

kxi þ bkÞ þ 2 i¼ 1;‥;N k∈f1;‥;Kg\li: ð28Þ

Trying to solve (27), under separability constraints in (28), results
to the following formulation of the Lagrangian function:

LðAk;wk; bk;αkÞ ¼ ∑
K

k ¼ 1
wT

kAkwk

− ∑
K

k ¼ 1
∑
N

i ¼ 1
αk;iððwli−wkÞTxi þ ðbli−bk−2ÞÞ: ð29Þ
We shall introduce two notations for better readability of the
equations:

Ri ¼ ∑
K

k ¼ 1
αk;i; ð30Þ

ck;i ¼
1; if k¼ li
0; if k≠li

(
ð31Þ

The gradient of the Lagrangian function can be set equal to 0:

∂LðAk;wk; bk;αkÞ
∂wk

¼ 2Akwk þ ∑
N

i ¼ 1
ðck;iRi−αk;iÞxi ¼ 0; ð32Þ

leading to the solution:

wk ¼
1
2
A−1
k ∑

N

i ¼ 1
ðck;iRi−αk;iÞxi; ð33Þ

The second KKT condition:

∂LðAk;wk; bk;αkÞ
∂bk

¼ 0; ð34Þ

yields:

∑
N

i ¼ 1
αk;i ¼ ∑

N

i ¼ 1
ck;iRi ð35Þ

By substituting (33) and (34) in (29) we have

LðAk;wk; bk;αkÞ ¼ 2 ∑
K

k ¼ 1
∑
N

i ¼ 1
αk;i þ ∑

K

k ¼ 1
∑
N

i ¼ 1
∑
N

j ¼ 1

1
4
cli ;jRiRj

�

−
1
2
αk;iαli ;j þ

1
4
αk;iαk;j

�
� xT

i A
−1
k xj: ð36Þ

Details for the calculation of (36) can be found in Appendix A.
From (36), we can form the dual problem as:

max
αk

DðαkÞ ¼ 2 ∑
K

k ¼ 1
∑
N

i ¼ 1
αk;i þ ∑

K

k ¼ 1
∑
N

i ¼ 1
∑
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4
cli ;jRiRj
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−
1
2
αk;iαli ;j þ

1
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αk;iαk;j

�
� xT

i A
−1
k xj; ð37Þ

s.t.

∑
N

i ¼ n
αk;i ¼ ∑

N

i ¼ 1
ck;iRi and αk;i≥0: ð38Þ

Eq. (37) is a quadratic function of α and its matrix form can be
deduced in the same way as in [35], by replacing the kernel matrix
therein with Ak, in order to solve the optimization problem as a
single problem. This problem can be decoupled in K different SVM
problems, one for each class [35]. For each SVM, we transform the
data samples as in (18). Classification is then performed using the
simple voting method between the results of the K class-specific
SVMs. In case of equal votes, for some classes, we arbitrarily
choose one out of the ones having equal votes. However, as will be
seen in Section 5, such cases seldom occur. The robust version of
this method can be obtained using the MCD algorithm for the
calculation of Ak. The algorithm for training and testing the
RobCSMVSVM are presented in Algorithms 1 and 2. In these
algorithms, SVMTRAIN and SVMPREDICT can be any linear SVM
implementation.

Algorithm 1. Algorithm outline for the RobCSMVSVM training.
1:
 Input: Samples data matrix X¼ ½x1; x2;…; xN�T , labels
vector y¼ ½y1; y2;…; yN� and SVM parameters
2:
 Output: The k trained SVM models Mk
3:
 Initialize: forall k Ek←fg and X′k←½�.

// Calculate the robust covariance matrix Ak, for each class
based on the vector y and matrix X and then project the
samples with the equivalent inverse matrix
4:
 for i¼ 1-N do
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5:
 Eyi←Eyi∪fxig

1.2
6:
 end for
1
data1
data2
7:
 for k¼ 1-K do
8:
 Ak ¼MCDðEkÞ

0.8
9:
 end for
0.6

// transform the samples with (18)
10:
 for k¼ 1-K do

0.4
11:
 X′¼ A−1

2
k X
0.2
12:
 Mk←SVMTRAINðy;X′; paramsÞ

13:
 end for
−0.2

0

Algorithm 2. Algorithm outline for the RobCSMVSVM testing.
−0.4
1:
 Input: the robust covariance matrices Ak, the trained
models Mk and the test sample vector xtest
 −0.6
2:
 Output: The predicted class label label

−0.8
3:
 for k¼ 1-K do
−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
4:
 x′test ¼A−1
2

k xtest

Fig. 2. Two balanced half-moon data classes.
5:
 labelk←SVMPREDICTðMk; x′testÞ
6:
 end for

7:
 majority voting on labelk gives the final label
Table 1
Mean classification accuracy on artificial data in 100 experiments.

Method First experiment (%) Second experiment (%)

RobCSMVSVMs 99.64 95.34
RobMCVSVMs 98.52 94.45
CSMVSVMs 90 88.93
MCVSVMs 89.28 87.52
SVMs 97.85 91.31

1.5
Noisy Artificial Dataset.

data1
5. Experimental results

We have conducted experiments on artificial data, as well as in
real application, in order to provide evidence that the proposed
method performs better in cases where outliers are present. We
performed experiments on publicly available databases for classi-
fication benchmarking to show that our method outperforms
other SVM variants on these databases. Finally, we have conducted
facial expression recognition experiments on 3 different data-
bases: Cohn–Kanade [36], BU-3DFE [37] and JAFFE [38]. We have
used the libsvm software in our experiments, a very efficient SVM
implementation [39].
−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

data2

Fig. 3. Contaminated data set with uniformly distributed noise.
5.1. Experiments with artificial data

We used artificially created data to pinpoint the fact that, in
the presence of outliers our method performs better than both
classical SVMs and MCVSVMs. First, two different two class
problems are investigated. One using half-moon shaped classes,
as in Fig. 2 and one with two Gaussian classes as in Fig. 4. In
Figs. 3 and 5, the classes are shown, after adding a uniform noise.
In the first case we add noise on each class in a way that the
outliers degenerate the sample covariance matrix of the original
data and in the second case we add a uniform noise in the whole
space and therefore randomly chose from outlying samples
for each class. A 5-fold cross validation test is performed in 100
different experiments, where the noisy data were created by
reinitializing the noise random seed. In each experiment the mean
accuracy over all folds is taken as the final classification accuracy.
The results for the 5 different classifiers are depicted in Table 1 as
the average of the 100 different experiments. Fig. 4

Both CSMVSVM and MCVSVM methods, which use the sample
covariance matrix have reduced performance in the presence of
noise, compared to their robust counterparts. The standard SVM,
which uses no information on data dispersion, achieves better
classification accuracy rate than CSMVSVMs and MCVSVMs in the
presence of outliers, since it can handle them in a better way as it
does not employ poor dispersion estimations. The robust versions
outperform all others, because the data dispersion is much more
accurately calculated, once the outliers are handled. In case of non-
linear artificial data such as co-centric cycles, our framework will
perform as classical SVMs since in that case the covariance matrix
will approximate the identity matrix and thus it will have no effect
in the SVM algorithm. Such extreme cases of nonlinearity that can
not make use of the dispersion of each class as a supplementary
information has no effect in our framework and thus the proposed
framework results to classical SVMs.

For comparison reasons, we have implemented the artificial
data experiment described in [16]. It consists of two Gaussian
distributions contaminated with a uniform noise in a ring of radius
R to R+1. In there, the authors create two bivariate distributions
with μ¼ ½3;−3�, Σ ¼ 20

16
16
20

� �
and −μ respectively. The outliers are
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Fig. 5. Contaminated data set with uniformly distributed noise.
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selected from different rings with R¼15,35,55,75. In all experi-
ments, the training set contains 50 samples, 20 from each
distribution and 10 randomly labeled from the ring. Finally, the
test set contains 2000 samples, 1000 from each class. The experi-
ment was conducted 50 times with reinitialization of both the
training and the test set. The results of the classical SVM and the
RobCSMVSVM are drawn in Fig. 6. For comparison the reader may
refer to [16] to see how our method performs in comparison with
several others reported in there. It is obvious that the proposed
approach performs better than the ones mentioned in [16] as
can be seen from Fig. 6 in both, classification error as well as the
robustness towards elevated limits of noise.

Based on the same dataset we have conducted experiments
with different values for the parameter h of the MCD procedure.
The results are shown in Fig. 7. As can be seen, the parameter h is
optimal for values near 0:75jX j. This result was expected since h is
a threshold between statistical significance and outlier robustness.
Moreover, this result is also reported in [20]. For small values
of h (e.g., near 0:55jX j), the samples that are used to calculate the
covariance matrix are not enough for a correct estimation of
the real data dispersion. On the other hand, for the value h¼1,
the outliers are not treated at all. It has to be noted, though, that
the parameter h is data dependent. If an estimation of the outliers
is a priori known, h can be initialized accordingly. The results
shown in Fig. 7 are the result of 50 runs as described before where
5 different values of h were used in each run. The results are the
mean values of the accuracies over 50 runs for each value of the
parameter h.

5.2. Experiments with standard classification databases

For these experiments, we have used the publicly available
datasets from the machine learning repository of University of
California Irvine (UCI) [40]. More precisely, we have used the wine,
statlog and iris datasets. For the wine and iris dataset 5-fold cross
validation has been performed, while for the statlog dataset, there
is an already provided training and testing dataset. The wine
dataset consists of 178 samples of dimension 13 and 3 different
classes of wines. The iris dataset has 150 samples of dimension
4 and 3 different classes. Finally, statlog is a set of satellite images
with 6435 samples of dimension 36. From this dataset, 4435
samples are used for training and the rest 2000 are used for
testing. Overall, 6 different classes are contained in the statlog
dataset. Classification results from these datasets for different
classifiers are shown in Table 2. We see that RobCSMVSVMs
achieve the best classification accuracy.

5.3. Experiments on facial expression recognition

We have performed facial expression recognition on three
publicly available facial expressions databases, namely, BU3DFE
[37], Cohn–Kanade [36] and JAFFE [38] databases using previously
mentioned SVM variants. BU3DFE consists of 100 subjects (56
male and 44 female) with six expressions, each at four different
intensity levels. This results in a total of 2400 different facial
expressions images and another 100 facial images with the neutral



Table 2
Classification accuracy on various classification databases for RobCSMVSVMs,
RobMCVSVMs, CSMVSVMs, MCVSVMs and SVMs.

Method Wine (%) Iris (%) Statlog (%)

RobCSMVSVMs 97.19 98 85.25
RobMCVSVMs 97 97.2 84.1
CSMVSVMs 97.17 96.66 84.1
MCVSVMs 96.6 96 81.65
SVMs 95.5 95.3 83.75

Table 3
Person out 5-fold cross validation results for 3D facial expressions databases.

Method Cohn–Kanade [36] (%) BU3DFE [37] (%) JAFFE [38] (%)

Robust CSMVSVMs 69.20 67.28 60.18
Robust MCVSVMs 67.45 65.43 58.80
CSMVSVMs 65.87 62.57 59.25
MCVSVMs [13] 63.40 61.40 58.80
SVMs 62.15 61.70 57.50

Table 4
Accuracy of various subspace techniques in facial expression recognition.

Method Cohn–Kanade [36] (%) BU3DFE [37] (%) JAFFE [38] (%)

RobCSMVSVMs 69.20 67.28 60.18
NC PCA + LDA [41] 68.80 64.90 63.50
KNN PCA + LDA [41] 67.60 62.10 58.50
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Fig. 8. Classification accuracies for different RBF kernel parameters for RobCSMSVM.
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expression. In our experiments, we have used only the high level
intensity expression (700 images). The Cohn–Kanade database is
a video database of facial expressions. We have extracted 407
different facial expression images (with different number of
entries in each facial expression class) from 100 different indivi-
duals. In this database, people vary in age, race and sex. Finally, the
JAFFE database consists of 10 different Japanese females and a total
of 213 facial images of all facial expressions.

For each database we have conducted a person-out based
fivefold cross validation. More specifically, we exclude 20% of the
individuals present in these databases and therefore we train our
classifiers with the remaining 80% of the individuals and test with
the excluded set. Moreover, based on the work in [41], we have
used the so called enriched databases. They contain translated
revisions of facial images that are appended in the training set, in
order to enrich it. Experiments in [41], have proven that this
approach does ameliorate the classification rates with respect to
the original training datasets. Even in this case though, the person-
out rule is followed. That is, transformed images of the excluded
20% individuals are also excluded from the training set in each fold
of the cross-validation.

Due to the high data dimensionality (1200 dimensions for each
image), we first perform PCA and retain 94% of the total energy for
the enriched dataset. This results in a lower data dimensionality,
since only 70 dimensions are retained. PCA, though, is very
sensitive to outliers and, therefore, our robust SVMs cannot be
compared in a fair way. For this reason, we use ROBPCA, a robust
version of the PCA [34].

For the simple case, where only the original datasets are used,
the performed principal components analysis must be more
restricted. Only 80% of the total energy is retained, due to MCD
calculation inside every class, since the number of samples therein
should be at least twice the data dimension [24]. For instance, in
the Cohn–Kanade database, the cardinality of the class “Anger” in a
fivefold cross-validation process does not exceed 34, which limits
the dimensionality to at most 17. This drawback cannot be
attributed to the proposed method, but rather to the small size
of the database. In real situations, at least for the training set, one
should create a convenient training dataset.

Classification accuracies, for all the above mentioned experi-
ments, are illustrated in Table 3. It is clear that in all cases, the
RobCSMVSVM method outperforms all other ones. Compared with
the other classifiers, we conclude that using robust covariance
matrix calculation and a class specific approach, boosts the SVMs
performance in facial expression recognition.

Moreover, for comparison purposes, Table 4 contains recogni-
tion accuracies comparison of the proposed method and the ones
reported in [41]. As experiments were conducted on the same test
sets, the comparison between results is fair, with slight differ-
ences, due to the randomness in the folds creation for the 5-fold
cross validation process. In most cases, the proposed SVM method
outperforms other subspace techniques with the only exception
being the JAFFE database, where nearest centroid classification
with PCA and LDA performs better.
Finally, in order to test our method with various kernel
configurations, we provide experiments in the Cohn–Kanade
database [36]. The conducted experiments, perform a grid search
for kernel parameters selection for RobCSMSVM and classical
SVMs. In Figs. 8 and 9, the results of the different kernel
parameters are shown for RBF kernels for RobCSMVSVM and
SVM respectively. The classification accuracies versus the respec-
tive kernel parameters are shown with the different grey scales,
with black been the lowest and white the highest accuracy. As can
be seen in Figs. 10 and 11 in all cases our method outperforms
simple kernel SVMs, since its best performance shown in Fig. 10 is
in the range of 72%, whereas the best performance of classical SVM
shown in Fig. 11 is in the range of 65%. Moreover, we have
performed the same experiments for a polynomial kernel. Results
are drawn in Figs. 10 and 11.

5.4. Statistical significance tests

We have used the McNemar test [42] to decide whether the
difference between the proposed method and competing ones, is
statistically significant. This method has been widely used for this
purpose by several authors [43–45]. To do so, we constructed the
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Table 5
Contingency tables for all classifiers versus RobCSMVSVM for the BU3DFE database.

RobCSMVSVM(1st) vs. MCVSVM(2nd) Misclassified by 1st Classified by 1st

Misclassified by 2nd 493 30
Classified by 2nd 10 807

RobCSMVSVM(1st) vs. CSMVSVM(2nd)
Misclassified by 2nd 500 25
Classified by 2nd 10 900

RobCSMVSVM(1st) vs. RobMCVSVM(2nd)
Misclassified by 2nd 499 30
Classified by 2nd 10 901
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contingency matrices for each classifier with the RobCSMVSVM
classifier. The matrices are constructed based on the best facial
expression recognition rate for each classifier. Table 5, shows the
actual contingency tables from the conducted experiments on the
BU3DFE database.

In all three cases the resulting p-value from McNemar test is
less than the desired significance level (in our case p is set to
p⪡0:02). Therefore, it is safe to conclude that the difference of the
classification accuracies is statistically significant.
6. Conclusions

A novel robust SVM framework has been proposed in this
paper. The use of robust statistics in the calculation of the data
dispersion provides better classification results in all tested appli-
cations (i.e., artificial data, UCI databases and facial expression
recognition databases). Thorough benchmarking provided evi-
dence that the proposed method performs better than previously
published methods in various classification tasks. Moreover, class
specific minimum variance SVM has been studied and analytically
derived in the case of classical, as well as in the case of robust SVM
framework. We also compared the proposed methods to other
classification techniques, such as linear discriminant analysis and
principal components analysis combined with nearest neighbor
and nearest centroid classification. In most cases, our method
outperforms the various competing techniques.
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Appendix A. Details of calculation of the Multiclass
SVM problem

In order to solve Eq. (36) first we substitute (33), (34) to (29).
For better readability of the equations we do the substitution in
parts. That is, we partition Eq. (36) in two parts, which represent
the two summation terms. For the first term we have the
following:

∑
K

k ¼ 1
wT

kAkwk ¼
1
4

∑
K

k ¼ 1
∑
N

i ¼ 1
ðck;iRi−αk;iÞA−1

k xi

 !T
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k xj
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∑
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k ¼ 1
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i ¼ 1
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j ¼ 1
ðck;ick;jRiRj−ck;iRiαk;j
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−ck;jRjαk;i þ αk;iαk;jÞxT
i A

−1
k xj: ðA:1Þ

It can be easily proven that

∑
K

k ¼ 1
ck;ick;j ¼ cli ;j ¼ clj ;i and ðA:2Þ

∑
K

k ¼ 1
ck;iRiαk;j ¼ ∑

K

k ¼ 1
ck;jRjαk;i; ðA:3Þ

from (A.2) and (A.3), Eq. (A.1) takes on its final form:
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j ¼ 1
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i A

−1
k xj; ðA:4Þ

for the second term of Eq. (36) we need the second KKT condition,
by which the term on bk and bli annulate with the Lagrange
multipliers. That is

∑
K

k ¼ 1
∑
N

i ¼ 1
αk;ibli ¼ ∑

K

k ¼ 1
∑
N

i ¼ 1
αk;ibk: ðA:5Þ

Thus, from (A.5) we have for the second term of (36)
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substituting (33) into (A.5) we have
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Once again for better readability of the equations we break down
into its terms Eq. (A.7). For the first part we have

1
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But it can be proven that
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Thus (A.7) takes on its final form due to (A.9)
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Equivalently, the second part of Eq. (A.7) takes on the form:
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Adding all together we have the final form of (36)
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