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Abstract7

In this paper, we propose a novel method that performs dynamic action classifi-

cation by exploiting the effectiveness of the Extreme Learning Machine (ELM)

algorithm for single hidden layer feedforward neural networks training. It in-

volves data grouping and ELM based data projection in multiple levels. Given a

test action instance, a neural network is trained by using labeled action instances

forming the groups that reside to the test sample’s neighborhood. The action in-

stances involved in this procedure are, subsequently, mapped to a new feature

space, determined by the trained network outputs. This procedure is performed

multiple times, which are determined by the test action instance at hand, until

only a single class is retained. Experimental results denote the effectiveness of

the dynamic classification approach, compared to the static one, as well as the

effectiveness of the ELM in the proposed dynamic classification setting.
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1. Introduction10

Human action recognition is a very active research field finding application in11

many important tasks, such as visual surveillance [1], human-computer interaction12

[2], augmented reality [3] and semantic video annotation [4]. Actions are usually13

described by using either features based on optical flow [5], or features devised14

mainly for action representation [6]. Although the use of such features leads to15

satisfactory action recognition results, their computation is expensive. Thus, when16

fast operation is important, action recognition methods should employ simpler ac-17

tion representations. Neurobiological studies [7] have concluded that the human18

brain can perceive actions by observing only the human body poses during action19

execution. Thus, actions can be described as sequences of consecutive human20

body poses, in terms of human body silhouettes [8, 9]. After describing actions,21

most methods in the literature exploit supervised machine learning techniques for22

action class representation and classification of new, unknown, action instances.23

Such techniques require a training phase, where labeled data are used in order24

to determine the system parameters. For example, in Artificial Neural Networks25

(ANNs) based data classification [10], training data are employed in order to de-26

2



termine the neurons’ weights and in Linear Discriminant Analysis (LDA) based27

data projection [11], labeled data are used in order to determine a mapping to a28

lower dimensional feature space for class representation and data classification.29

Traditionally, the training phase is performed offline by using the entire training30

set.31

Action recognition is not an easy task, mainly due to the fact that there is not32

a formal description of actions. Variations between different action realizations33

resulted from different action execution styles and different human body sizes be-34

tween persons result to high intra- and, possibly, low inter-action class variations.35

This is why person specific classification schemes have been recently investigated36

for action recognition [12]. The main idea in these classification schemes is to37

focus the classification problem on each individual person. That is, action recog-38

nition is performed by a classifier which has been trained by using action instances39

of the person under consideration. Following this approach, the above mentioned40

issues are effectively addressed leading to high action classification rates. How-41

ever, the application of such classification schemes is limited, since, in order to42

operate properly, a person should have been recorded and trained before recogni-43

tion. In different cases their performance will probably decrease.44

An alternative choice could be the use of dynamic action classification schemes.45
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Dynamic classification, involves a system parameters adaptation procedure based46

either on the training set structure, or on the test data to be classified. Follow-47

ing this approach, several dynamic classification schemes have been proposed.48

Wright et. al. [13] proposed a dynamic classification scheme exploiting sparsity49

constraints. A given test sample is involved in a class independent regression pro-50

cedure exploiting a codebook containing all the available labeled samples. Multi-51

ple reconstruction samples are, subsequently, produced by employing the labeled52

samples belonging to each class independently. Finally, the test sample is clas-53

sified to the class providing the minimum reconstruction error. Tang et. al. [14]54

proposed the Dynamic Committee Machine (DCM), which employs five state-of-55

the-art classifiers (experts). A test sample is introduced to all the five classifiers56

and five classification results are produced. The dynamic nature of DCM is based57

on the adopted fusion strategy, where the experts’ weights are modified depending58

on the corresponding test sample. Kyperountas et. al. proposed a dynamic clas-59

sification scheme involving an iterative grouping procedure combined with LDA-60

based data classification [15]. The iterative procedure used in order to determine61

the optimal training set for LDA based data classification is intuitive and effective.62

However, the LDA based classification approach in this setting has two disadvan-63

tages: a) It sets the assumption of linear class separability. As it will be shown64
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in Section 5, this assumption is not met for action classes. b) The use of a small65

number of training data, compared to the training data dimensionality, leads to the66

small sample size problem [16]. In order to address this issue, Kyperountas et.67

al. employed an LDA variant proposed in [17], in which a regularization param-68

eter should be a priori known and, thus, an offline training procedure is required.69

Finally, c) by using training data belonging to only two (or three) classes, LDA70

projection provides an one- (or two-) dimensional feature space, where classes71

discrimination may not be captured properly, especially for linear classification72

models.73

In order to take into account the non linear nature of action classes, non linear74

classification methods should be employed. ANNs could be a good choice, since75

they have proven their effectiveness in a wide range of challenging classification76

problems. Among them, single hidden layer feedforward networks (SLFNs) have77

been widely used due to their ability to approximate any target continuous func-78

tion and classify any disjoint regions. Furthermore, their operation is fast and,79

thus, they are appropriate for the cases where fast operation is important. How-80

ever, most of the popular learning algorithms for SLFNs training are slow, due81

to their iterative nature, and their parameter values should be carefully chosen.82

This renders them inappropriate for dynamic classification schemes. Extreme83
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Learning Machine (ELM) [18] is a recently proposed algorithm for fast SLFNs84

training requiring much less human effort. By using a sufficiently large number85

of hidden neurons, the ELM classification scheme can be thought as a non linear86

mapping of the training data in a high dimensional feature space, noted as ELM87

space, followed by a linear classification procedure. Thus, non linear classifica-88

tion functions can been approximated. Furthermore, the ELM training procedure89

is independent of the training set size. These properties of ELM render it as a90

good choice for dynamic classification schemes.91

In this paper we propose a novel dynamic classification method inspired from92

the above described dynamic subspace learning schemes and the effectiveness of93

the ELM training procedure. The proposed classification procedure can be seen94

as an adaptive multiple layer ANN, in which the number of layers, as well as the95

number of each layer neurons, are dynamically determined by the test action in-96

stance at hand, as illustrated in Figure 1. The proposed scheme is evaluated in ac-97

tion recognition by using the dyneme based action representation [19]. However,98

it can be easily modified in order to be employed for different action representa-99

tions. It is efficient in the sense that it dynamically determines the optimal labeled100

data for training and classification. Furthermore, by exploiting the fast training101

procedure of the ELM, the classification procedure is fast and efficient.102
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Figure 1: Adaptive multiple layer network topology.

The remainder of this paper is structured as follows. In Sections 2 we pro-103

vide an overview of the adopted action representation. In Sections 3 and 4 we104

present the two calculation steps that will be used in Section 5 to describe the pro-105

posed dynamic classification method. Section 6 presents experiments conducted106

for assessing its performance. Finally, conclusions are drawn in Section 7.107

2. Dyneme based action representation108

In this section, we present an overview of the dyneme based action represen-109

tation [19]. Let A be an action class set consisting of C action classes, such as110

walk, run, jump, drink, eat, etc. Let U denote an action recognition database111

containing N labeled action instances depicted in N videos, which will be called112

action videos hereafter. Video segmentation techniques, such as background sub-113

traction [20] or color based image segmentation [21], are applied to the action114
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video frames in order to produce binary action videos depicting the human body115

poses. The video frames forming the binary action videos are centered to the hu-116

man body regions of interest (ROIs), cropped to the ROIs region and resized to117

produce binary posture images of fixed (H ×W pixels) size. In the experiments118

presented in this paper, we chose the size of the binary posture images to be equal119

to 32× 32 pixels, which has been found experimentally to be a good compromise120

between computational cost and action recognition accuracy. The above described121

procedure is illustrated in Figure 2.

Figure 2: Binary posture images production. From left to right ’walk’, ’run’, ’drink’ and ’eat’.

122

These binary images are represented as matrices, which are vectorized column-123

wise in order to produce the so called posture vectors pij, i = 1, ..., N, j =124

1, ..., Ni, where Ni denotes the number of binary images forming binary action125

video i. Posture vectors of all the N labeled binary action videos are clustered,126

without exploiting the available label information, in order to produce D action127
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independent representative posture vectors, the dynemes. This is done by apply-128

ing D-Means clustering [11] to the posture vectors, minimizing the intra-cluster129

scatter, i.e.:130

D∑
d=1

N∑
i=1

Ni∑
j=1

αijd∥pij − vd∥2, (1)

where αijd = 1, if pij is assigned to cluster d and αijd = 0, otherwise. Dynemes131

vd, d = 1, ..., D are defined to be the cluster mean vectors, i.e.:132

vd =
1

nd

N∑
i=1

Ni∑
j=1

αijdpij. (2)

After dynemes calculation, each posture vector pij is mapped to the mem-133

bership vector uij ∈ RD, which denotes the fuzzy similarity of pij with all the134

dynemes vd, according to a fuzzification parameter m > 1:135

uijd =
(∥ pij − vd ∥2)−

2
m−1

(
∑D

k=1 ∥ pij − vk ∥2)−
2

m−1

, d = 1, ..., D. (3)

The optimal value of the fuzzification parameter m is obtained by applying136

the cross-validation procedure. Following [19], a value of m = 1.1 has been used137

in all the experiments presented in this paper. Finally, action vectors si ∈ RD
138

are calculated as the mean normalized membership vectors of the corresponding139

action videos:140

si =
1

Ni

Ni∑
j=1

uij. (4)
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Action vectors si representing all the training action videos are normalized in141

order to have zero mean and unit variance. Action vectors representing test action142

videos are normalized accordingly.143

3. Data grouping and similarity measure144

Let Z = {zi}Nz
i=1 be a vector set consisting of Nz labeled vectors zi. In order to145

determine K vector groups in Z , we apply a clustering technique without exploit-146

ing the available action class labels. Since K-Means is a fast clustering algorithm,147

we employ K-Means to this end. That is, Z is clustered by minimizing:148

K∑
k=1

Nz∑
i=1

βik∥zi − µk∥2. (5)

µk is the mean vector of group k, having cardinality lk =
∑lk

i=1 βik, i.e., µk =149

1
lk

∑lk
i=1 βikzi, and is used to represent the group. The number of groups K is150

either assumed to be known (fixed), or can be automatically determined. In the151

second case, several criteria can be used for optimal group number determination,152

such as the one described in [22].153

In order to find the M most similar to a test vector ztest vector groups, we154

calculate the Euclidean distances between ztest and µk:155

dk = ∥ztest − µk∥2. (6)
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After calculating dk, k = 1, ..., K, the M most similar vector groups to the test156

vector ztest are those providing the M smallest distance values. M can either be157

assumed to be known (fixed), or can be automatically determined by following158

the procedure described in [15].159

4. Extreme Learning Machine160

Extreme Learning Machine (ELM) [18] is a fast algorithm for SLFNs train-161

ing. In this section, we will provide an overview of ELM algorithm and discuss162

implementation issues appearing in our application setting. Let X = {xi}Nx
1163

be a set of vectors, accompanied with the corresponding action class label set164

C = {ci}Nx
i=1 ci ∈ A. The network’s target vectors corresponding to each vector165

xi, ti = [ti1, ..., tiC ]
T , are set to tik = 1 for vectors belonging to action class k,166

i.e., when ci = k, and tik = −1 otherwise.167

In ELM, the network’s input weights Win are randomly chosen, while the168

output weights Wout are analytically calculated. Let us assume that the network’s169

hidden layer consists of Q neurons and that b ∈ RQ is a vector containing the170

hidden layer neurons bias values, which are randomly chosen as well. Many ac-171

tivation functions G() can be used for the hidden layer neurons’ output calcula-172

tion, such as sigmoid, sine, Gaussian and hard-limiting function. In our experi-173
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ments we have used the sigmoid function. That is, in our case G(wj, bj,xi) =174

1

1+exp
−(wT

j
xi+bj)

, where wj denotes the j-th column of Win. By storing the hidden175

layer neurons outputs in a matrix G, i.e.,:176

G =


G(w1, b1,x1) · · · G(w1, b1,xNx)

· · · . . . · · ·

G(wQ, bQ,x1) · · · G(wQ, bQ,xNx)

 , (7)

the network’s output vector corresponding to the training vector xi can be written

as oi = WT
outgi, where gi denotes the i-th column of G. The network’s outputs

corresponding to the entire vector set X can be written in a matrix form as O =

WT
outG. Finally, by assuming that the network’s predicted outputs O are equal to

the network’s desired outputs T, Wout can be analytically calculated by Wout =

G†TT , where G† = (GGT )−1G. However, the assumption of zero training error

may decrease the generalization performance of the ELM network in the cases

where the training set contains outliers. In order to increase the generalization

performance of the ELM network, Huang et. al. [23] have recently proposed an

optimization based regularized ELM algorithm formulated as follows:

Minimize: LP =
1

2
∥Wout∥2 + Λ

1

2

Nx∑
i=1

∥ξi∥2

Subject to: gT
i Wout = oT

i − ξTi , i = 1, ..., Nx,
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where ξi ∈ RC is a training error vector corresponding to training sample xi and177

Λ is a parameter denoting the importance of the training error in the optimization178

problem. By adopting the above described optimization scheme, Wout can be179

calculated by:180

Wout =

(
1

Λ
I+GGT

)−1

GTT . (8)

After Wout calculation, a test vector xtest can be introduced to the ELM net-181

work and be classified to the class corresponding to the highest network’s output,182

i.e.:183

ctest = arg max
j

otest,j, j = 1, ..., C. (9)

As can be seen the ELM training procedure is fast, since it involves matrix184

multiplication and matrix inversion operations. Such operations can be efficiently185

calculated by existing optimized software [24, 25]. Furthermore, the network186

topology and the input weights Win can be determined only once, since they do187

not involve any training procedure.188

5. Dynamic classification scheme189

In this section we present the proposed dynamic classification method. Let190

U be an action recognition database, containing N action videos accompanied by191

the corresponding action class labels ci, i = 1, ..., N belonging to C action classes192
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forming an action class set A. These action videos are preprocessed, following193

the procedure described in Section 2, in order to produce N action vectors si ∈194

RD, i = 1, ..., N .195

Most classification schemes would employ all the available labeled action vec-196

tors si, i = 1, ..., N and the corresponding action class labels ci in order to cal-197

culate a static classification model, that would be used in order to classify any198

unknown (test) action vector. In our case, the set of action vectors S = {si}Ni=1199

is clustered, by performing the procedure described in Section 3, in order to de-200

termine K action vector groups, represented by the corresponding mean group201

vectors µk ∈ RD, k = 1, ..., K.202

Let a test action video be represented by an action vector stest ∈ RD. stest203

is compared with all the K mean group vectors µk in order to determine the M204

closest to stest groups. The action vectors belonging to these M groups form the205

algorithm’s first level training set S1 = {si,1}N1
i=1. Here we have introduced a206

second index denoting the levels of the proposed dynamic classification scheme.207

Action class labels corresponding to the action vectors forming S1 are employed208

in order to form the first level action class label set C1 = {ci,1}N1
i=1, ci,1 ∈ A1.209

Obviously, A1 ⊆ A, since only the labeled action vectors belonging to the action210

classes that are most similar to the actual stest action class are included in S1. Now,211
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we can formulate an alternative classification problem. Instead of employing the212

entire action vector set S and train a universal classifier, we can use the action213

vector set S1 in order to train a stest - specific classifier. That is, we train an SLFN214

by using S1 and C1 following the procedure described in Section 4. Subsequently,215

we introduce stest to the trained network and we obtain its response otest. In this216

stage, we can classify stest to the action class that provides the maximal network217

output, i.e.:218

ctest = argmax
j

otest,j. (10)

However, we choose to perform the dynamic classification procedure in mul-219

tiple levels L. For this reason, we introduce S1 to the trained network and we220

obtain its responses O1 = {oi,1}N1
i=1. By using O1, we can now reformulate the221

classification problem. In the general case, after obtaining the l-th level network222

outputs, Ol = {oi,l}Nl
i=1 and otest,l, the feature vectors forming Ol are grouped by223

following the procedure described in Section 3. otest,l is, subsequently, compared224

with the corresponding mean group vectors µk,l and the closest to otest,l groups225

are used to form the (l+1)-th level training set Sl+1. The (l+1)-th level network226

is, subsequently, trained by using Sl+1 and the corresponding action class label227

set Cl+1 = {cl+1,i}Nl+1

i=1 , cl+1,i ∈ Al+1. Obviously the number of action classes228

forming the classification problem of every level of the proposed dynamic clas-229
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sification scheme is a subset of the number of classes forming the previous level230

classification problem, i.e., Al+1 ⊆ Al.231

The above described iterative procedure is performed multiple times, until the232

vectors forming the network training set belong to one action class only. That is,233

the maximal number of classification levels L depends on the test action vector234

stest. In the cases where the action class that stest belongs to, is well distinguished235

from all the other action classes forming A, only one classification level will be236

performed. In the cases of overlapping action classes, multiple classification levels237

will be performed in order to obtain the final classification result. Since at each238

level of the dynamic classification procedure the network training set is a subset of239

the previous level network training set, i.e., Sl ⊂ Sl−1, and the number of available240

labeled action vectors is finite, the proposed iterative procedure will converge in241

a finite number of iterations. In the, extreme, case of highly overlapping action242

classes, the iterative procedure will end when the network training set consists of243

only one labeled vector.244

Consider the example illustrated in Figure 3. In this Figure, we illustrate the245

2-dimensional feature space resulted by applying Principal Component Analysis246

(PCA) [11] on the dyneme based action video representation, in the Weizemann247

action recognition database [26], which will be used in the first set of the experi-248
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ments presented in the following section.

Figure 3: 2D space resulted by applying PCA on the dyneme based action representation in the

Weizemann action recognition database.

249

As can be seen in Figure 3, some action classes, such as ’jumping jack’ (jk),250

may be well distinguished from all the other action classes. However, action251

classes, usually, are confused with each other. Similar action classes, such as252

’walk’ (wk) and ’run’ (rn), or ’skip’ (sp) and ’jump in place’ (jp) contain a high253

number of common human body poses and, thus, variations in action execution254

style and human body size may result to similar action representations. Assume255

that a test action video, represented by the corresponding action vector stest,1, be-256
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longs to the action class ’jumping jack’ (jk). In this case, it is expected that stest,1257

will be directly classified to the correct action class, since ’jumping jack’ is well258

distinguished from all the other action classes. However, in the case of a test ac-259

tion video belonging to the action class ’run’ (rn), represented by the action vector260

stest,2, its classification procedure is not obvious, since action class ’run’ is con-261

fused with action class ’walk’. Thus, in this case, the classification procedure will262

probably involve multiple classification levels.263

In Figure 3, it can also be seen that action classes are not linearly separable.264

For example, consider the case of action classes ’walk’ and ’run’, as highlighted in265

Figure 4. Clearly, these two action classes share the same feature space and are not266

linearly separable. Thus, the use of linear models for action class discrimination267

is not an appropriate choice. This can be seen in Figure 5, where we illustrate the268

separating hyperplanes (lines) resulted by applying LDA (Figure 5a) and ELM269

(Figure 5b) based action vectors classification, respectively. It can be seen that270

by applying the ELM based action vector classification, action classes are better271

discriminated. This is reasonable, since, as it was previously discussed, the use of272

ELM can better capture the non linear nature of the action classes.273
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Figure 4: Action vectors belonging to action classes ’walk’ and ’run’ in the 2D PCA space.

(a) (b)

Figure 5: Separating planes (lines) resulted by: a) applying LDA followed by nearest class cen-

troid and b) training a single hidden layer neural network using the ELM algorithm.

6. Experimental results274

In this Section we present experiments conducted in order to evaluate the pro-275

posed dynamic classification method. We conducted experiments on the Weize-276

mann [26] and the i3DPost [27] action recognition databases containing daily ac-277
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tions, as well as on a new action recognition database aiming at recognition of278

actions appearing in meal intakes [28]. We provide a comprehensive descrip-279

tion of these databases in Subsections 6.1, 6.3 and 6.5, respectively. In each280

level of the proposed dynamic classification scheme, we grouped the labeled281

vectors in K = [10, 20, 50] groups. The optimal number of closest to the test282

vector groups has been experimentally determined by using different values of283

M = K
k
, k = 1, ..., 10. Regarding the optimal number of dynemes D, the num-284

ber of network hidden layer neurons Q and the parameter value Λ of the ELM285

algorithm, they have been determined by performing the leave-one-out cross-286

validation procedure. Specifically, we have performed the cross-validation pro-287

cedure using values of D equal to 10k, k = 1, ..., 20, Q = [100, 200, 500, 1000]288

and values of Λ equal to 10λ, λ = −5, ..., 5. In order to assess the ability of the289

proposed classification scheme to generalize on data that it was not trained on, we290

performed the leave-one-person-out cross-validation procedure (LOPOCV). That291

is, we used the action videos depicting all but one person in the database as la-292

beled data and the action videos depicting the remaining one as test data, in order293

to perform one iteration (fold) of the cross validation procedure. Multiple folds,294

equal to the number of persons appearing in the database, have been performed in295

order to complete an experiment.296
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6.1. Weizemann database297

The Weizemann action recognition database [26] contains 90 low-resolution,298

144 × 180 pixel, image sequences depicting nine persons (five males and four299

females) performing ten daily actions each. The actions appearing in the database300

are: ’walk’ (wk), ’run’ (rn), ’jump in place on two legs’ (pj), ’jump forward on two301

legs’ (jp), ’jumping-jack’ (jk), ’gallop sideways’ (sd), ’skip’ (sp), ’wave one hand’302

(wo), ’wave two hands’ (wt) and ’bend’ (bd). Binary image sequences denoting303

the human body regions are included in the database. Example video frames and304

binary skin-colored regions are illustrated in Figure 2.305

Since most of these image sequences depict multiple action instances, e.g.306

multiple walking steps, we automatically produced binary action videos by using307

the binary image sequences and a sliding window consisting of 16 video frames,308

moving in steps of 4 video frames, resulting to the creation of 952 action videos.309

Figure 6 illustrates the sliding window technique for automatic binary action video310

creation. The resulted binary action videos have been preprocessed following the311

procedure described in Section 2312

6.2. Experiments on the Weizemann database313

In our first set of experiments we have conducted the LOPOCV procedure314

on the Weizemann action recognition database using the resulted binary action315
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Figure 6: Sliding window technique for automatic action video creation.

videos. In Figure 7 we illustrate the action classification rates obtained by us-316

ing different values of M . As can be seen, by using smaller values of M the317

classification rate increases. This is reasonable since for smaller values of M the318

classification procedure involves only the labeled data that are more similar to the319

test ones.

Figure 7: Action classificaction rates as a function of M .
320

The confusion matrix corresponding to the optimal parameters is illustrated in321

Figure 8a. As can be seen, high classification rates have been obtained for all the322
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action classes. The class which was found to be the most difficult for classification323

is action class ’wave one hand’, which is confused with action classes ’bend’ and324

’jump in place on two legs’. However, even for this case a high classification rate,325

equal to 92%, has been obtained.326

In order to directly compare the performance of the proposed classification327

method with other ones, we have conducted experiments by performing the LOPOCV328

procedure on the Weizemann action recognition database using both static and329

dynamic classification strategies. That is, we performed the LOPOCV procedure330

by employing the static classification strategy and performing LDA based action331

vector projection followed by nearest class centroid classification, resulting to an332

action classification rate equal to 95.92%. By following the static classification333

strategy and performing ELM based action vector classification, an action classi-334

fication rate equal to 96.15% has been obtained.335

Subsequently, we have conducted experiments employing the dynamic classi-336

fication strategy. KNN action vectors classification, using K = 3 nearest neigh-337

bors, resulted to an action classification rate equal to 94.06%. Action classification338

based on L1-minimization followed by smallest residual error action vector clas-339

sification, as proposed by Wright et. al. [13], resulted to an action classification340

rate equal to 92.76%. By following the dynamic classification method proposed341
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by Kyperountas et. al. [15], which employs LDA based data projection, an action342

classification rate equal to 96.29% has been obtained. Finally, by performing one343

level of the proposed dynamic classification method and classifying each test ac-344

tion vector by applying majority voting on the action class labels of the labeled345

action vectors forming the M , out of K, closest to the test action vector groups, an346

action classification rate equal to 71.63% has been obtained. This procedure can347

be used as a reference for the performance of the proposed dynamic classification348

scheme, since, intuitively, the determination of labeled action vectors similar to349

the test one should lead to correct classification results. The action classification350

rates obtained in all these experiments are summarized in Figure 8b.351

As can be seen in Figure 8, the adoption of a dynamic classification strategy352

leads to an increase of the action classification rates. In both the LDA and ELM353

cases, the dynamic classification approach provides higher classification rates.354

Furthermore, it can be seen that the proposed classification scheme is efficient,355

since a simple majority voting on the action labels of the labeled action vectors356

that form the M most similar to the test action vectors groups, results to a, rel-357

atively, high action classification rate. Finally, it can be seen that the proposed358

dynamic classification scheme outperforms all the other competing methods ap-359

pearing in Figure 8, since it combines both efficient search of the most appropriate360
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(a)

(b)

Figure 8: a) Confusion matrix on the Weizemann database obtained by applying the proposed

dynamic action classification method and b) Comparison results on the Weizemann action recog-

nition database.

training set and approximation of non-linear discrimination functions.361

In order to compare the performance of the proposed action classification362

method with that of other methods proposed in the literature, we have followed363
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the procedure proposed in [29]. That is, the image sequences of the Weizemann364

database have been classified to action classes by performing majority voting on365

the action classification results provided by the algorithm for the corresponding366

action videos, resulting to an action classification rate equal to 98.9%. All but367

one action sequences have been correctly classified. The only sequence that was368

misclassified belongs to action class ’skip’ and classified to action class ’jump369

forward on two legs’. Since some of the methods proposed in the literature pro-370

viding state of the art performance are evaluated by using an earlier version of371

the database containing nine action classes, i.e., not containing action class ’skip’,372

we have also tested the proposed dynamic action classification method by using373

this earlier version. Comparison results with other action recognition methods are374

illustrated in Table 1.375

6.3. AIIA-MOBISERV database376

Despite the fact that most applications, including action recognition function-377

ality, consider daily action types, such as walk, run, etc., there are applications re-378

quiring different type of actions. For example, monitoring the status of the elderly379

people in the early stages of dementia, while still living independently, to prevent380

dehydration is an important task. In the framework of the EU R&D project MO-381

BISERV, we created an eating and drinking action recognition database, which382
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Table 1: Comparison results on the Weizmann action recognition database.

Method 9 actions 10 actions

Yaffet & Wolf [30] 100% –

Wang & Mori [31] 100% –

Guha & Ward [32] – 98.9%

Gorelic et al. [29] – 97.8%

Riemenchneider et al. [33] – 96.7%

Gkalelis et.al. [34] – 96%

Ali & Shah [35] – 95.7%

Junejo et al. [36] 95.3% –

Thurau & Hlavac [37] – 94.4%

Zhang et al. [38] – 92.8%

Niebles et al. [39] – 90%

Proposed method 100% 98.9%

is publicly available in [28]. Twelve persons (six females and six males) were383

captured by a camera placed at a distance of 2 meters in front of them, during a384

meal. Four meals have been recorded, each for a different day for all the twelve385

persons. The actions appearing in the database are: ’eat’, ’drink’ and ’apraxia’.386

Action class ’eat’ contains the cases where the person eats using a spoon, a cut-387
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lery, a fork, or takes a bite using one or two hands. Action class ’drink’ contains388

the cases where the person drinks using a cup, a glass, or a straw. Finally, action389

class ’apraxia’ contains the cases where the person is slicing his/her food or he/she390

is chewing it and the cases where the person rests.391

We have manually temporally segmented the videos depicting all the persons392

during two meals. This procedure resulted to the creation of 1288 action videos.393

A color based image segmentation technique has been applied to the video frames394

of these action videos in order to produce binary images depicting the skin regions395

of the depicted person’s body. Specifically, each video frame has been converted396

to the HSV color space and the image pixels having HS values in pre-specified397

thresholds, corresponding to skin-like color values, have been determined to be398

foreground pixels, while the rest pixels have been assumed to belong to the back-399

ground. Morphological operations (closing) have been, subsequently, performed400

in order to obtain the final binary action video frames. This resulted to the cre-401

ation of binary action videos denoting the person’s head and hands, which have402

been preprocessed following the procedure described in Section 2. Example video403

frames and binary skin-colored regions are illustrated in Figure 2.404
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6.4. Experiments on the AIIA-MOBISERV database405

In our second set of experiments we have performed the LOPOCV procedure406

on the binary action videos of the AIIA-MOBISERV database. An action classi-407

fication rate equal to 93.4% has been obtained by applying the proposed dynamic408

action classification method. The confusion matrix of this experiment is illus-409

trated in Figure 9a. Comparison results with other dynamic, as well as static,410

action classification schemes are illustrated in Figure 9b. As can be seen, by ap-411

plying the majority voting classification scheme, an action classification rate equal412

to 65.11% has been obtained. Action classification based on L1-minimization fol-413

lowed by smallest residual error action vector classification, resulted to an action414

classification rate equal to 90.3%. KNN (K = 3) action vector classification re-415

sulted to an action classification rate equal to 89.91%. Static LDA and ELM based416

action classification schemes, provided action classification rates equal to 89.94%417

and 89.73%, respectively. Finally, LDA-based dynamic action vector classifica-418

tion resulted to an action classification rate equal to 92.53%. As can be seen, the419

dynamic action classification approach outperforms the static one in both the LDA420

and ELM based classification schemes. Furthermore, it can be seen that the ELM421

based dynamic action classification scheme outperforms all the methods presented422

in this Figure.423
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(a)

(b)

Figure 9: a) Confusion matrix on the AIIA-MOBISERV database obtained by applying the pro-

posed dynamic action classification method and b) Comparison results on the AIIA-MOBISERV

action recognition database.

6.5. i3DPost database424

The i3DPost multi-view database [27] contains 512 high resolution (1080 ×425

1920 pixels) image sequences depicting eight persons (six males and two females)426

performing eight actions. The database camera setup consists of eight cameras,427

providing a 360◦ coverage of the scene. The actions appearing in the database are:428

’walk’ (wk), ’run’ (rn), ’jump in place’ (jp), ’jump forward’ (jf), ’bend’ (bd), ’fall429
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down’ (fl), ’sit on a chair’ (st) and ’wave one hand’ (wo). Since most of the image430

sequences depict multiple action instances, e.g. multiple walking steps, we have431

manually temporally segmented them in order to produce videos depicting one432

action instance each. A color based image segmentation technique, discarding the433

blue color in the HSV color space, has been applied to the video frames of these434

action videos in order to produce binary action videos denoting the human body.435

Morphological operations (closing) have been, subsequently, performed in order436

to obtain the final binary action video frames.437

6.6. Experiments on the i3DPost database438

In our third set of experiments we have performed the LOPOCV procedure on439

the binary action videos of the i3DPost database. In each fold of the LOPOCV440

procedure, we have used the action videos depicting seven of the persons perform-441

ing an action instance from all the available cameras as labeled data. Each action442

video depicting the test person has been classified to one of the eight action classes443

independently, in order to form a single-view view-invariant action classification444

problem. We should note that, we expected the above described procedure to re-445

sult to a difficult classification problem due to the well known view angle effect446

[40]. By applying the proposed dynamic action classification method, an action447

classification rate equal to 77.97% has been obtained. The confusion matrix of this448
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experiment is illustrated in Figure 10a. Comparison results with other dynamic,449

as well as static, action classification schemes are illustrated in Figure 9b. As can450

be seen, by applying the majority voting classification scheme, an action classi-451

fication rate equal to 50.5% has been obtained. Action classification based on452

L1-minimization followed by smallest residual error action vector classification,453

resulted to an action classification rate equal to 77.14%. KNN (K = 3) action454

vector classification resulted to an action classification rate equal to 71.85%. Static455

LDA and ELM based action classification schemes, provided action classification456

rates equal to 70.39%. Finally, LDA-based dynamic action vector classification457

resulted to an action classification rate equal to 72.4%. As can be seen, the dy-458

namic action classification approach outperforms the static one in both the LDA459

and ELM based classification schemes. Furthermore, it can be seen that the ELM460

based dynamic action classification scheme outperforms all the methods presented461

in this Figure.462

7. Conclusions463

In this paper, we proposed a novel dynamic action classification method based464

on an iterative procedure determining test action instance specific classification465

problems in multiple levels. Action instances are represented by vectors denoting466
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(a)

(b)

Figure 10: a) Video frames depicting one person of the i3DPost database walking from different

viewing angles and b) Comparison results on the i3DPost action recognition database.

the fuzzy similarity of the corresponding human body poses with representative467

human body poses, the dynemes. At each classification level, the most similar468

to the test action instance labeled vectors are employed in order to train a single469
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hidden layer feedforward network using the ELM algorithm. A new feature space470

is, subsequently, obtained by the trained network’s outputs. By exploiting the471

properties of the adopted network topology and the fast training procedure of the472

ELM algorithm, the proposed classification method is fast and efficient. Experi-473

ments on publicly available action recognition databases indicate the superiority474

of the dynamic classification strategy, compared to the static one, as well as the475

effectiveness of the proposed dynamic classification method.476
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