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Abstract

In this paper, a method aiming at view-independent human action recognition is
presented. Actions are described as series of successive human body poses. Ac-
tion videos representation is based on fuzzy vector quantization, while action clas-
sification is performed by a novel classification algorithm, the so-called Sparsity-
based Learning Machine (SbLM), involving two optimization steps. The first one
determines a non-linear data mapping to a high-dimensional feature space de-
termined by an I1-minimization process exploiting an overcomplete dictionary
formed by the training samples. The second one, involves a training process
in order to determine the optimal separating hyperplanes in the resulted high-
dimensional feature space. The performance of the proposed human action recog-
nition method is evaluated on two publicly available action recognition databases
aiming at different application scenarios.

Keywords: Activity recognition; Fuzzy Vector Quantization; Sparse Data
Representation; Action classification

1. Introduction

Human action recognition is one of the most active research fields in computer
vision with an increasing number of real-world applications, including intelligent
visual surveillance, human-computer interaction, content-based video compres-
sion and retrieval, semantic video annotation and augmented reality. Due to its
importance, it has been heavily researched in the last two decades and a plurality
of action recognition methods have been proposed in the literature, each taking
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into account several aspects of the action recognition problem, depending on the
application scenario.

Most of the proposed methods utilize one camera, in order to obtain the neces-
sary visual information. However, due to the fact that the human body during ac-
tion execution, when it is observed by arbitrary viewing angles, can be considered
to as a high level deformable subject, such methods usually set the assumption of
fixed and a priori known observation angle. This observation angle is defined to
be the one that provides the maximal action distinction [1]. In order to overcome
this limitation, multi-view action recognition methods have been proposed. These
methods operate by using multi-camera systems. By capturing the human body
from multiple viewing angles, multi-view methods, exploit the enriched visual in-
formation in order to create a view-independent human body description leading
to view-independent action representation. After obtaining the available visual in-
formation, a pre-processing step is, usually, performed on the video data depicting
action instances in order to obtain a convenient human body representation. Such
descriptions include features based on motion information and optical flow [2]
and features devised mainly for action representation [3, 4]. However, neurobio-
logical studies [5] have concluded that humans can perceive actions by observing
only the human body configurations during action execution. Thus, actions can be
described as sequences of successive human body poses [6]. Popular choices for
multi-view human body representation include visual hulls of the 3D human body
[7, 8], multi-view postures [9] and skeletal and super-quadratic body models [10].
Such human body representations, including the one adopted by the proposed
method, set the assumption that the entire human body is visible from each camera
and require video frame segmentation in order to determine binary human body
silhouettes on each video frame. This is why they have been, mainly, adopted
for action recognition in applications involving a fairly controlled environment.
Finally, pattern recognition techniques are applied in order to obtain a convenient
action class representation and to classify new, unknown, action instances. Dis-
criminant Analysis techniques [11], Support Vector Machines (SVMs) [12] and
Artificial Neural Networks (ANNs) [13], have been widely used to this end pro-
viding satisfactory action classification rates. Among them, Single-hidden Layer
Feedforward Neural networks (SLFNs) have been widely used due to their ability
to approximate any target continuous function and classify any disjoint regions.
Recently, the concept of sparsity-based data representation has attracted attention
in computer vision due to its powerful discrimination ability and the ability of
sparse representations to uncover semantic information.

Although most multi-view methods proposed in the literature can effectively
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perform view-independent human action recognition exploiting multi-view visual
information, they inherently set several assumptions. That is, the person under
consideration should be visible from all the cameras forming the recognition cam-
era setup and the recognition camera setup should be synchronized and/or cali-
brated. In different cases, the action recognition performance will decrease, or
they will fail to operate properly. In order to address this issue, we follow a
different approach. We choose to perform single-view view-independent action
recognition on each video, coming from different cameras, depicting the person
under consideration performing an action. Action classification results are, sub-
sequently, fused in order to recognize the performed action. By adopting this
approach, the proposed method can effectively address several issues that may
appear in real application scenarios involving multi-camera setups [14], like total
occlusion of the human body in some of the cameras, synchronization errors be-
tween the cameras and different properties of the camera setups used in training
and recognition phases. This is due to the fact that each video coming from a
different camera is processed independently and, thus, delays on the video frames
corresponding to different cameras do not affect the adopted action representation.
Furthermore, by including only the cameras capturing the performed action on the
final fusion process, the cases of total human body occlusion in some of the cam-
eras and different camera setups in training and test phases are easily addressed.
However, multi-view action recognition is challenging in this setting due to the
well known viewing angle effect [1, 15]. In order to successfully operate an action
recognition method should be able to first identify the view angle that the person
is captured from each camera and, subsequently, perform view-dependent action
recognition. Thus, view angle determination should proceed action recognition.
In this paper we follow a different approach by adopting a sparsity-based video
representation, which is shown to be discriminative and able to uncover seman-
tic information concerning both action recognition and view angle determination.
Thus, view angle determination is not required as a pre-processing step, since the
obtained video representation encodes information relating to both the action class
and view angle. Based on this fact and inspired by the efficient Extreme Learn-
ing Machine (ELM) algorithm for SLFN network raining [16], we propose a new
learning algorithm, the so-called Sparsity-based Learning Machine (SbLM). The
motivation behind SbLM is the fact that, since ELM can achieve high classifi-
cation performance by adopting a random data mapping in a high dimensional
feature space, the adoption of a meaningful discriminant high dimensional data
representation should lead to increased action classification performance. Since
sparsity based data representation has proven its discriminative power in classi-



fication problems, such an action representation would be an excellent choice.
Furthermore, as it is shown, the adoption of sparsity-based data representation is
able to uncover semantic information regarding both action class and view angle,
which is of interest for view-independent action recognition exploiting multi-view
information.

The main contributions of this paper are: 1) the proposal of a new learning al-
gorithm exploiting sparsity-based data representation using an overcomplete ba-
sis formed by the training data, 2) the proposal of two dictionary variants for
the SbLM algorithm formed by the mean cumulative fuzzy distances of posture
vectors to all the dynemes and 3) the evaluation of SbLM in single-view and
multi-view action recognition on two publicly available databases.

The rest of this paper is structured as follows. Section 2 presents a literature
review of the action recognition methods adopting sparsity-based action represen-
tation. Section 3 provides an overview of the recognition framework used in the
proposed approach and a small discussion concerning the action recognition task.
Section 4 describes the proposed action recognition method and experimental re-
sults evaluating its performance are presented in Section 5. Finally, conclusions
are drawn in Section 6.

2. Related Work

Human action recognition methods employing sparsity-based action represen-
tation for classification have been, recently, proposed in the literature, inspired
by the effectiveness of such representations in image classification. Researchers
have, mainly, focused their attention on finding a convenient action description,
while classification is, usually, performed by following the smallest residual error
classification rule [17]. In [18], actions are described as sequences of consecutive
human body poses, in terms of binary images denoting the human body regions.
Each pose is represented by a feature vector and feature vectors representing all
the poses forming the training action videos are stored in a matrix to produce an
overcomplete dictionary. Human body poses forming a test action video are rep-
resented by sparse linear combinations of the training poses and classified to the
action class providing the smallest residual error. Finally, the test action video
is classified by following the majority rule. In [19, 20] actions are described by
histograms of interest points detected in action videos. Histograms representing
training action videos form a dictionary and the histogram representing a test ac-
tion video is classified to the action class that provides the smallest residual error.
In [21], action videos are described by bags of features such as optical flow, veloc-
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ity, gradient and divergence. Covariance matrices of these features representing
all the training action videos are vectorized in order to produce a dictionary. Fi-
nally, test action videos are represented by the corresponding covariance matrices
and classified to the action class that provides the smallest residual error.

Instead of employing the entire training set for dictionary creation, several
methods have been proposed in order to learn a representative dictionary. Such
methods employ the training samples in order to learn an overcomplete dictionary
minimizing an objective function denoting the appearance information between
dictionary items. In [22], actions are described as vectors obtained by calculat-
ing central moments of image patches corresponding to interest points neighbor-
hood. Random projections are, subsequently, used for dimensionality reduction.
The reduced dimensionality feature vectors representing training action videos
are employed for dictionary learning, while test action videos are classified to the
action class that provides the smallest residual error employing the learned dictio-
nary. Three dictionary types are evaluated: class independent, class-specific and a
shared dictionary, which is produced by concatenating the class independent and
class-specific dictionaries. In [23], the class label information associated with dic-
tionary items is exploited in order to learn a compact and discriminant dictionary
for human action representation.

All the above described methods aim at single-view action recognition and,
thus, they set the assumption of known viewing angle during training and recog-
nition phases. A method that does not set this assumption is proposed in [24]. A
multi-camera setup is employed in order to describe actions as sequences of 3D
human body poses. View-independent features obtained by applying the Discrete
Fourier Transform on 3D Motion History Volumes [8], resulted by accumulat-
ing the 3D human body poses with respect to time. Sparsity-based action video
classification is performed by following the smallest residual error classification
rule.

3. Problem Statement

Let A be a set of V4 action classes, such as walk, run, bend, etc. Let U be
a video database containing videos depicting Np persons performing instances
of actions belonging to the action class set .A. Such videos will be called action
videos hereafter. In the case where the database camera setup is formed by No >
1 cameras, each action instance in the video database U/ is captured from N¢
viewing angles. The number of video frames consisting action videos may vary,
since actions differ in duration. For example, a walking step is, usually, depicted



in 10 - 15 video frames of a 25 fps video, while a bend sequence is depicted in 40
- 60 video frames. Such duration variations may be observed even in two different
realizations of the same action, due to execution style variations between different
persons, or mood variations of the same person. Let us, now, assume that a person,
who may or may not appear in the video database U/, performs an instance of an
action included in the action class set A, and that he/she is captured by N > 1
cameras. This results to the creation of N action videos, each depicting the same
action instance from a different viewing angle. Action recognition is the task of
assigning the new, unknown, action instance to one of the /N4 action classes.

Action recognition is a difficult task in this setup. Since we aim to perform
view-independent human action recognition, the person is free to move and thus,
his/her position and orientation with respect to the camera setup coordinate system
may vary. Furthermore, actions highly overlap in the video frame space, since the
same human body poses appear in multiple actions. Taking into consideration
the body size variations between different persons and the action execution style
variations that appear in different realizations of actions, it is possible that an
action instance belonging to an action class performed by a person will be more
similar to an action instance belonging to a different action class performed by
another person, than to an action instance belonging to its actual action class.
Finally, in the recognition phase, the human body may be visible from an arbitrary
number of cameras, since the person under consideration may perform the action
outside some cameras’ field of view, or he/she may be occluded in some of the
cameras.

4. Proposed Method

In this Section, each step of the proposed action recognition method is de-
scribed in detail. The adopted action representation is presented in Subsection
4.1. The proposed SbLM classification algorithm is described in Subsection 4.2.
Finally, the procedure followed in the recognition phase is described in Subsection
4.3.

4.1. Action Representation

Let us assume that the video database {/ contains Nt action instances, de-
picted in Ny, = Np - N¢ action videos. Image segmentation techniques [25] are
applied to the video frames of these action videos in order to create binary im-
ages depicting the image locations belonging to the human body in white and the



background in black. These binary images are centered to the human body Re-
gions Of Interest (ROIs) center of mass, cropped to the ROIs region and resized
to fixed size H x W posture images. Posture images are represented as matrices,
which are, subsequently, vectorized column-wise in order to create the so-called
posture vectors p;; € RZW where i = 1, ..., Ny denotes the action video index
and 5 = 1,..., N; runs along the video frames of action video :. An example of
posture vector creation is illustrated in Figure 2.
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Figure 1: Posture vectors creation.

In the training phase, all the posture vectors of the training action videos
are used in order to produce D representative posture vectors z; € R7W, d =
1, ..., D, the so-called dynemes [26]. Dynemes calculation is performed by clus-
tering the training posture vectors p;; without exploiting the known action labels
of the training action videos. The choice of clustering algorithm was proven to
have only minor impact in action recognition accuracy. We found experimentally
that K'-Means [11] performs well for the specific task and is faster than other clus-
tering algorithms. Thus, we adopt /K-Means for dynemes calculation, minimizing
the within-cluster scatter, i.e.:

D Ny N;

D> aualpy —zdl’, (1)

d=1 i=1 j=1

where ;4 is an index denoting if posture vector p;; belongs to cluster d. That is,
a;jq = 1if p;; belongs to cluster d and «;;4 = 0 otherwise. Dynemes are defined
to be the cluster mean vectors:

i

1 Ny N,
Zg = n—d Z Z AijdPij - ()

i=1 j=1

ng = Zf\i"l Zjvzl ;4 1s the number of posture vectors belonging to cluster d. Fig-
ure 2 illustrates 60 dynemes calculated by using the action videos of the i3DPost
action recognition database, that has been used in the first set of our experiments.



RNONBIREIEIGEE
CHUAEANNEEAG
L EP LN N EO T
COOQBLONnNONnEAan

Figure 2: 60 dynemes produced by using action videos depicting eight persons performing eight
actions from eight viewing angles.
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As can be seen, dynemes correspond to representative human body poses captured
by arbitrary viewing angles.

After dynemes calculation, each posture vector is mapped to the so-called
membership vector u;; € R” encoding the similarity of p;; with all the dynemes
vgy. This is done by calculating the fuzzy distances between p;; and all the
dynemes z,, according to a fuzzification parameter m > 1.0:
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Membership vectors corresponding to each action video are averaged in order
to produce the so-called action vector s; € R, which is used in order to represent

action videos:
1 &
S; = FZ 2; llij. (4)
J:

Finally, the action vectors representing all the /Vy training action videos are
normalized to have unit [, norm, zero mean and unit standard deviation. In the
recognition phase, all the action vectors s ;, j = 1,..., N representing the NV
test action videos depicting an action instance from all the /V cameras involved in
the recognition process are normalized accordingly. We will employ the training
action vectors s;, ¢ = 1,..., Ny in order to train the proposed SbLM algorithm,
as we will describe in the following Section.

. d=1,..,D. 3)

ijd

4.2. Sparsity-based Learning Machine

In this Section we briefly describe the ELM algorithm [16] for SLFNs training
and we subsequently describe the proposed SbLLM algorithm. Lets;, 7 =1, ..., Ny
be the set of training action vectors, accompanied with the corresponding action
class labels ¢; € A. In ELM, the network’s input weights W;,, are randomly



chosen, while the output weights W ,,,; are analytically calculated. The network’s
target vector corresponding to action vector s;, t; = [t;1, ..., tin A]T, issettot;, =1
when action vector s; belongs to class & and ¢;;, = —1 otherwise.

Let us assume that the network’s hidden layer consists of L neurons and that
b € R is a vector containing the hidden layer neurons bias values, which are ran-
domly chosen as well. Let v; and wy, denote the j-th column of input weights ma-
trix W;,, € RP*L and the k-th column of output weights matrix W, € R¥*Na,
respectively. The output vector o; of the ELM network corresponding to training
action vector s; is calculated by o0;, = WZgi, k = 1,..., N4, where g; is the s;
representation in the ELM space. By storing the action vectors representation in
the ELM space in a matrix G = [g1, ..., gn,/], the network’s outputs correspond-
ing to the training action vectors can be written in a matrix form as O = W1 .G,
Finally, by assuming that the network’s predicted outputs O are equal to the net-
work’s targets, i.e., o, = t;, ¢ = 1,..., N,, and using linear activation function
for the output neurons, W,,; can be analytically calculated, i.e., W,,; = GHTT,
where G = (GGT)~1G and T a matrix containing the network’s target vectors.

In standard ELM algorithm the action vectors representation in the ELM space
is obtained by performing a non-linear mapping using randomly chosen input
weights W,,,. Furthermore, the dimensionality of the ELM space L must be em-
pirically chosen. In order to find the optimal ELM space dimensionality several
methods have been proposed [27, 28]. Such methods either start by using a large
number of hidden neurons and iteratively decrease it as long as the classification
residual error remains above a pre-defined threshold, or start by using a small
number of hidden neurons and iteratively increase it. These methods depend on
user pre-specified parameter values, like the maximal number of hidden neurons
and residual error threshold. Furthermore, the determined optimal number of hid-
den neurons depends on the training data at hand. For example, if some of the
training data are replaced by others, the optimal number of hidden layer neurons
should be determined again.

In the following we describe the proposed SbLLM algorithm which has been
formulated inspired by the above described learning process. Intuitively, the use of
an action vector representation in a high dimensional feature space that highlights
action class discrimination should lead to an increase in the action classification
performance. We investigate the discriminative ability of sparsity based data rep-
resentations to this end. Specifically, the proposed SbLM algorithm maps action
vectors s; to a high dimensional feature space determined by the reconstruction
weights determined by an 11-minimization optimization problem. Subsequently, a
learning process is performed in order to determine the optimal separating hyper-
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planes in the resulted high dimensional space for action classes discrimination.

Let us denote with A € RP*L a dictionary that will be used in order to recon-
struct a training action vector s; using weights appearing in a vector g; € RE. g;
can be determined by solving the following 11-minimization problem:

arg min | Ag: — {13 + Al ©

where A is a parameter that penalizes the non-zero elements of g;. Such min-
imization problems can be efficiently solved by using existing software pack-
ages [29, 30]. Following [18, 19, 20, 21], A can be an overcomplete dictio-
nary formed by all the training data, in our case the training action vectors, i.e.,
A = [sq,S3,...,8n,]. One may think that the obvious solution in this problem
is G = Iy, , since each training action vector s; can be perfectly reconstructed
by a single column of A and specifically by the i-th column. In order to avoid
this situation and since it is expected that test action vectors will not be perfectly
reconstructed by using a single training action vector, we employ the following
two alternatives for A determination:

e Action video independent: In this case we assume that the training action
vector s; can be reconstructed by using the action vectors representing all
the remaining action videos in the video database /. That is, A is formed
by the training action vectors, s;, j = 1,..., Ny, j # i. However, since test
action vectors will be reconstructed by using all the training action vectors,
s; is reconstructed by using the following dictionary:

AZ = [Sla--'7Si717017si+17--'7SNV]7 (6)

where 0; € R” is a vector of zeros. By solving the minimization problem
in (5) using A’ and s;, a reconstruction vector g is obtained. Finally, g; is
calculated by:

gi = (1—p)gi+pl", @)
where 1° € R” is a vector having all its elements equal to zero, except of
element 4, i.e., 1° = [0, ...,0,1,0, ..., 0]7.

e Person independent: In this case we assume that the training action vec-
tors representing action videos depicting each person in the video database
U, can be reconstructed by using the action vectors of the remaining per-
sons. That is, we assume that training action vectors s;, ¢ = 1, ..., Ny are
accompanied by the corresponding action class and person ID labels, ¢; and
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q:» respectively. The action vectors representing the action videos depicting
the k-th person are stored in a matrix A, = {s;, ¢; = k} and each train-
ing action vector s;, ¢ = 1,..., Ny is reconstructed by using the following
dictionary:

A" =[A4, oy Ag—1, 0N, At s ANp], (8)

where Oy, € R”*Nai is a matrix of zeros and N, is the number of action
vectors belonging to person g;.

By following the above described approach, the dimensionality of the new
action vector representation is determined by the number of training action vec-
tors, i.e., L = Ny. In the cases where the training set size is very large, dictio-
nary learning techniques, like those proposed in [22, 23], can be employed for
representative dictionary learning. However, the adoption of dictionary learning
techniques has the following disadvantages: 1) it depends on user pre-specified
parameter values, 2) the determined optimal dictionary size depends on the train-
ing data at hand and 3) the dictionary learning process is time consuming. Taking
into account that the dictionary learning process should be performed multiple
times, for different parameter values, in a try-and-error sense, it can be seen that
the adoption of such dictionary learning techniques is computationally expensive.
In the cases where the number of training samples is not very high (like in our
case where the number of action videos appearing in current action databases is
between one and two thousand) the use of the training data for dictionary creation
is computationally inexpensive and exploits all the available information.

The proposed action vector representation exploits the discriminant ability of
sparsity-based data representation. In Figure 3 we present the representations
of an action video depicting the first person in the i3DPost multi-view action
database walking, for the ELM and the proposed SbLLM approaches. As can be
seen in Figure 3a, the ELM based action vector representation does not seem to
contain discriminant information, since it is a result of non-linear mapping using
randomly chosen weights. In both SbLM approaches, as illustrated in Figures
3b,c, the obtained action vector representations contain discriminant information,
since the highlighted coefficients correspond to training action belonging to the
correct action class in most cases. Specifically, it can be seen that the action vec-
tor under investigation is more similar to action vectors belonging to the first,
fourth and seventh persons in the database representing action videos depicting
them walking. In addition, let us consider that each training action vector cor-
responds to an action video that has been recorded by a specific viewing angle.

11



Thus, the weights determined for a test action vector contain information regard-
ing the test action video observation angle [1]. In this way, we can see that the
viewing angle effect is inherently addressed by the adopted sparsity based action
vector representation.

After calculating g;, ¢ = 1, ..., Ny, the available action labels for the training
action videos can be utilized in order to train a classification algorithm for action
class representation and classification of new, unknown, action videos. Expecting
that training and test action vectors follow the same distributions, the assump-
tion of zero training error is a reasonable choice. However, in the cases where
the training data set contains outliers, this assumption may reduce the classifiers
generalization ability. By assuming small training errors, we can formulate a reg-
ularization based optimization problem having the following form:

Minimize: Lp = |W||F Z €113
Subject to: WTgi =t,—-&, i=1,..., Ny,

where W € RE*V4 s a matrix formed by vectors denoting the optimal hyper-
planes separating action classes in the above described multi-class action classi-
fication problem in an One-Versus-All (OVA) manner, £, € R"4 is the training
error vector corresponding to training action vector s; and c is a parameter denot-
ing the importance of the training error in the optimization problem. W can be
calculated by:

-1
W = <GGT + %I) GTT. 9)

where I € R *M g the identity matrix. The derivation of (10) by using the
primal minimization problem Lp is shown in the Appendix.

Here we should note that similar classification schemes have been employed
in ELM as well [31, 32]. These methods investigate multi-class classification
problems as well and the proposed formulas for output weights W, calculation
look similar to (10). However, in both these methods, data representation in the
decision space is based on randomly chosen weights, contrary to the proposed
SbLM, employing sparsity based data representation.

4.3. Action Recognition (Test Phase)

Let us assume that a person, who is free to move in a place that is monitored
by a camera setup consisting of No > 1 cameras, performs an instance of an
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Figure 3: Action vector representation of an action video depicting a person walking for a) stan-
dard ELM algorithm, b) action video independent SbLM and c) person independent SbLM. In b)
and c) we illustrate the person ID and action class labels of the corresponding training action
vectors (wk = walk, wo = wave).

action appearing in the action class set .A. Visual human body tracking techniques
[33] can be used in order to determine the cameras in which the person is visible
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from. Let us assume that he/she is visible from 1 < N < N cameras. This
results to the creation of NV action videos, each depicting the same action instance
from a different viewing angle. These action videos are preprocessed following
the procedure described in Section 4.1 resulting to NV test action vectors s, ;, © =
1,...,N. s;; are represented as sparse combinations of the training action vectors
s; and N vectors containing the reconstruction weights g, ; are obtained. g, ; are,
subsequently, classified to the action class corresponding to the highest output,
ie.:

Cii = aTg Max ngt,i, k=1,.. Nj. (10)

Finally, the test action instance is classified to an action class by following the
majority voting rule, i.e.:

N
¢ = arg mjaxiz:; Bij (11)

where is an index denoting if action vector s;; has been classified to action class
J,ie, Bi; = 1if ¢,; = j and B;; = 0 otherwise. As can be seen, by adopting
such an action recognition scheme, the number of cameras used in the recognition
phase is not assumed to be a priori known. As will be shown in the experimental
evaluation presented in the next Section, the proposed method can, successfully,
operate in the cases where the number of cameras N involved in the recognition
process is not equal to the number of cameras N forming the recognition cam-
era setup. This may result in the cases where the person under consideration is
not visible from some of the cameras due to total human body occlusion, or due
to the fact that he/she moves outside of some cameras field of view. Further-
more, synchronization errors, i.e., delays on the obtained video frames, between
the cameras forming the recognition camera setup do not affect the action classi-
fication performance. This is due to the fact that each action video coming from
a different camera is processed independently, contrary to multi-view methods
combining visual information coming from multiple views in order to obtain a
view-independent human body representation and subsequently perform classifi-
cation. In both cases, i.e., total human body occlusion in some of the cameras
and synchronization errors between cameras, such methods will, probably, fail to
operate well, since the obtained human body representation will be incorrect.
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5. Experimental Results

In this Section we present experiments conducted in order to evaluate the per-
formance of the proposed action recognition method. We perform multi-view
action recognition on the i3DPost action database aiming at recognition of daily
actions and single-view action recognition (as a special case of multi-view action
recognition for No = 1) on the AITA-MOBISERV eating and drinking database
containing actions appearing in meal intakes. In order to evaluate the discriminant
information captured by the proposed sparsity based action vector representation,
we compare the performance of the proposed SbLM algorithm with that of the
ELM variants proposed in [16, 31, 32] in all the presented experiments, since
these methods employ a similar optimization-based classification scheme. Since
most action recognition methods employing sparse representation perform action
classification based on the smallest residual error [17], as discussed in section
2, we compare the smallest residual error classification rule with the proposed
SbLLM in all the presented experiments. We, also, compare the performance of
the proposed SbLM with that of nearest class centroid classification using the
Euclidean distance, which has been used as a baseline. Furthermore, we com-
pare the performance of the proposed action classification scheme with that of the
View Transformation Model (VTM) [34] based on Singular Value Decomposition
(SVD), and that of sparse coding-based action vectors creation combined with the
proposed SbLM algorithm. Finally, we compare the performance of the proposed
action recognition method with that of other methods, recently proposed in the
literature.

Regarding the algorithms’ parameters, the following values have been used:
W = H = 32 and p = 0.5. Following [32], the number of neurons forming the
network’s hidden layer for the ELM algorithms proposed in [16, 31, 32] was cho-
sen to be equal to L = 1000. The optimal number of dynemes, the fuzzification
parameter m and the optimal value for the regularization parameter ¢ have been
determined by performing the leave-one-person-out cross-validation (LOPOCV)
procedure and following a grid search strategy. That is, the algorithms have been
trained multiple times (folds), equal to the number of the persons appearing in the
database, by using the action videos depicting all but one persons and tested on
the action videos depicting the remaining one. The LOPOCYV procedure has been
performed for different numbers of dynemes D = 10d, d = 1, ..., 20, fuzzifica-
tion parameter values m = 1.0+ 0.05n, n = 1, ..., 10 and values of regularization
parameter A = 10", r = —4, ..., 4. The mean action classification rate over all the
folds has been used to measure the performance of each algorithm in an experi-
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ment.

5.1. Experiments on the i3DPost database

The 13DPost multi-view database [35] contains high resolution (1080 x 1920
pixels) image sequences depicting eight persons performing eight actions. The
database camera setup consists of eight cameras placed in the perimeter of a ring
at a height of 2 meters above the studio floor (Figure 4a). The actions appearing
in the database are: walk’ (wk), 'run’ (rn), ’jump in place’ (jp), ’jump forward’
(f), ’bend’ (bd), ’fall down’ (fl), ’sit on a chair’ (st) and ’wave one hand’ (wo).
Example images depicting a person in the database walking when viewed from
different viewing angles are illustrated in Figure 4b.

(a) (b)

Figure 4: a) The i3DPost action recognition database camera setup and b) images depicting a
person of the database from different viewing angles running.

In our first set of experiments we have performed the LOPOCV procedure by
using all the action videos of the database. That is, in each fold of an experiment,
the algorithms have been trained by using the action videos depicting seven of
the persons performing actions from all the available eight viewing angles and
tested by using all the action videos depicting the remaining person. The obtained
mean action classification rates for different regularization parameter r values are
illustrated in Figure 5. As can be seen in this Figure, high action classification
rates have been obtained. The best action classification rates obtained for the
ELM algorithms proposed in [31] and [32] are equal to 95.08% and 95.5%, re-
spectively. SbLM algorithm outperforms both [31] and [32] providing best action
rates equal to 96.12% and 97.69% for the person independent, noted as SbLM
PI, and action video independent, noted as SbLM VI, cases respectively. Fur-
thermore, it can be seen that the SbLM VI algorithm is the overall winner in a
wide range of regularization parameter r values, i.e., for r taking values between
—3 and 2. The confusion matrices corresponding to the optimal parameter val-
ues for the SbLM algorithms are illustrated in Figure 6. It is worth noting here
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that by performing the LOPOCV procedure using the standard ELM algorithm
[16] an action classification rate equal to 68.57% was obtained. This can be ex-
plained by the fact that the standard ELM algorithm assumes zero training error
and, thus, variations appearing in action videos depicting different persons affect
its generalization performance. Action vectors classification based on the small-
est residual error resulted to an action classification rate equal to 94.15%. The
VTM-based and the sparsity codding-based classification schemes resulted to ac-
tion classification rates equal to 95.77% and 95.5%, respectively. Finally, action
vectors classification based on the smallest Euclidean distance from the mean ac-
tion class vectors resulted to action classification rates equal to 12.5%. The small
action classification rate in the case of action vectors classification in the input
space was expected due to the viewing-angle effect [1]. Finally, in Table 1 we
compare the performance of the proposed action recognition method with that of
other methods employing silhouette-based action representations and evaluating
their performance on the i3DPost database.
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Action classification rate (%)
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-4 -3 -2 -1 0 1 2 3 4
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Figure 5: Action classification rates on the i3DPost database by using all the available cameras
(Noc =8 N =38).

In order to simulate the situation of performing human action recognition un-
der total human body occlusion in some of the cameras used in the recognition
phase an experiment has been set as follows. We have performed the LOPOCV
procedure multiple times by using different numbers of recognition cameras N.
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(a) (b)

Figure 6: Confusion matrices on the i3DPost database: a) person independent SbLM and b) action
video independent SbLM.

Table 1: Comparison results in the i3DPost multi-view action recognition database.
Method [36] | Method [9] | Method [37] | Method [38] | SbLM PI | SbLM VI
90.% 94.34% 94.87% 96.34% 96.12% 97.69 %

That is, in each fold of the cross validation procedure we have trained the algo-
rithms by using all the action videos depicting seven persons in the database and
tested them by using action videos of the remaining person coming from N ran-
domly chosen cameras. This means that each test action instance was classified
by using N action videos depicting the person under consideration from /N ran-
domly chosen viewing angles. The action classification rates obtained for these
experiments are illustrated in Figure 7.

As can be seen in Figure 7, the action video independent SbLM algorithm
clearly outperforms all the competing algorithms. By using only N = 3 ran-
domly chosen cameras in the recognition phase an action classification rate equal
to 96.73% has been obtained, while by using N = 6 cameras the obtained action
classification rate is equal to 97.69%. We should note here that the decrease of the
action classification rates in the case of N = 2 is observed due to the fact that the
majority voting combination scheme can not provide a classification result in the
cases where the two action video classification results are not the same. In these
cases, the corresponding test action instance is characterized as “unknown”, and,
thus, it is regarded as incorrect. In table 2 we compare the performance of the
proposed method with that of the method proposed in [37] for different numbers
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Figure 7: Action classification rates on the i3DPost database by using different numbers of ran-
domly chosen cameras N (N¢ = 8).

of test cameras N. As can be seen, the proposed method clearly outperforms the
method in [37] in all cases.

Table 2: Comparison results in the i3DPost multi-view action recognition database for different N
(N¢ =38).

Number of cameras N 1 3 4 5
Method [37] 79% 84.9% 90% 94.85%
SbLM PI 89.28% | 94.95% | 94.78% | 96.1%
SbLM VI 91.72% | 96.73% | 97.06% | 97.12%

Finally, in order to simulate the situation of multi-view human action recogni-
tion based on view-independent single-view training, an experiment has been set
as follows. We have performed the LOPOCV procedure multiple times by train-
ing the algorithms with one, randomly chosen camera, for each training action
instance and using different numbers of recognition cameras N. That is, in each
fold of the cross validation procedure we have trained the algorithms by using one
camera depicting the seven persons in the database and tested them by using action
videos of the remaining person coming from N randomly chosen cameras. The
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action classification rates obtained for these experiments are illustrated in Figure
8.
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Figure 8: Action classification rates on the i3DPost database by using different numbers of ran-
domly chosen cameras N (N¢ = 1).

As can be seen in Figure 8, the SbLM VI algorithm clearly outperforms all
the competing algorithms. By using only N = 4 randomly chosen cameras in the
recognition phase an action classification rate equal to 89.01% has been obtained,
while by using N = 7 cameras the obtained action classification rate is equal to
89.67%. Overall, it can be seen that the proposed action classification scheme can
be applied in multi-view action recognition based on either multi-view or view-
independent single-view training procedures.

5.2. Experiments on the AIIA-MOBISERV database

The AITA-MOBISERV eating and drinking database [39, 6] contains low res-
olution (480 x 640 pixels) videos depicting twelve persons (six females and six
males) during a meal. Four meals have been recorded for each person. The per-
sons eat using spoon, cutlery and fork and drink from a cup or a glass. Between
eating and drinking periods, the persons perform several actions, such as slic-
ing their food, chewing it and resting. In our experiments we have formulated
a three class classification problem containing three action classes: ’eat’, ’drink’
and “apraxia’. Action class ’apraxia’ contains action videos depicting the persons
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slicing their food, chewing it and resting. Example video frames depicting an
instance of each action class are illustrated in Figure 9.

(a) (b) (c)

Figure 9: Video frames of the AIIA-MOBISERYV eating and drinking database.

The choice of three, instead of eight, classes was made in order to evaluate
the performance of the proposed method in the case of high intra-class variations.
Indeed, as it is expected, intra-class variations in the above described three-class
classification problem are high, since due to different human body proportions
among individuals and action execution style variations it is possible that an ac-
tion video depicting a person eating with spoon is more similar to an action video
depicting another person drinking from a cup and at the same time is quite dif-
ferent from an action video depicting a sequence belonging to an other eating
subclass, e.g. eat with fork. In the presented experiments the image ROIs denot-
ing human body poses were determined to be the persons’ heads and hands, i.e.,
the skin-like video frame regions.

We have performed the LOPOCV procedure by using the action videos of
the AIIA-MOBISERYV database. The mean action classification rates obtained
for different regularization parameter r values are illustrated in Figure 10. As
can be seen high action classification rates have been obtained in these experi-
ments. The use of the two ELM algorithms proposed in [31] and [32] resulted
to best action classification rates equal to 90.2% and 90%, respectively. Standard
ELM algorithm [16] provided an action classification rate equal to 68.65%. Ac-
tion vectors classification based on the smallest residual error rule and the sparsity
codding-based classification scheme resulted to action classification rates equal to
90.3% and 90%, respectively. Action vectors classification based on the small-
est Euclidean distance from the mean action class vectors resulted to an action
classification rate equal to 86.06%. Finally, the best action classification rates ob-
tained by applying the two variants of the proposed SbLLM algorithms are equal
to 91.64% and 92.36%, for the person independent and action video independent
cases, respectively. As can be seen in Figure 10, the two SbLLM algorithms clearly
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outperform the other three ELM variants, since in most cases they provide higher
action classification rates. The confusion matrices obtained by using the SbLM
algorithms and the optimal regularization parameter r values are illustrated in Fig-
ure 11.
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Figure 10: Action classification rates on the AIIA-MOBISERV database.
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Figure 11: Confusion matrices on the AIIA-MOBISERV database: a) person independent SbLM
and b) action video independent SbLM.

6. Discussion and Conclusion

In this paper we presented method aiming at view-independent human action
recognition. Actions are described as sequences of successive human body poses.
Action representation involves fuzzy vector quantization based on representative
human body poses determined from the human body poses of the training action
videos. Inspired by the effectiveness of the sparsity-based data representation for
classification and the efficient Extreme Learning Machine algorithm, the Sparsity-
based Learning Machine (SbLM) has been proposed for view-independent action
video classification. In the case of multi-view human action recognition, action
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classification results combination leads to high action classification rates. The
proposed method can successfully handle the situations of total human body oc-
clusion in some of the cameras forming the recognition camera setup, as well as
synchronization errors between the cameras. Experimental results have shown
that the adoption of a high dimensional discriminant action representation can
increase the action classification performance in the proposed setting.
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Appendix A.

Here we describe the solution of the following optimization problem:
1 ¢ &
e e e _ = 2 c 2
Minimize: Lp = 2HWHF +3 ;:1 & 115

Subject to: W'g, =t;, — &, i=1,..., Ny,

By substituting the condition in the primal problem we obtain:
1 ¢
Lp = SIWIE+ 53 it — Wgil3 (A1)
i=1

Solving for % = 0, W can be obtained by:

W = - (2GTT - 2GG"W) = (1+ ¢GG") = ¢GT" = (GGT + %I) W = GT”

N O

-1
W = <GGT + 1I) GTT. (A.2)
C
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