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Abstract—1In this paper, we propose a visual object tracking
framework, which employs an appearance-based representation
of the target object, based on Local Steering Kernel Descriptors
and color histogram information. This framework takes as input
the region of the target object in the previous video frame
and a stored instance of the target object and tries to localize
the object in the current frame by finding the frame region
which best resembles the input. As the object view changes over
time, the object model is updated, hence incorporating these
changes. Color histogram similarity between the detected object
and the surrounding background is employed for background
subtraction. Experiments were conducted to test the performance
of the proposed framework in various conditions. The proposed
tracking scheme was proven to be successful in tracking objects
under scale and rotation variations and partial occlusion, as well
as in tracking rather slowly deformable articulated objects.

I. INTRODUCTION

Visual tracking of an object in an image sequence is
important for many applications, such as automatic video
surveillance [1], autonomous robotic systems [2], human-
computer interfaces [3], augmented reality [4] and e-healthcare
[5]. However, this task is difficult to accomplish, as, in real
life situations, the illumination conditions may vary and the
object may be non-rigid or articulated, or occluded by back-
ground objects, and/or it may perform rapid and complicated
movements, hence deteriorating tracking performance. In order
to solve the above mentioned problems, numerous tracking
algorithms have been proposed, which employ techniques for
object representation (based on object features, texture and
shape models, or object contours), object position prediction
and search in the next video frame. The object representation
methods can be divided into five categories [6]: model-based,
appearance-based, contour-based, feature-based and hybrid
ones.

Model-based tracking methods exploit a priori information
about the object shape, creating a 2D or 3D model for
the object [7]. These methods can address the problem of
object tracking under illumination variations, changes in the
object viewing angle and partial occlusion. However, their
computational cost is heavy, especially when tracking objects
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with complex 3D geometry. Moreover, they require the imple-
mentation of a detailed model for each type of object in the
scene, as the models cannot be easily generalized. Appearance-
based tracking methods use the visual information of the
object projection on the image plane, i.e., color, texture and
shape, as well as information on the 2D object motion [8].
These methods deal with simple object transformations, such
as affine ones, including translation and rotation. However,
they are sensitive to illumination changes. Contour-based
tracking methods track the object contour by employing shape-
matching or contour-evolution techniques [9]. Contours can
be represented by active models, such as snakes, B-splines
and geodesic active contours, or meshes [10], enabling the
tracking of both rigid and non-rigid objects. In order to deal
with partially occluded objects, tracking algorithms incorpo-
rate occlusion detection and estimation techniques. Feature-
based methods perform object tracking by tracking a set of
feature points, which represent the object [11]. These tracked
features are then grouped, according to their associations in
the previous frame. These methods perform well in partial
occlusion, as well as in tracking very small objects. The major
problem of feature-based methods is the correct distinction
between the target object and background features. Finally,
hybrid methods for object tracking exploit the advantages of
the above mentioned methods, by incorporating two or more
tracking methods [12]. Usually, feature-based methods are
employed first, for object detection and localization. Then,
region-based techniques are used to track its parts. The main
disadvantage of these methods is their high computational
complexity.

Instead of targeting our efforts to make a model for the
target object and then find its location in the video, we can
address the dual problem: export a model for the scene,
called background and then find the regions in the video
frame which deviate from the background model. Regions
with high deviation from the model imply the existence of
a moving object. Such methods perform object tracking e.g.
with background subtraction [13], [14]. They are computa-
tionally efficient and can model illumination changes, noise
and periodic movements. However, they can be applied only
on static scenes obtained from stationary cameras or scenes
with small motion obtained from portable cameras, as camera
movement distorts the background model or may imply the
use of multiple background models.

Most of the object tracking algorithms in bibliography, in-
cluding the proposed tracking scheme, employ an appearance-
based object representation. The earlier methods consider an
almost constant appearance model for the object which is



extracted from the object initialization in the first video frame
and, therefore, it does not change over time. As a result, these
methods cannot handle severe changes in the object view and,
in some cases, partial occlusion. Example of such methods
are the Mean Shift (MS) tracking algorithms [15], [16], [8]
and [17], which use variations of the MS algorithm [18], in
order to detect the candidate object with the most similar color
histogram to the target object. The problem of partial occlusion
in appearance-based tracking schemes has been addressed by
decomposing the target object into non-overlapping [19] or
overlapping [20] fragments, which are tracked separately. The
fragments can be selected either manually, or randomly. The
number and size of the fragments play an important role in
tracking performance, as too many or too big fragments result
in heavy computational weight and, on the contrary, too few
fragments cause the tracker to drift. The new position of the
object can be estimated by various voting techniques for the
confidence of each fragment, e.g. by the fragment with the
maximum confidence, or by selecting the smaller area which
contains all the fragment tracking results. The changes in the
object view angle are handled by either multiple hypotheses
for the object state [21], or by considering adaptive appearance
models [22]. These methods are based on the sequential
Monte Carlo method, also known as Particle Filters [23].
Other approaches employ a hierarchical framework based on
bounded irregular pyramids [24] and an incremental eigenbasis
learning framework [25].

Our tracking approach is an appearance based one using
both the color histograms to describe object color information
and the Local Steering Kernel (LSK) object texture descriptors
[26]. A preliminary work on visual object tracking based on
LSKs was presented in [27]. We first search image regions
in a video frame that have high color similarity to the object
color histogram. Once these candidate regions are found, the
illumination-invariant Local Steering Kernel (LSK) descriptors
[26] of both the target object and the candidate search region
are extracted. LSKs are descriptors of the image salient
features. They were first employed as an image denoising and
reconstruction technique [28] and later found application in
object detection [26]. As an object detector, they were proven
to be robust in small scale and orientation changes, as well
as small object deformations. Therefore, their incorporation
in a tracking framework results in successful tracking of
slowly deformable objects. After discarding the image regions
with small color histogram similarity to the object color
histogram, the new position of the object is selected as the
image region, whose LSK representation has the maximum
similarity to the one of the target object. As tracking evolves,
every time the target object appearance changes, either due to
rotation/zooming, or a deformation, or a change in the view
angle, the object model, being a stack containing different
instances of the object including information about its scale
and 2-dimensional angle, is updated with the representation
of the most recent detected object instance. This way, the
algorithm is able to cope with changes in object appearance.
The final decision on the new tracked object location is
determined to be the candidate image region with the maximal
average LSK similarity to the detected object instance in the

previous frame and the most recent instance in the object
model (stack). As proven in experiments, the overall tracking
algorithm succeeds in illumination-invariant tracking of rigid
objects with severe changes in view angle, or being subject to
affine transformations and/or partial occlusion. The novelties
of the proposed approach are:

o the use of online-training of the object model (stack)
based on LSKs,

o the use of an efficient framework for scale, rotation and
location adaptive tracking combined with LSKs,

« the combination of LSKs with color histogram of candi-
date object regions for enhanced tracking performance.

The remaining of the paper is organized as follows. Sec-
tion II-A presents the use of color information in tracking,
essentially for performing background subtraction. Section II-
B presents the LSK feature extraction method. Section II-
C describes the method for deciding on the object position
in the video frame under investigation and the algorithm for
updating the object model. Section II-D describes the method
for extracting the search area for the new position of the object
in the next frame. Section III presents the experimental results
and evaluation of the proposed method, compared with two
other state of the art tracking algorithms. Finally, conclusions
are drawn in Section IV.

II. LSK OBJECT TRACKING

In this paper, we propose a novel appearance-based method
for tracking both rigid and deformable objects in a video,
without prior object appearance model training. The proposed
framework makes the assumption that object translation and
deformation between two consecutive video frames is rather
small. Each transformation of the object image, i.e., scaling
due to zooming or rotation, is considered as an object instance
and it is stored in a stack, i.e., a list of object instances
(images). The stored object instances comprise the object
model. As tracking evolves, the object model is updated with
new object instances, incorporating the transformations the
object undergoes.

In each new video frame, the new object Region of Interest
(ROI) is searched in a local region around a predicted object
position, called search region. The search region may contain
several candidate object ROIs in the new video frame. The
algorithm employs spatial information through Local Steering
Kernels (LSKs) [26] and color information through color
histogram (CH) for representing both the object instances
and the search region. The similarity of the object salient
spatial features and color histogram between a candidate object
ROI and the object region in the previous frame and the last
updated object instance from the object model (stack) are
evaluated. The cosine similarity of the object salient features
(i.e., LSK descriptors) is robust to small object appearance
changes between two consecutive video frames. In each frame,
the patch of the search region with the maximum average
LSK similarity to the object image in the previous frame and
a stored object instance in the object appearance model is
selected as the new object instance. The drop of the maximum
average LSK similarity at the current video frame under a



threshold, which is determined with respect to the maximal
average similarity at the previous video frame, indicates that
the object appearance changed. This change is embedded in
the tracking framework, by storing the detected object instance
in the object appearance model. In the next frame, the search
region patches will be compared to the last stored object
instance. Thus, the proposed tracking framework is able to
follow changes in the object appearance, due to view point
alterations and/or object movement or deformations.
The proposed method consists of the following steps:

« Initialization of the object ROI in the first video frame.
The initialization can be done either manually, by select-
ing a bounding box around the object we want to track,
or automatically, using an object detection algorithm, e.g.
the one based on LSKs [26].

o Color similarity search in the current search region, using
color histogram information, which essentially leads to
background subtraction and reduction of the number of
the candidate object ROIs.

« Representation of both the object and the selected search
region through their salient features that are extracted
using Local Steering Kernels (LSKs).

« Decision on the object ROI in the new video frame, based
on the measurement of the salient feature similarities
between a candidate object ROI and a) the object ROI in
the previous frame and b) the last stored object instance
in the object model (stack) and finding a match.

o Update the object model by storing its different views
(called object instances) in a stack. When the match is
successful, this update is done by pushing a new object
instance in the stack, when the object undergoes an affine
transformation, i.e., scale and rotation, or changes view.

« Prediction of the object position in the following video
frame and initialization of an object search region. The
position prediction is based on the assumption that the
object performs rather smooth motion.

A. Color Similarity

In order to discriminate the object from its background, we
can exploit their color difference, by histogram comparison.
In most cases, the object color histogram does not remain the
same. On the contrary, it is sensitive to changes in illumina-
tion, as well as to view point changes. After object position
prediction and search region selection, the search region of
size R; X Ry is divided into candidate object ROIs (patches)
shifted by d pixels vertically and horizontally and having
size equal to the size of the query object ()1 x Q2. In total,
the number of created patches is Rl*ffl“ X erQzH. The
parameter 1/d determines the density of the uniformly selected
candidate object ROIs. By setting d = 1, the maximum
number of possible candidate object ROIs in the search region
is selected, which essentially leads to exhaustive search of
the object in the search region. The increase of the value
of d is, essentially, a uniform sampling of the candidate
object ROIs every d pixels in the search region. At frame
t, the B;% of the search region patches with the minimal
histogram similarity to the object histogram are considered

to belong to the background. It has to be noted that B; is
not constant throughout tracking, but it is computed at each
frame ¢, as we shall show later on in the section. For each
image patch we extract three color histograms, one for each
R, G and B component. The color histograms are compared
according to cosine similarity. Instead of the cosine similarity,
other more sophisticated metrics can be used, such as the
Bhattacharyya distance. Cosine similarity was chosen because
it consists a good compromise between low computational
cost and performance, as proven experimentally. The cosine
similarity between two histograms h;, hy, € R?%% is given by:
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where < - > defines the inner product of h;, hs, € denotes
the angle they form and || - || denotes the Euclidean norm. The
cosine similarity takes values in the range [—1, 1]. In order to
map the range [—1, 1] to [0, 00), we apply the transformation
S =c?/(1-c?) [26].

The final similarity measure between the two color regions
is computed by summing the transformed cosine similarity
measures S for the three color channels. The similarity values
of all patches comprise a matrix of color histogram similarity
Mcy.

Color histogram (CH) similarity is an indicator of whether
the search region patch belongs to the object ROI or the
background. We expect patches with lower CH similarity
to belong to the background and patches with higher CH
similarity to belong to the object. Therefore, by exploiting
CH information, we can find a proper threshold 7; to exclude
search region patches, which belong to the background, from
being considered part of the candidate object ROIs. The
threshold 7, is computed for each frame ¢ and it depends on
the CH similarity distribution p(MZ-j) of matrix Mg entries
M, i = 1,...,%,]‘ = L...,W at frame t.
If the background color is significantly different from that of
the object color, the distribution of My takes small values
and we set 7; so as to achieve a high confidence level B;%
in deciding whether the patch under consideration is a valid
candidate object ROI. At frame ¢, the confidence level B;%
decreases in the case where the background color is similar to
the object color and the majority of the Mg entries take high
values. Setting M, M,,,, and M,,;, as the mean, maximal
and minimal values of M entries, respectively, we estimate
the confidence level B;% as follows:

1 | M —Mmaz|

if |M — Momaz| < |M — Mupin,

- ‘M]-_A/Imin" . _ _
B, = 100- B if [M — Mypaz| = | M — Mypin|,
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The threshold 7; is computed for each video frame ¢ as the
matrix Mcy entry, which is less or equal than B;% of the
My entries. Finally, we compute the binary matrix Beoy,
whose (i, j)-entry is set to 1, if the (4,7)-entry of Mgy is
greater of equal than 7, and O, otherwise. The use of this
matrix in tracking is detailed in section II-C.



B. Object texture description

Edges carry important image texture information that can be
used for a good image representation. Various methods exist
to this end, such as Gabor filters [29], Difference of Gaussian
(DoG) filters, or even simple luminance gradient estimation
methods (Sobel filters, Prewitt filters) [30]. In the proposed
framework, texture image representation is performed with
Local Steering Kernels (LSKs) [26]. LSKs are local descrip-
tors of the image structure, which exploit both spatial and
pixel-value information. They are a non-linear combination of
weighted spacial distances between a pixel of an image of size
N7 X Ny and its surrounding M x M pixels. The distance
between an image pixel p and its neighboring pixel p; is
measured using a weighted euclidean distance, which uses as
weights the covariance matrix C; of the image gradients along
x (horizontal) and y (vertical) axes:
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where p = [z,y]" are the pixel coordinates. It is known
that the covariance matrix C; of these gradients contains
information about the dominant edge orientation in a local
image region, described by the eigenvector, which corresponds
to the eigenvalue with the largest absolute value. Therefore,
the covariance matrix is used to rotate, elongate and scale the
Gaussian kernel along the local edge. In order to estimate the
C; matrix in (3), we calculate the gradients g = Vf(p) =

af ar]”
8—57 a—ﬂ of the image f(p) along x and y axes and we

measure their correlation in a neighbor of M x M pixels
centered at the pixel p; = [x;,v;]7. The gradient vectors g;,

}T

i=1,..., M? in the neighbor M x M are column-stacked in
matrix G;:
gz1 gy1
gz2 gy2
G; = . . 4)
Gzm2  Gym2

The correlation matrix C; is calculated via the Singular Value
Decomposition (SVD) of G; [31]:
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where s1; and sg; are the singular values of G; and vﬂ,
vl are the corresponding singular vectors. For an image
pixel p, equation (3) is computed for each neighboring pixel
pi» i = 1,...,M?, meaning that for each image pixel we
extract an LSK vector K(p) € RM**! In order for the
image representation to be invariant to illumination changes,

we normalize the LSK vectors:

®)

where | - |1 is the Li-norm. The LSK vectors of each image
pixel are then transposed and ordered column-wise into the
matrix Q € RN N2x M?

LSKs are good image texture descriptors, because they
are invariant to brightness variations, contrast changes and
noise. In our approach, first the object ROI and the search
region are converted from the RGB to the La*b* color space
and, then, the LSKs are computed for each color channel
separately, through equations (3)-(8). The final representation
for the object ROI comprises its salient characteristics and is
obtained by applying PCA to retain 80% of the information
in the LSK kernels [26]. The resulting projection matrix will
then be used for the dimensionality reduction of the LSK
descriptors of the search region. Finally, the search region is
divided into patches and the LSK similarity matrix is estimated
by applying the cosine similarity measure, according to the
procedure described in section II-A.

p{_(pz p) Ci(p: p)},i:L___’M{

C. Object localization and model update

Object localization in the search region is performed by
taking into account LSK and color histogram similarity of a
candidate object ROI (patch) to the object ROI in the previous
frame and the last stored object instance in the object model
(stack). More specifically, we divide the object search region
into overlapping patches of size equal to that of the detected
object and, for each patch, we extract the LSK and CH features
as described in Subsections II-B and II-A. Then, for each
patch, we construct three cosine similarity matrices, two for
the LSK resemblance between this patch and a) the detected
object in the previous frame and b) the last updated object
instance and one for the CH similarity between this patch
and the last stored object instance. The new object ROI is
the candidate region with the maximal mean LSK similarity
to the object ROI in the previous frame and the last stored
object instance. The final decision matrix is computed by:

M = [(1 = M)Mrsk1 + AMLskz] * Ben, &)

where 0 < A < 1 is a suitably chosen weight, Mgk,
M sko are the LSK similarity matrices for the last detected
object and the last object instance, respectively, Bog is the
binary CH similarity matrix, and * denotes the element-wise
matrix multiplication. A usually takes the value 0.5. The reason
why we take into account the similarity with the last updated
object instance is that it prevents the tracker from drifting,
when the object is partially occluded. The new candidate
object position is at the patch having the maximal value
max; j(M;;). We compare this value with the same maximal
value for the detected object in the previous video frame. If
the value drops under a predefined threshold 7', it indicates a
possible change in the object appearance, either because of a
2D affine transform (when the object image is rotated or scaled
due to zooming), or because of a change in the object view
angle. In order to determine the cause of the similarity drop,
we search the search region for scaled and rotated versions of
the object as follows.

In order to detect whether the object is rotated by =+¢
degrees, we rotate the video frame t¢ around the center of



the predicted object position p; by F¢ degrees respectively,
obtain the new search regions and calculate two decision
matrices according to (9). Object scaling due to zooming
is detected by resizing the search region by +s%. When
interpolation is needed, the new pixel values of the resized
search region are estimated by bilinear interpolation. We note
that, in both cases (rotation and scaling), the query object is
left intact, which means that its representation through LSKs
does not change. In order to find a robust search step for
rotation and scaling, we have conducted several experiments,
so that the robustness of the LSKs similarity under rotation
and/or scaling is checked. In our experiments, we set the
rotation step ¢ to 10 degrees and the scale step size s to
10%. In total, we examine four affine transformations, i.e.,
clockwise rotation, counter-clockwise rotation, up-scaling and
down-scaling, plus the identity transformation. For each case,
a new decision matrix is produced, according to (9). In order
to ensure that the affine transformation of the object is detected
correctly, the final decision for the new object is the one which
corresponds to the maximal value of the five decision matrices,
under the condition that the mean value of the corresponding
decision matrix is greater than the mean value of the identity
transformation decision matrix. Otherwise, the new object
location at frame ¢ is the position which corresponds to the
maximal value of the identity transformation decision matrix.
The newly localized object is stored in a stack. The stack size
is constant throughout tracking and, in our experiments, was
set to 5 object instances. When the stack is full, the oldest
object instance is replaced by the new one. In the next video
frame, the object will be searched at the scale and orientation
values related to the last stored object instance.

D. Search region extraction in the next frame

After determining the object position in the current frame,
the position of the object in the following frame is predicted
using a linear Kalman filter. It is an iterative process for
estimating the state x; € R of a discrete-time process in
time t, given measurements z; € R, both subject to white
Gaussian noise [32]. In our system, the object motion state
estimation model is given by x; = Ax; 1 + wy_1, where
the state x; = [v,y,dz,dy]T € R® consists of the = and y
object center coordinates and the object translation dzx, dy.
w;_1 denotes the process noise, with probability distribution
p(w) ~ N(0,Q), where Q € R*** is the noise covariance
matrix. A € %4 is the transition matrix of the system:

10 1 0
01 0 1

A=10 0 1 0 (10)
0 0 0 1

The measurement z; = [z, y]T € R? is related to the state x;
with z, = Hx; + v;, where H € R2** is the measurement

matrix:
0 0
0 0

and vy is the measurement noise, with p(v) ~ N(0,R),
where R € 72*2 is the noise covariance. The estimation of the

current state X; and the covariance matrix P; of the stochastic
model are estimated through the set of equations:

X = Ak
P, = AP, ,AT +q,

(11

while the stochastic model is adjusted through equations:

K, = PH'HPH" +R)! (12)
)A(t = )A(t_l —|— Kt(Zt — H}A(f)
P, = (I-K:H)P..

The matrix K, is called the Kalman gain and is chosen such
that minimizes the a posteriori error covariance P;.

The object will then be searched in a search region centered
at the predicted position X;. The size of this region varies
according to the expected maximal object velocity, the object
size and the reliability of the predicted position. If the object
moves fast, or it moves in a non-smooth trajectory, or it is
large and we are not confident on our prediction, we select
a large search region. In our experiments, if the object ROI
size is Q1 X @ pixels, then the search region size is set to
Ry x Ry = 2Q1 X 2Q)2 pixels. The object ROI dimensions
(1 X Q)5 are selected to be small to increase tracking speed but
large enough in order to preserve the object salient features.
Typical values of @)1 x Q2 are around 30 x 30 pixels. The
tracking procedure continues by repeating the steps described
in sections II-A to II-C.

The linear Kalman filter is a rather simple but efficient
method for motion state prediction. The efficiency of the
tracking algorithm could be improved if the Kalman filter is
substituted by more accurate non-linear Bayesian filters, such
as the extended Kalman filter, Hidden Markov model (HMM)
filters and particle filters [33], or by the mean shift algorithm
[34].

III. EXPERIMENTAL RESULTS
A. Experimental setup

The effectiveness of the proposed tracking scheme was
tested in a number of videos coming from various applications.
The initialization in each video was performed through a
training-free object detection algorithm over the entire first
video frame [26]. The search region size is R; X Ry = 2Q1 X
2@z, where Q1 X @2 are the downscaled object dimensions,
which are selected for each experiment as shown in the third
column of Table I.

The window size for the LSK feature extraction is 3 x 3
pixels. The rotation step is 10 degrees, except for some cases,
where we do not expect 2D rotation of the tracked object
and we set it equal to zero (e.g., when we track people by
using surveillance cameras). The scale step is set to 10%.
The threshold for the model update 7T is zero, which means
that, every time the similarity value decreases, we search for
possible scale and rotation of the object. Finally, the noise
covariance matrix Q was set to the identity matrix Q =
I € R**4 and the value of the measurement noise covariance
matrix R was set to the identity matrix R = I € R2*2. This
initialization was proven to provide good tracking results.



B. Qualitative evaluation

The performance of the proposed tracker is compared with
two other state of the art trackers found in the literature: one
that incorporates an appearance based object representation
(i.e., image intensity) with particle filters (called PF tracker)
[22] and another one that performs object tracking by dividing
the object of interest in smaller fragments (called FT tracker)
[19]. The FT tracker is publicly available at the authors’ site. In
order to have a better understanding of the optimal tracking
results for each tracking scheme, each tracker is initialized
with a different object ROI that fits best to the characteristics
of the tracking algorithm. For example, the PF tracker is
initialized inside the tracked object, while the FT tracker and
the CH-LSK trackers are initialized in such a way that the
initial object ROIs contain the object boundary and a small
amount of background. A summary of the main characteristics
of the videos used in the experiments is shown in Table I.

a) Case studies 1 and 2: In the first two experiments,
we test the performance of the proposed tracking scheme
under variations of the object scale. In the first experiment, the
purpose is to track a person in the "AVSS_AB_Hard_Divx.avi”
video from the i-LIDS bag and vehicle detection challenge
dataset [35], while, in the second experiment, we aim to track
a car in the video "AVSS_PV_Easy_Divx.avi” from the i-LIDS
bag and vehicle detection challenge dataset [35]. The tracking
results for the proposed CH-LSK tracker and the PF tracker
are illustrated in Figures 1 and 2 for the first and second
experiment, respectively. We note that the FT tracker does
not take into account changes in scale. Therefore, it was not
used in these experiments. We can observe in Figure 1 that
the CH-LSK tracker is successful in tracking the change in the
object image size, as opposed to PF tracker, which keeps an
almost constant size for the tracked object. On the other hand,
both trackers have a similar performance in keeping track of
the decreasing size of the car in the second experiment (Figure
2).

b) Case study 3: In this experiment we test the perfor-
mance of the proposed algorithm in the video “camera8.avi”
of the PETS2001 dataset [36], which depicts a car moving
in a circular trajectory in an omnidirectional camera. The
experimental results are shown in Figure 3 for the proposed
CH-LSK tracker and the PF tracker. Again, the FT tracker is
not used, as it does not handle rotational motion. The proposed
tracker and the PF tracker have the same initialization. The
PF tracker loses the object very quickly, while the CH-LSK
tracker follows better both the rotation and scale changes of
the car. This means that the proposed tracker is more robust
in rotation changes.

c) Case studies 4 and 5: This case study deals with the
problem of object tracking in a video with partial occlusion
and small scale variations. We conducted two experiments.
In the first experiment, the video used is ”“OneStopMoveEn-
terlcoravi” from the CAVIAR data set [37]. The object of
interest (a man) is partially occluded and his ROI size in-
creases, as he moves towards the camera. The tracking results
are depicted in Figure 4. The PF tracker, in the beginning of the
video, tracks the full body of the man, but, as tracking evolves,
the tracking area gets smaller resulting, after 160 frames, to

track only man’s torso. The FT tracker is able to handle partial
occlusion and tracks the full body of the man successfully. The
CH-LSK tracker tracks successfully only man’s torso, as the
bounding box contains a significant amount of background
area, which affects tracking performance.

In the second experiment, the object of interest is the man in
the ”WalkByShoplcor.avi” video of the CAVIAR dataset [37].
In this video, more than 75% of the object area is occluded.
The tracking results are shown in Figure 5. PF tracker stops
tracking the man, when he walks behind the first person in
the foreground (from the right). FT tracker is able to handle
the first occlusion but, due to the fact that it cannot follow the
person’s change in scale, it stops tracking the man when he
walks behind the second person in the foreground (from the
right). On the other hand, the proposed tracker is able to track
the man throughout the video.

d) Case study 6: In this case study, we test the per-
formance of the proposed CH-LSK tracker in a video with
strong changes in illumination conditions. More precisely, we
track the face of a person, who moves in a room with half
of the lights switched on and which are switched off after a
while. Snapshots of the tracking results are depicted in Figure
6. We notice that the proposed CH-LSK tracker is robust to
illumination variations, as it tracks the person’s face, either in
the case where the illumination change is gradual, i.e., when
the person moves slowly towards the lit part of the room, or in
the case where the illumination change is abrupt, i.e., when the
lights are switched off. The PF tracker has similar behavior to
the CH-LSK tracker, while the FT tracker is not able to handle
the gradual illumination change: when the person walks in the
lit part of the room it drifts to the person’s t-shirt, which has
more similar color to the person’s face in the previous frames.

Visual object tracking can be employed in human activity
recognition systems such as eating and drinking, by analyzing
the trajectories of the employed auxiliary utensils, e.g. glass,
spoons, forks, as shown in Figure 7. A drinking activity can
be recognized by the trajectory of the glass or by the distance
between the glass and the face, as shown in Figures 7-9. In
eating activity recognition, the tracked object can be other
kitchen utensils (e.g. fork, knife, spoon) or the bare human
hands. In the following experiments, we test the performance
of the algorithm in tracking objects which can be used in this
framework. The test videos were recorded in AITA laboratory
and are included in the MOBISERV-AIIA eating and drinking
activity database, which is employed in a nutrition support
system designed to prevent dehydration and underfeeding of
patients suffering from dementia.

e) Case studies 7-9: In these case studies, we com-
pare the performance of the three trackers when tracking
a glass or hands during eating/drinking activity. The video
“drink_left.avi” depicts a person, when he takes one sip from
the glass. The experimental results are shown in Figure 7. The
PF tracker cannot keep up with the orientation change of the
glass and loses track of it during sipping. The FT tracker loses
track of the glass when moving the glass up/down between the
table and the mouth, but coincidentally finds the object when
it is set back on the table, because its final position is very
close to its original one. The CH-LSK tracker is successful in



TABLE I
DESCRIPTION OF THE VIDEOS USED IN CASE STUDIES 1-9.

case study length @1 X Q2 | medium complexity | indoor/outdoor | illumination | object speed | object orientation
(in frames) changes
1 149 15 x 35 simple indoor no constant constant
2 190 33 x 31 simple outdoor no constant constant
3 116 20 x 42 moderate outdoor yes constant constant
4 298 25 x 37 high indoor no constant constant
5 148 15 x 32 high indoor no constant constant
6 431 25 x 34 moderate indoor yes varying varying
7 77 30 x 29 simple indoor no varying varying
8 384 30 x 37 simple indoor no varying varying
9 94 31 x 31 moderate indoor no varying varying
10 218 28 x 28 high indoor no varying varying
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Fig. 1. Tracking results of an object having increasing size. Solid line: results of the proposed CH-LSK tracker. Dashed line: results of the particle filter
tracker.
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Fig. 2. Tracking results of an object having decreasing size. Solid bounding box: results of the proposed CH-LSK tracker. Dashed bounding box: results of
the particle filter tracker.
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Fig. 3. Tracking results in video depicting object rotation. Solid bounding box: results of the proposed CH-LSK tracker. Dashed bounding box: results of
the particle filter tracker.
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Fig. 4. Tracking results of an object with partial occlusion and small size variations. Solid bounding box: results of the proposed CH-LSK tracker. Dashed
bounding box: results of the particle filter tracker. Dotted bounding box: results of the fragments-based tracker.
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Tracking results of an object with over 75% partial occlusion. Solid bounding box: results of the proposed CH-LSK tracker. Dashed bounding box:

results of the particle filter tracker. Dotted bounding box: results of the fragments-based tracker.
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Fig. 6. Tracking results of an object with strong changes in the illumination conditions. Solid bounding box: results of the proposed CH-LSK tracker. Dashed
bounding box: results of the particle filter tracker. Dotted bounding box: results of the fragments-based tracker.
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Fig. 7.
filter tracker. Dotted bounding box: results of the fragments-based tracker.

tracking the glass throughout the duration of the video.

Furthermore, in this experiment, we test the performance
of the three trackers in tracking human hands during eating.
In the video “hands.avi”, the person cuts food with a knife
and then eats with a fork. Generally, hand tracking is a
difficult task, because hands are articulated objects and they
constantly change shape. Figure 8 shows the results of the
three trackers. The PF tracker and the FT tracker keep tracking
the right hand, but stop tracking the left hand, which performs
more complicated movements. The proposed tracker handles
successfully the movement of both hands.

In case study 9, we test the performance of the tracker in
tracking a glass in an activity which is not drinking. In the
video “glass.avi” the person enters the scene and sets the glass
on the table. The glass of interest changes size and rotation
and it is partially occluded by the hands. The experimental
results are shown in Figure 9. We notice that all trackers are
successful in tracking part of the glass in the whole duration
of the video. However, only the CH-LSK tracker is able to
track the change in the object size.

f) Case study 10: In this case study, we test the perfor-
mance of the algorithm in a complex scenario for face tracking.
In the video "face.avi”, a face constantly changes orientation
and the hands occlude part of the face. The results are shown

ol
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Glass tracking during drinking activity. Solid bounding box: results of the proposed CH-LSK tracker. Dashed bounding box: results of the particle

in Figure 10. In the entire duration of the video, the CH-LSK
tracker tracks better the facial area, than either the PF tracker
or the FT tracker, which drifts upwards when the person lowers
the head and stops tracking the head, when it is shifted to a
profile view.

C. Quantitative evaluation

A further quantitative evaluation of the proposed CH-LSK
tracker performance and comparison with the other two state
of the art trackers is performed through the Frame Detection
Accuracy (FDA) measure [38], which calculates the overlap
area between the ground truth object G and the detected object
D at a given video frame t:

Gi(t) N D4(t)
N P Gl(t) U Di(t)’

1

(13)

where IV, is the number of objects in frame ¢. It takes values in
the range from O (when the object is lost) to 1 (when tracking
is perfect). The ground truth was annotated manually and was
defined as the largest bounding box which contains all the
visible parts of the object. This rule was also applied in the
case of 2D object rotation. Figure 11 illustrates the FDA of the
LSK, PF and FT trackers, for the videos in the case studies
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tracker. Dotted bounding box: results of the fragments-based tracker.
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Fig. 8. Hand tracking during eating activity. Solid bounding box: results of the proposed CH-LSK tracker. Dashed bounding box: results of the particle filter

e
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Fig. 9. Glass tracking in a table top activity. Solid bounding box: results of the proposed CH-LSK tracker. Dashed bounding box: results of the particle filter

tracker. Dotted bounding box: results of the fragments-based tracker.
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Fig. 10. Face tracking results under complex movement and occlusion. Solid bounding box: results of the proposed CH-LSK tracker. Dashed bounding box:
results of the particle filter tracker. Dotted bounding box: results of the fragments-based tracker.

1-10. We notice that, in case studies 1 and 3, the CH-LSK
tracker follows better the object projected size increase and
in-plane rotation, than the PF tracker. In case study 2, the FDA
of the CH-LSK tracker slightly drops with the decrease of the
object size. A larger drop of the FDA is observed, when the
object size becomes smaller than Q1 x ()2, because the object
details are not preserved. On the other hand, the PF tracker
is not affected by the strong decrease of the object size, due
to its more accurate prediction model. In case studies 4 and
5, the FDA of the CH-LSK tracker is lower than that of the
PF and the FT trackers, because it is initialized in a smaller
region, so that it does not contain a significant amount of
background. Moreover, in case study 5, the CH-LSK tracker is
the only one which keeps track of the man during both partial
occlusion instances. The PF tracker drifts, when the man walks
behind the second man and the FT tracker drifts, when the man

walks behind the woman. In case study 6, the CH-LSK and the
PF trackers track the object successfully throughout the entire
video duration. However, the FDA of the CH-LSK tracker is
better than that of the PF tracker in approximately 85% of the
video frames. The FT tracker loses track of the object, when
the object moves towards the illumination source and finds the
object again, when the illumination is switched off. In case
study 7, the CH-LSK tracker is the only one which keeps
track of the glass throughout the drinking activity duration.
The FDA of the PF tracker decreases until it drifts at video
frame 55, due to its inability to handle the change of the object
speed. The FT tracker drifts the moment the glass is lifted off
the table, because the tracker mistakes the line drawn on the
glass with the border of the table. In case study 8, the FDA
of the CH-LSK tracker is constantly better than the FDA of
the PF and FT trackers, due to their inability to track the
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Fig. 11.
tracker (thin continuous line) for the videos in case studies 1-10.

constant changes in motion speed and orientation of the left
hand. In case study 9, all three trackers track the change in
object appearance. However, the CH-LSK tracker succeeds in
tracking a larger object area. Finally, in case study 10, the PF
and FT trackers have similar FDA to the CH-LSK tracker in
the first 190 frames and drift when the face turns to profile
view. On the other hand, the CH-LSK tracker handles better
the change in object appearance.

The Average Tracking Accuracy (ATA) is calculated by
averaging the FDA over all video frames:

N
1
ATA = ; FDA(t), (14)

Frame Detection Accuracy of the proposed CH-LSK tracker (thick continuous line), the particle filter tracker (dotted line) and the fragments-based

where NV is the total number of frames in the video. The ATA
of the three trackers is shown in the first three columns of
Table II. It is clear that the proposed tracker has better average
tracking accuracy than the other two trackers in 7 out of 10
videos. In case study 2, the racking performance of the PF
tracker is 0.5% better than the CH-LSK tracker therefore we
can consider that they have equal accuracies. In case studies 4
and 5, the CH-LSK tracker has lower ATA than the FT tracker
due to the smaller initialization area of the object. However,
in case study 5, CH-LSK tracker is the only one that doesn’t
drift. The Overall Tracking Accuracy (OTA) is defined as the



weighted sum of the respective ATAs in each video:

;&
OTA = - ; N; AT A;, (15)
where n is the number of videos, /N; is the number of frames
in the i*" video and Ny = Z?Zl N; is the total number of
frames. Table II shows that the CH-LSK tracker achieves an
OTA of 0.6088, which is approximately 32% better than the
OTA of the PF tracker and the FT tracker, respectively.

In order to examine the significance of the LSK features
to the proposed tracking framework, we re-performed the
experiments in case studies 1-10, without taking into account
color-histogram similarity information, i.e., by setting the
threshold 7 = 0 at each video frame. The ATA is shown
in the fifth column of Table II. We notice that the use of
the color-histogram information increases the ATA in all case
studies. The overall tracking performance increases by 27%.
Next, we examine the case of using the RGB color space both
for the LSK feature and color-histogram extraction. The ATA
is shown in the sixth column of Table II. We notice that in all
case studies the ATA of the RGB+La*b* CH-LSK tracker is
better than the ATA of the RGB-only CH-LSK tracker. This
result is in agreement with [26]. Similarly, we examine the
case of extracting the color-histograms in the La*b* color
space instead of the RGB color space (La*b*-only CH-LSK
tracker). The tracking accuracy is shown in the seventh column
of Table II. We notice that the tracking accuracy of the La*b*
tracker is lower than the accuracy of the CH-LSK tracker in
7 out of 10 case studies. This is because the RGB color space
has better discriminating ability than the La*b* color space.
Next, we examine the tracking performance, if we replace
the LSK descriptors with the Locally Adaptive Regression
Kernel (LARK) descriptors [39], which have been employed
successfully for face verification [39]. The ATA for the videos
in case studies 1-10 are shown in the eighth column of Table
II. We notice that LARK descriptors (with CH) achieve better
ATA in only 1 out of 10 videos. Therefore, LSK descriptors
are more suitable for tracking than LARK descriptors. Finally,
we compare the performance of using a linear Kalman filter
to using more accurate particle filters. The results are shown
in the ninth column of Table II. We notice that the use of
particle filters increases the ATA only in 3 out of 10 videos,
where the object performs smooth movement. By observing
the ATA of the eight trackers of Table II we notice that the
proposed CH-LSK tracker, which employs a simple Kalman
filter, achieves the highest ATA in 4 out of 10 videos and
the highest or second-highest ATA in 8 out of 10 videos.
Moreover, the proposed CH-LSK tracker achieves the highest
OTA, which is 5.5% better than the OTA of the second best
CH-LSK+PF tracker, which employs particle filters.

In the last experiment, we test the significance of the
parameter A\ (the weight of the LSK similarity of the search
region patches to the stored object instance) in the tracking
performance. The ATA of the CH-LSK tracker, when param-
eter A takes values from O to 1 with a step of 0.1 is shown
in Table III for the video of case study 6. From Table III we
notice that the ATA of the CH-LSK tracker is optimal when
A takes values from 0.4 to 0.7, which is a rather wide range.

TABLE 11
ATA OF THE CH-LSK TRACKER FOR VARIOUS VALUES OF A FOR THE
VIDEO IN CASE STUDY 8.

XN | ATA | X | ATA [ X | ATA | A | ATA
0.0 [ 02275 [ 0.3 | 0.4343 | 0.6 | 0.6611 | 0.9 | 0.4893
0.1 | 0.4400 | 0.4 | 0.6164 | 0.7 | 0.6233 | 1.0 | 0.4195
02 | 03419 | 0.5 | 0.6627 | 0.8 | 0.5098

When the value of A drops under 0.4, i.e., when more weight is
assigned to the object in the previous frame, then the algorithm
cannot “understand” when the object appearance changes or
when it drifts, hence, the ATA is very low. Likewise, when we
increase the weight on the stored object instance (parameter A
takes values greater than 0.7), then the algorithm searches for
objects similar to the last stored object instance, even when the
object appearance changes significantly, since the last update
of the object model. Therefore, the tracking performance drops
again.

D. Computational complexity

In this subsection we will provide an analysis on the
tracking computational complexity. Given R; x Ry the search
region dimensions, the proposed tracker requires 3M?R; Ry
computations of equation (4), which contains 6 multiplica-
tions. For taking the decision on the position of the object
the algorithm requires 3(Ry — Q1 + 1)(R2 — Q2 + 1)/d?
computations of color-histogram cosine similarities and less
than 3(R; — Q1 + 1)(R2 — Q2 + 1)/d?* computations of LSK
cosine similarities. Therefore, the computational complexity of
the proposed tracker is upper bounded by O(18M?2R; Ry +
3(256 + Q1Q2M2)(R1 - Ql + 1)(R2 - Q2 + 1)/d2) multi-
plications.

The tracking speed of the proposed CH-LSK tracker is
comparable to the speed of the FT tracker which, unlike CH-
LSK tracker, does not take into account the changes of the
object scale and in plane rotation. The algorithm speed can be
increased if we employ particle filters instead of exhaustive
search of the object and if we extract the LSK features in the
gray-scale frame, reaching the speed on the PF tracker, which
performs near real-time tracking. The algorithm speed can
be improved greatly and even achieve real time performance
(30fps), if accelerated hardware is used, e.g. GPU, since both
the LSK feature extraction, as well as the calculation of the
color-histograms and LSKs cosine similarities of the search
region patches to the object instances can be executed in
parallel.

IV. CONCLUSION

In this paper, we have proposed a tracking scheme for
visual object tracking with online learning of the object model.
The tracker extracts a representation of the target object
and the video frame based on Local Steering Kernels and
color histogram at video frame ¢ — 1 and tries to find its
location in the frame ¢, which best suits the object. Each
significant change in the object appearance, due to an affine
transformation or view change is stored in a stack, representing
the target object model. The visual resemblance is determined



TABLE II
ATA AND OTA of THE CH-LSK, PF AND FT TRACKERS AND OF VARIANCES OF THE CH-LSK TRACKER FOR THE VIDEOS IN CASE STUDIES 1-10.

ATA CH-LSK PF CH LSK RGB-only CH-LSK | La*b*-only CH-LSK | CH-LARK | CH-LSK+PF
tracker tracker | tracker | tracker tracker tracker tracker tracker
case study 1 0.6928 0.5678 - 0.5541 0.6817 0.4885 0.5182 0.7755
case study 2 0.5997 0.6029 - 0.2944 0.5346 0.6338 0.6325 0.5864
case study 3 0.7149 0.3247 - 0.6402 0.6114 0.6847 0.5700 0.7211
case study 4 0.3789 0.3810 | 0.5482 | 0.2520 0.3695 0.1910 0.3481 0.4341
case study 5 0.5595 0.4294 | 0.5848 | 0.4944 0.4231 0.4165 0.4374 0.4850
case study 6 0.6627 0.5474 | 0.3608 | 0.6143 0.5362 0.0737 0.5032 0.6008
case study 7 0.7745 0.0885 | 0.2755 | 0.6800 0.5821 0.7496 0.5242 0.6193
case study 8 0.6446 0.4527 | 0.4068 | 0.4433 0.5648 0.4721 0.6017 0.6067
case study 9 0.6600 0.3220 | 0.5920 | 0.4985 0.6251 0.6949 0.4745 0.5552
case study 10 0.6000 0.5085 | 0.5540 | 0.4873 0.3641 0.5652 0.4741 0.5104
OTA [ 0.6088 [ 0.4616 [ 0.4602 [ 0.4783 [ 0.5120 [ 0.5183 [ 0.5075 [ 0.5771

with respect to the detected object in the previous video frame
and the last inserted object instance in the object model stack.

Experimental results showed the effectiveness of the pro-
posed method in object tracking under severe changes in
appearance, affine transformations and partial occlusion. The
algorithm was successful in the common task of tracking
people and cars from surveillance cameras. Moreover, the
algorithm performance was tested in the more demanding
task of tracking objects manipulated by humans in different
activities with constant view changes and/or deformations.
More specifically, the method was tested in tracking a cup
in both a drinking and a non-drinking activity, human hands
while eating and a human face under rotation and pose varia-
tions and partial occlusion. The performance of the proposed
framework was by far superior to that of the competing state-
of-the-art trackers. Further analysis of the object trajectories,
as well as information about the sequence of the detected affine
transformations, can reveal the motion patterns of objects used
in human activities and, moreover, it can be employed in an
activity recognition framework.

However, the method has certain limitations. First of all, it
does not handle the case of full occlusion. When the object
is occluded, the tracker continues tracking another object in
the background. The case of full occlusion can be handled
by setting an LSK similarity threshold, which stops tracking
when the object is lost. The produced object model, i.e.,
the stored object instances, can then be employed for re-
initialization of the object, when it reappears in the video.
Possible anomalies that may occur in the video, such as
fluctuations or camera failure for 1/2 second, can be handled
likewise. Furthermore, in some cases of partial occlusion, the
tracker loses track of the target object following a background
object. This usually happens when there are similar objects
in the background. Moreover, the position prediction method
(Kalman filter) cannot follow sudden changes in the object
direction or speed. A larger search region could resolve this
issue, but it would result in rapid decrease of the algorithm
speed. Finally, the tracking speed is rather low, due to brute-
force search, rendering it inapplicable in real time applications.
Tracking speed can be improved by a more accurate estimation
of the object position, scale and angle. Such improvements, as
well as possible extension of the proposed tracking framework

in multi-camera systems and multiple-object tracking are sub-
ject to future research.
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