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Abstract—This paper presents a new approach for the segmen-
tation of color textured images, which is based on a novel energy
function. The proposed energy function, which expresses the local
smoothness of an image area, is derived by exploiting an interme-
diate step of modal analysis that is utilized in order to describe and
analyze the deformations of a 3-D deformable surface model. The
external forces that attract the 3-D deformable surface model com-
bine the intensity of the image pixels with the spatial information of
local image regions. The proposed image segmentation algorithm
has two steps. First, a color quantization scheme, which is based
on the node displacements of the deformable surface model, is uti-
lized in order to decrease the number of colors in the image. Then,
the proposed energy function is used as a criterion for a region
growing algorithm. The final segmentation of the image is derived
by a region merge approach. The proposed method was applied
to the Berkeley segmentation database. The obtained results show
good segmentation robustness, when compared to other state of the
art image segmentation algorithms.

Index Terms—Color segmentation, color quantization, energy
function, image segmentation, modal analysis, 3-D deformable
models.

I. INTRODUCTION

I MAGE segmentation plays a fundamental role in many
computer vision applications. In pattern recognition ap-

proaches [1], image segmentation enables the isolation of single
objects or their parts in the scene that can be subsequently iden-
tified in an easier and more accurate way. A continuous research
effort has been also made in automatic image annotation [2]
and retrieval [3], where image segmentation is useful, since the
aforementioned procedures are expensive and time consuming.
Moreover, a number of studies based on image segmentation
have been recently reported regarding scene analysis [4]. Image
segmentation is also used as an initial step in object tracking
[5], where the exact position of an object is crucial. In all the
aforementioned applications, the main aim is to separate an
image into homogeneous regions, a step that has been proved
to boost their overall algorithmic performance.
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Challenging problems in image segmentation arise from the
existence of images depicting natural scenes at low resolution,
uneven illumination, scale changes etc. The human visual
system is very good at segmenting a natural scene image into
perceptually homogeneous regions. However, it is extremely
difficult to automatically segment such images into regions with
perceptual meaning. Hence, in the last two decades, intensive
research has been carried out in this area. The research interest
in this paper is focused on unsupervised image segmentation
algorithms, which can be broadly divided in three categories
region-based, graph-based and feature-based ones [6], [7].
Most such image segmentation approaches rely on the global
optimization of a segmentation criterion. Additional informa-
tion on the aforementioned image segmentation categories can
be found in review publications [8], [9].

Region-based image segmentation approaches [10]–[12] try
to separate connected image regions by grouping neighboring
pixels based on brightness, color, and texture. Afterwards, ad-
jacent regions are merged, under some criterion involving ho-
mogeneity or region boundary sharpness. In [10], the combined
use of statistical distributions of filter responses for texture char-
acterization within a level set framework, is proposed. The seg-
mentation is typically based on the minimization of a region-
based functional. This functional is defined as a weighted Kull-
back–Leibler measure, which is based on the distributions of
texture filter responses computed inside the image regions and
on regularity constraints at the region boundaries.

Many research efforts have taken place regarding
graph-based image segmentation algorithms [13]–[16]. These
approaches use an undirected graph to represent the image
pixels. Each graph edge has a weight representing pairwise
pixel similarity. The objective is to minimize the cost of split-
ting the graph into a number of disjoint sets. In [13], each
image pixel corresponds to a node in the graph and neighboring
pixels are connected by undirected edges. The dissimilarity
between pixels is measured and weights are assigned to each
graph edge. The segmentation criterion is based on the degree
of variability in neighboring regions of the image. Thus, any
segmentation is induced by a subset of the graph edges. In [14],
a graph-theoretic criterion called normalized cut was intro-
duced for measuring the suitability/effectiveness of an image
partition. The minimization of this criterion was formulated as
a generalized eigenvalue problem. The eigenvectors were used
to construct satisfactory partitions of the image and the process
was repeated recursively in order to obtain the image regions.

The suitability of image features for image segmentation
has been investigated by many researchers [17]–[19]. Color
and texture features are exploited along with the knowledge

1057-7149/$25.00 © 2009 IEEE



1614 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 7, JULY 2009

of human visual perception mechanisms in order to assess
image region homogeneity. In [17], the mean-shift algorithm
is used for feature space analysis, where the feature space can
be regarded as the empirical probability density function of
the represented parameter. The mean-shift is defined as the
difference between feature samples and their weighted mean,
by using a radially symmetric kernel for the weights and the
sample points as the kernel center. The mean-shift method
converges to a nearby point where the estimate of the density
function has zero gradient. Thus, each image pixel is associated
with a mode of the joint density located in its neighborhood,
after the application of mean-shift space analysis. Afterwards,
the pixels are grouped by a merging algorithm. In [7], 2-D
texture filter banks or simple fixed-size filter windows were
used in order to obtain texture features. The distribution of the
texture features is modeled by using a mixture of Gaussian
degenerate distributions. The mixture is effectively segmented
by a simple agglomerative clustering algorithm derived from a
lossy data compression approach. The image segmentation is
achieved by minimizing the overall coding length of the feature
vectors.

This paper presents an unsupervised color texture image
segmentation algorithm, which will be subsequently called
modal image segmentation (MIS) method. The MIS approach
was mainly motivated by the technique presented in [20],
which aims at selecting and tracking feature points on video
sequences using deformable surface models. In [20], an inter-
mediate result of the deformation procedure was shown to be
a novel combination output of various line and edge detection
masks. Thus, it can be appropriate for boundary detection
of neighboring image regions. Based on this reasoning, we
introduce a new deformable model energy function, which
expresses the local smoothness of one image region, in order
to segment color images. The core of this work consists of
two steps. First, a color quantization scheme, which is based
on the node displacements of the deformable surface model,
is utilized in order to obtain a coarse image representation.
Second, the proposed energy function is used as a criterion
for image segmentation. A flow diagram, which depicts the
different modules of the MIS algorithm, is shown in Fig. 1. The
image intensity and the spatial image information are combined
and act as external forces to a physics based deformable surface
model. The proposed color quantization scheme is based on
the node displacements of a deformable surface model (DSM)
that is fit to the image. The image intensity is considered to act
as the external force of a 3-D DSM. A weight, expressing the
smoothness of the local image areas is assigned to each image
pixel, which are subsequently separated into color clusters.

Modal analysis, which is used in order to describe and ana-
lyze the surface deformations, aims at evaluating the proposed
energy function. It is an alternative approach to the direct inte-
gration of the system of differential equations that result from
any finite element method [21]. It is based on mode superposi-
tion, i.e., expressing the time-dependent mode deformations as
the superposition of the natural modes of the system. In the pro-
posed method, the model deformation equations were expanded
in order to achieve a fast deformation implementation. Modal

Fig. 1. Flow diagram of the proposed image segmentation algorithm.

analysis techniques were also used in a variety of different appli-
cations for solving model deformations, i.e., for analyzing non-
rigid object motion [21], for the alignment of serially acquired
slices [22], for multimodal brain image analysis [23], for image
compression [24] and for 2-D object tracking [20]. In this paper,
modal analysis is used in a totally different and novel way, i.e.,
for color texture image segmentation.

The main contribution of this paper essentially is the design
of a novel energy criterion based on the use of local deformable
surfaces involving modal analysis for image modelling. The
local spatial information of image areas, which depends on the
output of color quantization, is used as external forces that drive
the DSM. Image segmentation is performed by combining the
DSM energy with a region growing algorithm adapted to the
proposed energy function. A final region merging algorithm pro-
vides the overall image segmentation. The details of the algo-
rithm will be provided below. The MIS algorithm was tested on
the Berkeley Segmentation database [25], which consists of a
subset of the Corel image dataset. The results indicate that MIS
algorithm outperforms other well known image segmentation
algorithms.

Summarizing, the novel contributions of this study are: A
new energy function, derived from modal analysis techniques,
is used as a criterion for color texture image segmentation. This
energy function employs a byproduct of the deformation pro-
cedure to express the local smoothness of an image region. A
combination of the spatial information with the image intensity,
is used in a novel way, as external forces that drive the DSM.
A way to tailor the model deformation equations in order to
achieve a fast implementation of the node deformations. A color
quantization scheme which exploits the node displacements of
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the 3-D DSM. A region growing procedure [12], which mini-
mizes the proposed energy function.

The remainder of the paper is organized as follows. In Sec-
tion II, a brief description of the deformation procedure based on
modal analysis and the derivation of the proposed energy func-
tion are presented, along with a fast solution of the deformation
equations. The color quantization method is described in Sec-
tion III. In Section IV, the image segmentation algorithm is in-
troduced. The performance of the proposed technique is studied
in Section V. Finally, conclusions are drawn in Section VI.

II. MODAL ANALYSIS OF A DEFORMABLE SURFACE MODEL

AND DERIVATION OF THE MODAL ENERGY FUNCTION

In this section, the physics-based DSM that is used along with
modal analysis [24], will be briefly reviewed and a new energy
function derived from modal analysis will be introduced. Fur-
thermore, a fast solution of the deformation process, based on
modal analysis, will be described.

The image intensity can be assumed to define a
surface over the image domain that will be subsequently
called intensity surface. The MIS approach focuses on param-
eterizing this surface defined by , also called

space [26]. A 3-D physics-based deformable surface
model (DSM), introduced in [21], [23], and [27], is used for
this purpose. The DSM consists of a uniform quadrilateral
mesh of nodes, as illustrated in Fig. 2. In this
section, we assume that are equal to the image height
and width respectively (in pixels), so that each image pixel
corresponds to one mesh node. Each model node is assumed to
have a mass and is connected to its neighbors with perfect
identical springs of stiffness , having natural length and
damping coefficient . Under the influence of internal and
external forces, the mass-spring system is deformed to provide
a 3-D mesh representation of the image intensity surface.

In our case, the initial and the final deformable surface states
are known. The initial state is the initial model configuration and
the final state is the image intensity surface. Therefore, it can be
assumed that a constant force load is applied to the surface
model [23]. Thus, the physics-based model is governed by the
static problem formulation

(1)

where is the stiffness matrix and is the nodal dis-
placement vector. Instead of finding directly the equilibrium so-
lution of (1), one can transform it by a basis change [28]

(2)

where is referred to as the generalized displacement vector,
is the th component of and is a matrix of order ,

whose columns are the eigenvectors of the generalized eigen-
problem

(3)

where is the mass matrix of the deformable model, whose
formulation is explained analytically in [27]. The th eigen-
vector , i.e., the th column of , is also called the th vibra-
tion mode and is the corresponding eigenvalue (also called
vibration frequency). Equation (2) is known as modal superpo-
sition equation. A significant advantage of this formulation is
that the vibration modes (eigenvectors) and the frequencies
(eigenvalues) of a plane topology have an explicit formula-
tion [21]

(4)

(5)

where

is the th element of matrix
. Thus, they do not have to be computed

using eigen-decomposition techniques. In the modal space, (1)
can be written as

(6)

where and being the external force
vector. Hence, by using (2), (4), and (5), (7) is simplified to
scalar equations

(7)

where is the th component of the th vector
of and is the th component of the external force vector

acting on node .
In our case, the image intensity of interest is described in

terms of the vibrations of an initial model. The size of the model
(in number of nodes) that was used to parameterize the image
surface was equal to the image size (in pixels). The quadrilat-
eral mesh model is initialized and the elements are
explicitly computed by using (2), (4), (5), and (7), as follows:

(8)

where is the th component of the external force
vector acting on pixel , i.e., .

A new energy function, called modal energy (ME), is intro-
duced by using the elements of the DSM [see (9),
shown at the bottom of the next page], and ME is given by .
The scalar value expresses the local smoothness of an image
region. Its usefulness for image segmentation will be shown in
Section IV.

By using (2) and (8), it can be found that the deformations
along the th axis of the deformable model node that

corresponds to pixel , based on the modal analysis for a
plane topology, can be described by (10), shown at the bottom



1616 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 7, JULY 2009

Fig. 2. Quadrilateral image intensity surface (mesh) model.

of the next page, where is the component of the ele-
ment of vector and . The above equa-
tion presents the final outcome of the aforementioned method-
ology of deformable surface models adaptation based on Modal
Analysis. The deformation-based surface modeling approach
has heavy computational burden, especially when real time ap-
plications are concerned. Hence, we present a fast implementa-
tion of the deformation process, which is based on the discrete
modal transform (DMT) presented in [24]. The components of
the deformations of the 3-D DSM applied on an image in-
tensity along each axis are given by (10), which can be
rewritten as

(11)

and

(12)

where is the DMT, is the 2-D discrete cosine
transform (DCT), which is defined in [29] and k/m. In
a similar manner, the elements can be rewritten by
using DMT as follows:

(13)

One can easily see that the DMT corresponds to a nonsepa-
rable image transform. Thus, its computational complexity for
a image is of the order of . However, since

2-D DMT can be calculated using DCT through (12), its com-
plexity can be reduced to , if fast DCT imple-
mentations are used [30]. For the experiments performed in this
paper, the computations of the generalized displacement vector

and the deformations along the th axis of
the DSM were computed using (13) and (11), respectively.

III. COLOR QUANTIZATION

In this section, the first step of the overall image segmentation
method consisting of a color quantization algorithm is briefly
described. It provides a few representative colors that can de-
scribe different image regions. Its basic idea comes from the
peer group filtering method, which was introduced in [31]. The
original algorithm was extended, so as the feature vector of the
peer group filtering includes the DSM node displacement (11),
instead of the color information of each pixel of the image.

A DSM of size is applied on pixel
of image . The components of the external forces in (1) acting
on the DSM are taken to be equal to zero along the and
axes, i.e., and . On the other
hand, the components of these forces along the (intensity)
axis are taken to be proportional to the pixel intensity :

, where is the
component along the axis of the th element
of vector . Under such a condition, the model is deformed only
along the axis, representing image intensity. Three different
color components act on each pixel of the image and the defor-
mations are computed independently for the color components.
For each DSM node, the following measure is computed:

(14)

where stores the displacement of the th node of the DSM for
all the color components and is the Euclidean distance. By
sorting all the pixels in the window centered around the
pixel , according to their distances in ascending order, one
can construct the following feature vector , which is called
peer group for pixel

(15)

where is the th pixel in the window . The appropriate
cardinality of each peer group is defined by using the distances

for Fisher’s discriminant estimation, as described in [31].
The peer group cardinality can be considered as a parameter for
the control of the noise removal and the smoothing that peer
group filtering causes to the image. By applying a DSM of size

(9)

(10)
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Fig. 3. (a)–(c) Initial color images. (d)–(f) Corresponding quantized images.

to each pixel of image , every pixel of the image
is associated with one weight that indicates the smoothness of
the area around the pixel. The weight is defined as

(16)

where is the maximum distance in . Thus, pixels in
smoothed areas are associated with bigger weights than pixels
in textured areas. We use this weight to perform color image
quantization.

A modified version of the general Lloyd algorithm [32] was
used to perform color image quantization. Let us assume that
the image is quantized into a number of color clusters. The
initial value of is set to be twice as great as the average value
of for the entire image. The weighted distortion measure

of the color cluster is given by

(17)

where is defined as

(18)

The distortion measure is used to detect which clusters should
be split in order to reach the number of the initial clusters. The
use of the weights in (17) ensures that pixels in textured
image areas will not influence color quantization as much as
pixels in homogeneous image pixels do.

In the final step, all clusters, whose minimum distance
between their centroids is less than a predefined threshold, are
merged by exploiting an agglomerative clustering algorithm
[33]. The quantized image is obtained by assigning to each
pixel its closest cluster centroid. An example of the proposed
color image quantization algorithm is depicted in Fig. 3. The

first image [Fig. 3(a)] was separated into seven color clusters,
the second image [Fig. 3(b)] in 11 color clusters and the third
one [Fig. 3(c)] in 12 color clusters.

IV. IMAGE SEGMENTATION BASED ON THE MODAL ENERGY

In this section, a color image segmentation algorithm that
combines color quantization and 3-D deformable surface
models, is introduced. The color quantization algorithm de-
scribed in the previous section, is applied to the image in order
to extract a coarse image representation. Thus, the intensity
of the image in this section, is the output of the quantization
procedure.

Let us assume that a 3-D DSM of size is applied to
a feature point of the image . In this section, the
components of the external forces in (1) acting on the DSM
are taken to be equal to zero along the (image intensity) axis,
since they were exploited in the color quantization procedure.
In the image segmentation module, the spatial information of
the DSM is exploited, i.e., the and components of the DSM
at the corresponding axes. Thus, the components of the external
forces along the axis are evaluated as follows:

otherwise
(19)

where is the center of gravity of all the pixels that have the
same intensity with . In a similar manner, the components of
the external forces along the axis are taken to be equal to the
spatial information of axis of the DSM

otherwise
(20)

where is the center of gravity of all the pixels that have the
same intensity with .

To achieve image segmentation, the MIS approach applies on
each image pixel a 3-D DSM of size and sub-
sequently exploits the proposed energy function for image
pixel by using (9). The scalar value expresses the local
smoothness of one image region, i.e., the lower the value
is, the more likely the image region around the pixel corre-
sponds to a smooth region. Hence, can be considered to be an
indicator of whether a pixel is close to a region boundary or not.
In Fig. 4, one can see the ME for all the pixels of two different
images. The size of the deformable model was 50 50 nodes,
applied to images consisting of 481 321 pixels. The image in
Fig. 4(a) has rather uniform image regions, when compared to
the image of Fig. 4(c), which contains more details. The average

value for the image in Fig. 4(a) is 0.3807, while the image in
Fig. 4(c) has almost the double value (0.6855), since the latter
has more pixels lying on region boundaries.

The size of the DSM determines the size of the
image region that is examined. Since it is difficult to know the
proper size of the DSM a priori, we propose using an
adaptive window size, defined as the best region for detecting
the region boundaries in image . Small deformable surfaces
(i.e., small window size ) are useful for tracing
boundaries of neighboring regions, while large deformable
surfaces (i.e., large window size ) are appropriate for
detecting texture boundaries. Starting with a large size for the
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Fig. 4. Example of the ME energy � for two different images from Berkeley
database. (a) An image with uniformly image intensity and (b) its energy term
� . (c) An image with several different image regions and contours and (d) its
energy term � .

Fig. 5. Example of the adaptive evaluation of the deformable model size, ap-
plied to image of Fig. 3(c). (a) The ME energy term � for all the image pixels
with model size 100� 100 at iteration 1 (average value of � � ������).
(b) The ME energy term � for all the image pixels with model size 50� 50
at iteration 2 (average value of � � ������). (c) The ME energy term �

for all the image pixels with model size 30� 30 at iteration 3 (average value of
� � ������), where the algorithm converges.

DSM, which depends on the initial size of the image (e.g., a
512 512 DSM size for a 1024 756 image), a DSM is applied
to each image pixel. Then, the algorithm iteratively decreases
the DSM size down to a certain limit (the smallest size used
was 8 8), until the average value of (for the entire image)
surpasses a threshold . Hence, the MIS algorithm starts
with a crude segmentation of the image of interest, where the
textured image areas are localized. At each iteration, where the
DSM size is decreased, the border refinement of neighboring
regions is achieved. When a DSM exceeds the image borders,
the first/last row or column at the image border is repeated and
constitutes the external forces of the DSM. For the evaluation of
a suitable value for values were computed for different
sizes of the deformable model for different images of interest.
These experiments have demonstrated that one can achieve
a good indication of the image region smoothness by setting
the threshold equal to 0.01. For computational reasons,
successive deformable surface models were downsampled at
appropriate levels at each iteration. The final outcome is an
image with intensities being the values, which resulted from
the aforementioned procedure. An example of the aforemen-
tioned procedure is depicted in Fig. 5.

Once all image pixels have been assigned a value , a
region-growing algorithm, which is a modification of [12], is
applied. The seed growing method is based on the ME values

Fig. 6. (a) Initial segmentation of image in Fig. 3(c) after the application of
seed growing algorithm and (b) the final segmentation after merging the over-
segmented areas.

of each image pixel. The number of the different image regions
depends on the values of . First, the average value and
the standard deviation of of the image are computed and
a threshold

(21)

is derived. The scalar value was set equal to 0.7, since this
value provided good results in the experiments. Then, candidate
seed points are considered to be all pixels that have .
The candidate seed points are connected based on the four-point
connectivity, in order to grow image areas. Finally, they are con-
sidered to be image regions, only if their size satisfies the
following property:

(22)

where is the sampling factor that was used to downsample the
deformable model (of size ) in the computation of

.
When the seeds have been determined, the region growing

procedure provides the candidate image regions. First, the
“holes” inside the seeds are removed (“hole” is a quite small
image region located inside a big one). Then, the average value

of all the unsegmented pixels (pixels that do not belong
to any seed) is computed and the pixels with are
connected to form growing areas. If a growing area is adjacent
to only one seed, it is assigned to that seed. This procedure is
repeated with smaller sizes of DSM in order to locate more
accurately the region boundaries. Finally, the ME energy is
computed for all the remained unclassified pixels and the ones
with the minimum values are connected to their adjacent
seeds. The final step is repeated until all the pixels belong to an
image region. An example of the seed growing algorithm on a
color image is depicted in Fig. 6(a).

An agglomerative merge algorithm [33], follows the region-
growing procedure, since the segmentation procedure may re-
sult in oversegmentation. The merging approach is based on the
color similarities of neighboring areas. The Euclidean distance
of color histograms between any two neighboring image areas
is computed and stored in a matrix . The mean value and the
variance of this matrix are estimated. The pair of regions with
the minimum Euclidean distance is merged and the procedure
is repeated up to a maximum threshold of Euclidean distance,
which is equal to the mean value of the matrix minus its vari-
ance. The uniform CIE LUV color space is used. An example of
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the merging algorithm on a color image is depicted in Fig. 6(b).
The interaction among the proposed quantization scheme, the
ME energy, the region growing algorithm and the merging al-
gorithm was experimentally studied. A set of experiments is de-
scribed in detail in Section V.

V. PERFORMANCE EVALUATION

A. Evaluation Setup and Dataset

Comprehensive experiments were conducted in natural scene
images to evaluate the performance of the MIS method. The pro-
posed method has been used to segment an image into distinct
color-textured regions on the Berkeley segmentation database
[25]. This database was selected because it contains hand-la-
beled segmentations of the images from 30 human subjects. Half
of the segmentations involve color images and the other half
grayscale images. The database comprises of various images
from the Corel dataset and contains ground truth of 300 images
for benchmarking image segmentation and boundary detection
algorithms. The content of the images are landscapes, animals,
portraits and various objects. The proposed algorithm was ap-
plied to all 300 images and the output was compared to human
perceptual ground truth.

The metrics used for the quantitative evaluation of the pro-
posed algorithm were the following.

• The Probabilistic Rand index (PR) [34] allows the com-
parison of a test segmentation algorithm using multiple
ground truth images. It measures the fraction of pixel pairs,
whose labels are consistent in the test segmentation and the
ground truth one. The PR averages over multiple ground
truth segmentations and takes values in the interval,
where 0 means that the acquired segmentation has no sim-
ilarities with the ground truth and 1 means that the test and
ground truth segmentations are identical.

• The Normalized Probabilistic Rand index (NPR) [35] is an
extension of the PR and is normalized with the expected
value of the PR over the test data. This fact makes the NPR
more sensitive while having a larger range.

• The Global Consistency error (GCE) [25] measures the
tolerance up to which one image segmentation can be con-
sidered as a refinement of another one. A zero value of
GCE means that the segmentations are identical, whereas a
nonzero value means that inconsistency exists between the
two image segmentations.

• The Variation of Information (VI) [36] measures the
amount of information that is lost or gained from one
image cluster to another one. The values of VI are always
positive and zero value means that all the image clusters
are identical.

• The Boundary Displacement error (BDE) [8] is the average
displacement error between the boundaries of the extracted
image regions. Lower values of BDE indicate high image
segmentation quality.

B. Experimental Results

The first set of experiments dealt with the evaluation of
the correctness of the segmentations produced by MIS with
a varying set of parameters. The factor in the denominator

Fig. 7. (a)–(c) Original images and (d)–(f) the corresponding NPR index for
different values of �.

Fig. 8. ME� for different values of � for a DSM applied to a uniform image
region.

of (12) can be used to achieve multiple segmentations of an
image. The NPR was computed for different values of for
several images of the Berkeley database. Fig. 7 depicts the NPR
index versus different values of . The NPR index increases,
as increases up to the value of 50. Hence, an appropriate
value of can be set equal to 50. This fact is also illustrated
by Fig. 8, where ME is depicted for different values of the
factor for a DSM applied to a uniform image region. The
ME maintains a constant value for values of , which
is an another indication that the segmentation performance is
constant for a rather wide range of values. One can say that
the factor in (12) essentially acts as a parameter which tends
to oversegment the image, when its value decreases. Some seg-
mentation results for different values of are shown in Fig. 9.
Again, from quantitative point of view, no great sensitivity is
shown versus changes in for values equal to 50 and 100.

In order to evaluate the computational complexity of the MIS
algorithm, the average computational time was computed for
a test set of images (20 images selected randomly from the
Berkeley database). The computational time was computed for
two versions of the MIS algorithm. In the first version (denoted
by MIS-Sl), the original deformation equations were exploited
in order to compute ME, while in the second one, a fast imple-
mentation of the deformation procedure was used, as described
in Section II. All the experiments were performed on an Intel
Pentium 4 (3.01 GHz) processor PC with 1.5 GB of RAM for
317 211 and 512 512 color images. In terms of computa-
tional complexity for an image of range 317 211 pixels, 73.2 s
per image are required for MIS-Sl algorithm, while 2.6 s per
image are required for the proposed MIS algorithm. Further-
more, for an image of range 512 512 pixels, 198.6 s per image
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Fig. 9. (a)–(c) Image segmentations for � � �, (d)–(f) image segmentations
for � � ��, and (g)–(i) image segmentations for � � ���.

TABLE I
AVERAGE VALUES FOR THE PR, BDE, VI, AND GCE ERRORS ACHIEVED ON

100 COLOR IMAGES OF THE BERKELEY SEGMENTATION DATABASE BY FOUR

VARIANTS OF MIS ALGORITHM

are required for MIS-Sl algorithm, while 2.9 s per image are re-
quired for the proposed MIS algorithm. Thus, the computational
speed of the MIS algorithm is rather good for segmenting im-
ages of size in the range of 512 512 pixels and it can be con-
sidered to be appropriate for offline processing of large images.

The aim of the third set of experiments was to find the best
performance between three different variants of the proposed
segmentation algorithm. In the first two variants, the proposed
quantization scheme was replaced by two different approaches.
In the first approach (denoted by K-means-MIS), the well
known K-means algorithm [37] was exploited in order to
classify the image colors into a predefined number of color
clusters. The RGB color space was used, since this was also
used for MIS. The number of color clusters was set to be equal
to the one computed by the proposed quantization scheme, in
order to achieve a fair comparison. In the second variant, the
quantization scheme presented in [31] was used (denoted by
Q-MIS), in order to reduce the number of the image colors.
In the third variant (denoted by NRM-MIS), the image seg-
ments resulting from MIS were not merged. The Kmeans-MIS,
Q-MIS, NRM-MIS, and MIS algorithms were tested on 100
color images, selected randomly from the Berkeley database
and the results are summarized in Table I. In all the experiments,
the parameters used for the four algorithms remained the same.
Table I presents the average values for the PR, BDE, VI, and
GCE errors for the four variants of MIS algorithm. One can see

Fig. 10. Image segmentation based on the MIS algorithm. The factor � in de-
nominator (12) is equal to 50. The images are part of the Berkeley database.

TABLE II
AVERAGE VALUES FOR THE PR, BDE, VI, AND GCE ERRORS ACHIEVED ON

THE BERKELEY SEGMENTATION DATABASE BY FIVE ALGORITHMS

that the MIS algorithm achieves the best performance. These
experimental results provide evidence regarding the interaction
between the proposed quantization scheme, the ME energy and
the region growing algorithm, which is based on ME.

The next set of experiments aimed at testing the performance
of the MIS algorithm and comparing it to that of well known
image segmentation algorithms. In order to achieve unsuper-
vised segmentation, the parameter of the DSM was set equal
to 0, 50, and 100. Table II presents the average values for the
PR, BDE, VI, and GCE errors on the Berkeley database for
five unsupervised image segmentation algorithms. The values
are averaged over the entire set of (300) images of the Berkeley
database. The proposed MIS algorithm was compared to com-
pression-based texture merging (CTM) [7], to mean-shift [17],
to normalized cuts (Ncuts) [14] and to nearest neighbor graphs
(NNG) [13] image segmentation algorithms. The results for the
four algorithms were obtained from [7] and [9]. One can see
that the proposed algorithm achieves better results than the other
image segmentation algorithms for three (out of four) quanti-
tative segmentation metrics for the three different values of .
This fact provides quantitative evidence that MIS shows good
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consistency for varying values of the parameter . More ana-
lytically, one can see that the average BDE error for the pro-
posed algorithm is 7.8263, which is a large improvement over
the error of 9.4211 achieved by CTM in [7] (almost 17% in-
crease in segmentation accuracy). The BDE and GCE errors pe-
nalize the undersegmentation problem. The PR and VI errors
seem to be more correlated with the ground truth segmenta-
tions. Thus, they can be considered to be objective indicators
of the image segmentation performance. The MIS achieves the
best average value of PR and VI errors on the Berkeley database.
The variances of PR, BDE, VI, and GCE errors over the entire
database for the MIS algorithm are equal to 0.0234,
0.0291, 0.0264, and 0.0253, respectively, which also provide in-
formation regarding the robustness of the MIS algorithm perfor-
mance. Some image segmentation results of the proposed algo-
rithm are presented in Fig. 10.

VI. CONCLUSION

A new approach for color texture image segmentation based
on 3-D deformable surface models is introduced in this paper.
The proposed method combines knowledge of the intensity sur-
face of the image and the spatial information of image regions,
which subsequently drives a 3-D physics-based deformable sur-
face model. The deformations of the deformable surface model
are acquired by exploiting modal analysis techniques. A way to
take advantage of the benefits of the model deformation equa-
tions in order to achieve a fast implementation of deformations,
are also presented. The proposed image segmentation is based
on two steps. First, color quantization, based on node displace-
ments of the deformable surface model, is used to decrease the
initial number of image colors. Then, a novel energy function,
which is derived by exploiting an intermediate step of the de-
formation procedure, is assigned to each image pixel and ex-
presses the smoothness of the image region around this pixel.
The proposed energy function is used as an input to a region
growing algorithm, in order to provide the image regions. Fi-
nally, a merging algorithm is exploited to acquire the final image
segmentation. Results obtained on the Berkeley segmentation
database indicate that the proposed algorithm achieves better
quantitative results than four known unsupervised image seg-
mentation algorithms.
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