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CameraMotion EstimationUsing a Novel Online
Vector Field Model in Particle Filters
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Abstract—In this paper, a novel algorithm for parametric 2-D affine transformation model (that we have also adopted
camera motion estimation is introduced. More particularly, a in this paper) various parametric camera motion representation

novel stochastic vector field mode_l is proposed, wh_ich can methods have been proposed in the literature n [4], [13], [14],
handle smooth motion patterns derived from long periods of [15], [16], [17], [18], [19]

stable camera motion and can also cope with rapid camera . .
motion changes and periods when the camera remains still. The |_n th's paper, we fQCUS_ on the 2D camera motion Chara(}'
stochastic vector field model is established from a set of noisy terization and the estimation of the relevant affine parametric
measurements, such as motion vectors derived e.g. from block model. Various methods have been proposed to this end, by
matching techniques, in order to provide an estimation of the gy poiting estimated motion vector fields. In [5], the motion

subsequent camera motion in the form of a motion vector field. A vectors field is used as a camera motion representation and
set of rules for a robust and online update of the camera motion P

model parameters is also proposed, based on the Expectationthe detected motion pattem IS C|aSSIerd USIng SUppOI’t VeCtOI‘
Maximization algorithm. The proposed model is embedded in a Machines (SVMs) in one of the following classes: zoom,
partjcle filters framework, in order.to predict the future camera  pan, tilt and rotation. In [4], [6] and [18] camera motion
motion based on current and prior observations. We estimate ggtimation within video shots is performed in the compressed
the subsequent camera motion by finding the optimum affine MPEG vid t ithout full f d . .
transform parameters so that, when applied to the current video V_' €os reams, withou _u rame decompression, L_Js'ng
frame, the resuling motion vector field to approximate the the motion vector fields acquired from the P- and B- video
one estimated by the stochastic model. Extensive experimentalframes. These methods rely on the exploitation of motion
results verify the usefulness of the proposed scheme in camerayectors distribution or on a few representative global motion
motion pattern classification and in the accurate estimation of parameters. The detected camera motion is then expressed in a

the 2D affine camera transform motion parameters. Moreover, . . . . .
the camera motion estimation has been incorporated into an parametric form and is applied for video frame annotation and

object tracker in order to investigate if the new schema improves Tetrieval. One of the main shortcomings of these approaches
its tracking efficiency, when camera motion and tracked object is that, generally, they are neither resilient to the presence

motion are combined. of moving objects of significant size nor to video luminance
Index Terms— Camera Motion Estimation, Expectation Max- outllerg. _
imization Algorithm, Particle Filtering, Vector Field Model In this work, we focus on accurate camera motion parameter

estimation using already estimated motion vectors fields. In
this approach, we assume the camera motion as a dynamic
system, whose sta#, changes in discrete time intervals and
Motion estimation and motion pattern classification produde described at time by the state vector:
valuable information for video processing, analysis, index-
ing and retrieval.lt has been extensively investigated by the
scientific community for semantic characterization and disthere parameter§mi, ms, ms, my, ms, mg} correspond to
crimination of video streams. Moving object trajectories hawte affine transform coefficients, containing all the relevant
been used for video retrieval [1]-[3]. Camera motion pattetinformation required to describe the camera motion between
characterization has been efficiently applied to video indexingdeo frames. A novel stochastic vector field model is es-
and retrieval [4]-[7]. However, the main limitation of the lattetablished from a set of noisy measuremelts such as the
methods, is that they deal only with the characterization eftimated motion vectors, in order to provide an estimation
the detected camera motion patterns, without explicit meaf the subsequent camera motion. Our goal is to recursively
surement of the camera motion parameters. As a result, #gimate the optimal affine transform parameters, by estimating
acquired information is of limited interest, since it can be usaHe system state vecto®;, so that, when applied to the
primarily for video indexing and retrieval. current video frame, the resulting transformed image provided
The estimation of a parametric form describing the displacky a motion compensation algorithm accurately recreates the
ment of the video frame content in two subsequent videdready estimated motion vectors field.
frames due to camera motion is of broader interest and hado tackle this problem, we have applied the proposed
been proved beneficial in various applications. For instancgpchastic vector field model in a particle filters framework.
camera motion parameter estimation can assist in detecting &adticle filters are a state-of-the-art method for the stochastic
robustly tracking moving objects [8], in motion-based videprediction of dynamic system state. Stochastic approaches
deblurring [9], in video shots boundaries detection [10], assed for the prediction of the future state of a dynamic system
well as, in video abstraction [11],[12]. Apart from the generdlave attracted considerable interest against their deterministic
Copyright (c) 2008 | EEE. Personal use of thismaterial is permitted. However, permission to use this material for any other
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I. INTRODUCTION

O,=[mi my ms ms ms mg ]T, (1)
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counterparts. Their ability to escape from local minima duelative coordinates by a 2D affine transform as:
to the fact that the search operation is randomly driven, is

a significant advantage. However, the computational load is Vo | |2 & xf 3)
generally more intense compared with that of a deterministic %! - 66* C(; COG yf ’

algorithm. In summary, the novel contributions of this paper
are the following: where the affine coefficients are related as:

. The presentation of a system for 2D camera motidfii C2 €3 C4 C5 co]” = [m1 — 1 ma m3 ma ms — 1 mg]".
estimation from a video sequence, that is able to performSince we estimate the camera affine transformation by
in real time. utilizing the motion vector field, a model to compute the affine

« A novel stochastic vector field model. The proposefiansform coefficients directly from the motion vectors, is
model can handle smooth camera motion patterns deriv@gluired. To rephrase the problem, we seek an affine transfor-
from long periods of stable camera motion and can al§gation matrixM to perform the approximatioBM ~ B+V,
cope with rapid motion Changes (i_e_, motion Changé&hereB is an x 3 matrix (n is the number of blocks that each
from hand handled cameras) and periods when the camtgaine has been divided to) containing the center coordinates

remains still. of each block in the video frame, i.dB = [b, b, 1],

« An online Expectation Maximization (EM) algorithm forwhere b, = [z z>...2,]" and by = [y y2...ya]".
updating the model parameters. The matrix V. = [v, v, 0] contains the motion vectors,

where v, = [vl v2...07]" andv, = [v, v...0p]"

The rest of the paper is organized as follows. Section Il we T Ly .
provide an estimation of the affine parametric model basé}(%e X ! veqtors containing each block’s dlsplacement n
on the straightforward minimization of the Least Squar 1€ ative coordmate_zs along to th‘? andy axes, re_spectlve_ly.
Error between the motion fields. The proposed Online Vec?%{’[ = M, M, e] is the 3 x 3 affine transformation matrix,
hereM, = [m; m2 m3]T, My =[ms ms meg]” and

Field Model and the applied particle filters framework, argl_ oo 17

resented in Section lll. In the same Section, considera: . . o
P We have experimentally verified that it is preferable to

tions on enhancing its algorithmic performance and achievin .
tational effici lvzed. Section IV d .bg%ek md_ependently the veqtomx and M, rather than to
computational etiiciency are analyze ection escrl ggrch directly for the matridM = [M, M, e]. The LS

the conducted experiments and summarizes the performaE lation for th timaM.. . takes the form:

evaluation results. Concluding remarks are drawn in Secti fmutlation for the optimalvl, . takes the form:

V. Mm,o = nl\}lin G<ba: + Vg, BMz) (4)
Il. PROBLEM FORMULATION whereG(A, B) = ||A—Bj||% and||.|| » is the Frobenius norm.

The optimalM,, , is given by:
Initially, we present a camera motion estimation model that
translates the motion vector field derived from two consecutive M., = B¥ (b, +v.) (5)
video frames into a parametric 2D affine transform. Thg

. . ; . . nd similarly forM,, ,.
2D affine transformation of an image point displaced from . ’ '
o P . . According to (5), we can compute the affine transform
position (z,y) to (z',y’) between two consecutive video

frames is given by: coefficients describing the camera motion directly from the
9 y: motion vector field, since the pseudo-inverse matBx

' mi ms ms T remains constant. This technique, whilst being optimal for data
v | = ma ms mg y 2) contaminated by Gaussian noise, is extremely inaccurate in the
1 0 0 1 1 presence of motion vector outliers.

where the parameteksn,, ms, m4, ms} control rotation and

. - . I11. ONLINE VECTORFIELD MODEL
scaling, while parametergns, mg} correspond to translation

alongz andy axes, respectively. A. Basic Nomenclature for the Proposed Framework
We address the camera motion detection and estimatiorg, The unknown state of the dynamical system.
problem by employing low level information such as motion v/ The motion vectow{ at thet-th time (frame)
vectors. We detect the motion vectors between two successive of the j-th block.
video frames by applying a motion estimation algorithm, such Y,, Y The observation (in our case a matrix of
as block matching and represent the detected displacements all the motion vectorsY; = [v}...v}]) and the
using motion vectors. A motion vecter = [v}, v;]” repre- estimate produced by theth particle.
sents the displacement of th¢h block in relative coordinates, Y., The set of observations in a time window
with respect to its initial position, between two consecutive betweenl andt.
video framesf,_, and f; as:z} = z; + vi, ¥, = y; + v,f, Ei 1(,.) The system function that calculates the un-
where (z;,y;) and («},y!) are the coordinates afth block known state of the dynamical system.
center at framef;_, and f; respectively. O¢(.,.) The system function that calculates the ob-
Similarly, with the image point displacement described by servations at time.

(2), we can represent the displacement of tkth block in P, A particle P, = {ét,wt}.
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P(A|B) The conditional probability of the evend FE;_1(.,.) andO,(.,.) respectively:
given the eveniB.

Ui_1 The system noise dt— 1 (it can be a vector 0; = Er-1(0:-1,Ui1) (6)
or a matrix). Y = O(0:, Ny), (1)
Nf The obgervathn n0|s§ at . . where U;_; is the system noise and/; is the observation
w} The weight ofi-th particle filter at timet. noise.
it 'Sl'he stible[sclomp;nemt:n {]ﬁt%ftiﬁe . A particle is a weighted sample that estimates a required
& coordinaqg a?the-;ﬁrfrar;iz 'a'lﬁdt%r thev-blocks posterior density function [20],[21]. In the state evolution
S S L 5L o2 s 17 for the y problem summarized in (6), a partick = {0, w,} describes
Ly coordinatfg at the—ttﬁyfrarrt{é .a.lr.ldt’fyor ther-blocks at time t the posterior distribution”(6;Y1.;), where the
W The, wander component W : weight w; is normalized and is proportional to the posterior
t (W, W, ,} t probability P(Y|6;). To initialize a particle filters framework,
W, t,x;th,my g Wi w?. . wp]T for the a- we first drawi samples{a%l}f’%<1 from P(6;—1|Y1:.—1) and
" coordinate, at the-th frame and for thex-blocks. addmonally,K SampleS{Ut—l.}izl from U;_.. By app lying
W, Wt, — [l w?,...wp T for the y- stAe}te evolution as formed in (6), we obtaid estimates
" coordinate, at the-th framé and for ther-blocks. ~ (0t}ic1 Of State?t;( which are being fed along withi
L, The lost componenit; = {Ly.., L} noise sa_mples{g\ft e _dr}:;\wn from IV, to (7). F_mally, K
L, Li. = [\ 2, .07 }T’ for the o. Observation estimatelsY;};2, for stated, are obtained. Each
coordinate, at the-th frame and for thew-blocks.  Particle’s weight is peing evaluated _with respect to the state
L., L, = [, &,...0,7 for the y- and observation estimations, according to the formula:
~ coordinate, at the-th frame and for thex-blocks. ; P(Y!6,)P(6:0:_1)
wh, The mean motion vector fare {S;, W;,L;} Y T 0,00, Y1), (®)
for the stable, the wander and the lost component for ) o
the j-th block at thet-th frame. whgreg(0t|0t,1,Y1;t) is a proposal dlstnbut_lon. In order the
Ei,t The covariance matrix for motion vectorsWeights to sum up to one, they are normalized as:
of the j-th block for one of the components e ; w!
{S¢, W;,L;} at thet-th frame. Wy = W 9)
P,() The probability density function of Gaussian =17
noiselU; . _ Here we model each posterior distributidh(Yi|@,) using
ky(k) The exponential envelope. a mixture of bivariate Gaussian density functions, while we
O tay: Octar Ocry Ownerships for one of the com- 3ssyme that nois#,_, and N; are also Gaussian.

ponentsc € {S;, W;,L;} for the j-th block at
~instancet and for thexy, = andy, respectively. e
Mf,t,:c?M{,t,y’]\/[g,t,:mMg,ty First and second order mO-C' Probabilistic Mixture Model
ments for thej-th block atz and y coordinates, The proposed Online Vector Field ModeDV FM;) is a
respectively for the-th frame (only for stable com- modified version of the Online Appearance Model (OAM) by

~ ponent). Jepsonet al. presented in [22]. OAM is a three parts mix-

T 4 s Mt Mgy Mixture weights for one of the ture model containing the following componentke stable
components: € {S;, W,,L;} for the j-th block at componentesigned such as to identify slowly varying robust
instancet and for thexy, x andy, respectively. appearance properties of the tracked objéleg wandering

A Denotes the estimate ofl (e.g., 8; denotes the componentthat models the rapid variations of the object
estimate off,). appearance and thest componentesigned to handle data

fay Robust estimate for mean motion vector at the outliers that burst during occlusion. The first two components
instance. have been designed to follow the Gaussian distribution, while

3, Robust estimate for the covariance matrix for théhe data modelled by the lost component are assumed to be
motion vectors at-th instance. uniformly distributed.

We modified this model so as to facilitate camera motion
estimation. The proposed®V F'M,; is a Gaussian mixture
model extending the notion of stable or rapidly changing

B. Particle Filters image structures o AM to the description of the motion
vector field. Thus, we can identify not only reliable motion
Considering camera motion as a dynamically varying systructures but also rapid motion changes, as well. Moreover,
tem, we formulate the problem as to predict the unknown state have modified the lost component, so as to represent the
6, based on a series of usually noisy motion observatioitkeal stationary scene in order to adjust the model to have
(already estimated motion vectord,.; = {Yi,...,Y:}, a prior preference in generating stationary camera motion
arriving sequentially. Moreover, we assume that the state ewstimations in the presence of data outliers, as for instance, due
lution and observation models are described by the functiottsmotion vectors generated by moving objects. Additionally,
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we handle motion outliers using robust statistics. Finally, estimation process and also enables the model to have a

we combined theDV F'M, in a particle filter framework to prior preference in generating stationary camera motion
estimate the camera motion parameters, while in [22] the EM estimations when sparse non zero motion vectors are
algorithm is used in order to perform object tracking. observed, as for instance, due to objects motion.

The previously presented fundamental types of 2D cameraWe model the probability density function for ttss, W,
motion (in Section Il) could be combined or appear in cascaded L., components with the bivariate Gaussian distribution
in a video sequence. However, there are temporal came¥av’; u; ,, 3/ ,) ¢ € {S;, W, L}, where u/ , denotes the
motion characteristics that could be exploited in a camefgean value of thej-th motion vector andzz.t isa?2x?2
motion estimation model. For example, in a typical videgovariance matrix referred te-th componentj-th motion
sequence, we expect long periods of smooth camera motiggttorvi = [v)  v]”, as it varies during the video sequence.
towards a specific motion direction which are also followed/e consider the general case that correlation exists between
by extended camera immobility periods. These two motiahe two random variables, v/ of the same motion vector
patterns are usually interrupted by brief time intervals of rapig, as it evolves over time. It should be noted that the stable
camera motion that could be of arbitrary type. For the ﬁr@bmponent covariance matric@ét and mean Valuewé’t
two motion patterns, a model that identifies slowly varying (qdre functions of time computed for each motion vector. The
absence of) motion observations over a long period of timevgnder component, the mean values are the observations of
more appropriate for their description. In the latter case, whete previous frame and fok; the mean values are set to
the camera is rapidly and arbitrary moving, a flexible modekro. Moreover, in order to avoid some prior preference in
based on two video frame variations can better approximaigher component, the covariance matrices are initially set
the rapid changes. as: 31, = 3,, = 3/ (more details are given in Model

In the presentedV FM,, we use the motion vector field Initialization subsection).
derived either by applying of block matching algorithm or OV F M, combines probabilistically the componefis W,
directly from compressed MPEG video streams. The modahdL; in a mixture model according to the formula:
is time-varying and comprises of three different component (Y.|6,)

OV FM, = {S;,W,,L;}, which are combined in a probabilis- o o o

tic mixture model applied in a particle filters framework, in =1[[=1{ P(vi[S]) + P(v]|W]) +P(V§|]L§)} (10)

order to estimate the camera motion. . ; o w
« The camera motion stable componéat= {S; ., S:,} == Xemsme mcvf@yN(V““”’EC’t> }’

learns a smooth motion pattern that describes the cam-

. : . : ereY; = [v}...v}]7T is the observation data derived for
era motion obtained from a relatively long period o i i e . ) _
. : statef, and N (vy; u. ., X7 ,) is the bivariate Gaussian density
the video sequence. The componéht comprises of

the vectorsS;, = [s{, s7,...s7,]" andS;, = function: ) o _ o
[st, s2,...s7,]7, where valuess] , and s}, contain N(v/;p! , 57 ) = — ¢ 3(vi-H ) (B0 VIZHLY)
the block j spatial displacement of timé¢ smoothed 21y /13 |

over a predefined time window along theandy axes, . o ‘ (11)
respectively:s] , = Mvj , + (1 = A)si_; , where v/ = A A 17 =

s{y =M, +(1—X)s{_,,, where the smoothing factor il 1y )T [,
A is proportional to the temporal window size (measured ; (02020 (0244,
in video frames)y{ , andv; , are respectively the and Yer = ( i )2 (Uj‘ 2 ce{S,W,L}.

. Oc t,xy c,t,y
motion vector components referred to tjeh block. j " i’ o e
y P theh M 4 0yr My 40y ML, 4.} are the mixing probabilities

« Since the componenS, requires a long sequence Ofy,a¢ réguiate the contribution each compongrth motion
obsgrvatlons In order to construct a smoothed CaM&l&etor makes to the complete observation likelihood at time
motion vector field, we cannot have a good approximatian, i the number of motion vector&’ , and u’, are the

when severe camera motion changes occur. In order g ariance matrix and mean value, respectively, referred to the
address this problem, we introduce the camera motl9qh motion vector of the-th component
wander component, = {W,,, W}, which identi- * oy ) is embedded in the particle filter framework

fies sudden motion changes, and adapts to a short tIEU?aduating each potential future state of the system. A state

motion field observation sequence, as a two frame motion.. i, , . .
1 9 n 1T estimate, is generated by first drawing a noise sample
change model. VectorW;, = [w;, wj,...w;,]

W, i . " .
and W, , = [w}, w?,...uwy,]” contain each block %,1 P,(U;—1) and applying the state transition function

displacement between two consecutive frames, in relatifle = £¢-1(0;_1,U;_,) whereP,(.) is the probability density
coordinates, along the andy axes, respectively. function of Gaussian noisé/;_;. Each state estimatéi

« Finally, the lost component., = {L;,,L;,} is fixed determined by particlé is being evaluated with respect to
and represents the ideal stationary video scene whenthi available motion representation @ F'M;, by comput-
the motion vectors are equal to zero. This is the staitgy the observation likelihood according to (10). Although
that is expected to be observed more often. Moreovéie conventional particle filters configuration determines the
it is used for the initialization of a new camera motiorparticle weight using (8), we instead update the weights by

J T
by mat,my] !
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applying the an approach similar to the Sequential ImportanE®! algorithm in [22],[25] as:
Re-sampling filter (SIR) [23], since the following assumptions

hold: Oit,my X m]c,tgvyN(vi;u’z:}t? Eit)
. The state evolution?,_; and observatiorO; functions Ol ocml, N vg,m;uz,t,mv(gz,t,m)z) (13)
are known. J J Jo.d J2
« The observation likelihood functio®(Y|#;) could be O X MenyN (Vi e (9ry) )
R appheltd for p0|r.1tW|se favrilu?tlon. o . and > _swrOlie = L YeswrOliy = 1,
s a result, we assign weights o.par icles as: s Oy = 1 WhereAr (vl il (07,,)2) is the
wi oc P(Y}|0y), normal density function. The Ownerships are subsequently
wi = p;ui “ (12)  ysed for updating the mixing probabilities (parameteis as
i=1 Wi previously definedy =1 — e~ 1/7):
this basically dropping the factorsp(6:/6;—;) and ; ; ;
9(0:10,_1,Y1,). The applied particle filters framework Mepire =000+ (L= a)me,,
is similar to the one used in [24]. The particle filters Ml =0, +(1—a)mg,, (14)
framework generates a set of possible future states of the My i1y = Q0% 0+ (L —a)my, .
camera motion, expressed in the form of affine transform . ,
matrices. Each affine transform matrix corresponds to 84 > cswi™Mire = L DecswiMery = L

motion vector field which can be computed using equation._g v 1. M ¢ 2y = 1.

(5). Consequently, each state estimate is evaluated with/Ve compute the new mean values and the new covariance
respect to the available motion representationdi FM; matrices for each motion vector by utilizing the first and
via equation (10) and is assigned a weight according to (18gcond order data moments. First order data moments are
The particle that is assigned the highest weight or differentiypdated as:

the prediction that achieves the highest probability value is

J _ J J _ J
selected as the system’s future state. Miip1a =00, v, +(1—a)Mi,,
J _ J J J
Ml,t+1q,y - aOS,tyyvt,y + _(1 - a)Mlﬂzy ) (15)
J — J J J J
Ml,t+1,:1:y - aOS,t,myvt,xUt,y + (1 - a)Ml,t,xy'

D. Online Model Update

In order to update the camera motion mixture modé&lecond order data moments are updated as:
OV FM, to OVFM,,, describing the camera motion mix- j j i \2 j
ture model in the next video frame the new mean values, MQJ»HL-T - ao?.»w(v;vx)Q +( _O‘)Mim
covariance matrices and mixture probabilities for each motion Msyia,y = O‘Os,t,y(“uy) +(—a)My,,.
vector contained in each component at tie 1 should be o giapje component is updated using the first order data
estimated. We assume th@l’ F'M; has limited memory over moments:
the past motion vector field observations, extended during a '
defined time window, which is exponentially forgotten. When

(16)

J
]Vfl_,r,+1,m

J _ _
St+1,e T HSpt1,0 =

newer information is available, previous knowledge is forgot- M (17)
. . . . . j o j o M{,t+l,y
ten and is combined with newer observations. The exponential R A
S,t Y

envelopF, (k) = ae=(t=F)/7) for k < t is being used where
T =n,/log 2 andn; is the envelope half life time, measuredThe stable component new covariance matrices are evaluated
in video frames that the current information is preserved s:
the system’s memory. This information exponentially weakens

. J .
during time and completely vanishes after a predefined time (0% ,,,,)° % —(s141.2)°
window. Thus, parameteF;(k) is used in order to regulate ) Mgt:lz j )
the influence of prior knowledge. Parameteris defined as Us,t+1,y) = m = (5141,) (18)
a = 1— e /7, so that the envelop weightB; (k) sum to ( j 2 = M{ 10 _ (Sj )(Sj )
1. The new mixing and ownership posterior probabilities, the - S:t+12y ML 441 0y trLa ALyl

g}e;g gagﬁjgniggvir;iZig ;?:tggiens fﬁr c?;t(;:l Tvﬁﬂorzsveﬁ%re vv_ander component contains the current motion vectors,
¢ ¢ comp g up P g}nce it adapts as a two frame motion change model:
to the envelop weight#; (k). '

The posterior ownership probabiliti€s, , denote the contri-
bution of each motion vector to the complete observation prob-
ability likelihood function. We favor these motion vectors that
continuously produce higher probability values by increasingovariance matrices for the wander and lost components
their ownership probability. On the other hand, motion vectoese set equal to the estimated stable component covariance
that tend to produce lower probability values are penalizedatrice 33, ,,, = %/ | = 4, ,. Moreover, as it has
and their contribution to the complete observation likelihoodeen designed, componehj remains constant by setting:
is gradually reduced. Ownership are evaluated by applying the, , = , =0 andi}_, , =], =0.

J —J _
Wit = Hwitri,z = Vi (19)
w) = ul =
t+iy  — Hwit1y = Viy
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E. Model Initialization where the vectolY, = [v} ... v}] contains the motion vector

To initialize OV FM,, the arrayR = [r, r,] is con- field. . o .
sidered, wherer, andr, aren x 1 vectors containing the e exploit the computed estimation errey, in order to
motion vectors residuals in the and y directions obtained dynamically adjust not only the applied noise variance, but
from the first two frames of the video sequence. The stab@IS0 the population of particle filters that will be generated in
wander and lost components of t68” F1/; model are then the following estimation process. The complete state transition
initialized by setting:S; , = W1, =r,,$;, = Wy, =1, method is summarized by the equation:
Lio =Ty =0. ) i - 0, =0,1+U;_q, (21)
Moreover, the covariance matrices and mixing _ _ _
probabilites for each component, as well as, thwhere U, is the applied noise. In order to reduce the

first and second order data moments are instantiate@mputational load and enhance the robustness of the proposed

as follows: !, , = Wi, = ol = 1 algorithm, we have adapted strategies that are described in the

N j following two subsections.

si _ | @) 6Lt _ [025 015 g
e (62, ..)° (62, .)? 0.15 0.25 |’ . . . .
. L STy Y i o G. Adaptive Noise - Adaptive Number of Particles
Siwa = B = Xy My, = 8o, M, = : : . : :
G L ’ o VN In the applied particle filter framework, the introduced noise
SyMsay Miney = ((0814y)° + 81051,y ) Ms100  variance and the generated particle filters population size,
Mﬁu = (&é L2+ (éji.w)z) mé o 51!, — severely affect the accuracy of the camera motion parameter

e e\ g ' s estimation. Concisely, it is noted that the size of the search
<(Us,1,y) +(51,) ) M 1, Wherece € {S, W, L}. space that is covered in each search iteration is proportional to

the variance of the applied noise. Larger noise variance enables

F. State Transition searches in broader regions of the state space, thus allowing the

In various particle filter applications, the quantity of thénodel to adapt to severe changes in the motion parameter state.
system disturbance during state transition plays a crucial rél the other hand, smaller noise variance enables the model
in the state estimation process. By measuring the system dgs-fine tune around a persistent motion parameter state. In
turbance during the previous states, we can infer the expec@silition, the accuracy of the estimation is proportional to the
system disturbance at a future state. This approach Cred’tég’]ber of the used particle filters. More particle filters offer
the necessity for an adaptive state transition model. In o@iieater coverage of possible motion states while demanding
approach, as will be discussed below, we have incorporated gfgater computational effort.
system disturbance momentum in order to regulate the appliedVe exploit these characteristics in order to find the optimal
noise variance and to resize the generated particle filters setirgfle off between the estimation accuracy and the required
[26], system disturbance is measured as the sum of the abe@mputational effort. Our intention is to dynamically adjust the
lute difference between the states corresponding to succes$§i9ie variance and the number of processed particles, so as to
video frames. This parameter is associated with the decisi@@nerate fewer number of particles with small noise variance,
that is acquired in order to switch between a deterministighen small changes in the camera motion are required. When
and a stochastic search method that is used for each partitdege jumps in the motion state space need to be covered, we
Moreover in [24], the tracked object velocity is measured @ljust our settings so as to process a larger number of particle
the shift in the state vector between two consecutive fram@iéers with larger noise variance.
and is computed using a first order Taylor series expansion/Ve evaluate the accuracy of our previous prediction by com-
around a current state estimate. The computed velocity usudiiting the estimation errar,. Subsequently, the number of the
indicates the minimization direction of the difference betwedtocessed particle filtetd, and the applied noise varianee,
the compared image patches and is exploited in order to furti@g adjusted for the following prediction step proportionally
stabilize the tracker by fine tuning around the state estimdgthe estimation error, according to the formulae:
with the highest likelihood. A, = min(Amn A )

In this approach, the motion vector fieM, is available o = min(@,amax% (22)
(e.g., from block matching) when a new frame is processed, in e
contrast with the previously presented approaches, where Yeere both the population of the generated particles, as
exact block position, inside the current video frameould Well as, the noise variance, are bounded in order to ensure
only be approximated using the state estiméteAs a result, computational efficiency, algorithm robustness and optimal
we can evaluate our estimation errey, by measuring the performance. In our experiments the number of particles have
distance between the estimated motion vector f¥ld that been between 150 and 300.
the OV F M; model contains and the actual motion vector field
we obtain, as: H. Robust Parameter Estimation

er =1—P(Y0,) Data outliers are common in motion vector fields and in
, A . order to further stabilize the system in such settings an addi-
=1 Hn Z m’ WAR AT AN L . .
j=1 e=S,W,L et zy tHees e ) tional data pre processing step has been applied that enables
(20) the system not only to statistically identify data outliers but
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also to reform those motion vectors that have been obviously IV. EXPERIMENTAL RESULTS

assigned invalid values. _ ~__ We evaluate the efficiency of the proposed method through
To address this problem, & x 3 spatial median filter is exiensive experimental testing. The testing dataset comprises
initially applied to the motion vector field:,y components, f 30 edited outdoor video streams, including in ta@é) 245
thus reducing motion vector field outliers appearing in homgzmes, while the motion vector fields have been obtained by
geneous video frame regions. Moreover, we use an iteratiygplying the block matching algorithm. The dataset includes
bivariate Winsorization transform [27], [28] which provides | patterns of distinct camera motion (zoom in, zoom out, pan,
mechanism forqlata outlier detection and rectification. For eagh and rotation) and also combinations of them. Moreover,
motion vectorv; = [vf, vj,|", the Mahalanobis distancesince the presented algorithm not only identifies the performed
D(v}) is computed based on an initial bivariate covarianGémera motion pattern but also measures the motion param-
matrix 3, and mean valugi, estimates, according to theeters, we have included in our test collection video streams
formula: that contain sequential frame regions, where the camera moves
D(v) = (vi — ,at)Tﬁfl(v;ﬁ — ) (23) according to a specific pattern but at a variable pace.

PN PN ~ T < . ) @ ) | i = i
wherefi, = (i . fity]" andX, = diag{ 5575, 5o55 ) Where A, Camera Motion Pattern Classification

Htao s ity ar€ the robust mean values, ando,, are the . The acquired after each prediction process, affine transform
adjusted mean absolute deviations computed from the motion

vector components along theand y axes, respectively. We parameters, are used to infer the type of the performed

treat a motion vector as an outlier when its Mahalanobfg e & motion. However, due to the fact that we generate

distanceD(vi) > T, whereT is a positive constant. BasedPYr solutions set in each prediction step by adding random

. ! . . noise, our method, as every stochastic approach, moves around
on experimental evidence we chodse= 5.99 which gives . : : . .
. o e the optimum solution. This fact introduces some error in the
95% efficiency at theXs distribution. Rectification of detected o . .
; . . . classification of the performed camera motion, when the affine
data outliers is performed by truncating such motion vectotrs - " o
. . . . . transform coefficients vary around critical boundaries, in terms
to the border of a two-dimensional ellipse which contains T ; . . :
o ) . . ._.0f camera motion interpretation. To alleviate this error in the
the majority of the motion vectors, by using the bivariate . o
- camera motion characterization, we assume that any camera
transformation: : : o i
motion, in order to be classified as of a specific pattern,
T Divi— g 24 should have a minimum duration of five consecutive frames,
D(vi)’ )(Vt - “t>‘ (24) otherwise, it is absorbed by preceding or succeeding dominant
. ] . _camera motions. Moreover, in order to further stabilize our
The process is recursively executed until no more motiQmera motion detection method, we filter the obtained affine
vector fleld_out!|ers are detect_ed. In a final data pre-processipgnsform coefficients set by applying a temporal median filter
step, a whitening transform is applied to the motion VeCtPaving window sizes.
field. The data set is transformed so that the motion vectorswe interpret the affine transform coefficients contained in
have zero mean value and their covariance maiixs equal the state vecto#; as follows:

to the identity matrix.

‘7; = [’az,x ﬁz,y]T = l:lt + mln(

o If Ty = cTqua > 1, then the detected camera motion is

classified as zoom in.
I. Conformal Affine Transform o If hy = c”(jﬁ;¢ < 1, then the detected displacement is

The restricted 2-D affine transformation model includes ~characterized as zoom out.
four affine parameters, thus constituting the more appropri-* If m2 <0, the camera rotates in a clockwise manner.
ate parametric model in describing the camera motion, ife If m2 > 0, the camera rotates in an anti-clockwise
we neglect the introduced lens distortion. According to this Mmanner.
transformation only conformal scaling and rotation along the « Parametersnz and m, define pan and tilt along the
2 andy axes video frame deformation is performed, due to direction ofz andy axes, respectively.
camera motion. The 2-D affine transformation of tkté block We provide experimental results obtained by applying the
center displaced from positioir;, y;) to (£, y}) according to proposed method in representative video sequences for each
this model is given by: camera motion pattern. The variation of the affine coeffi-
cients describing the camera motion at each video frame

/ — Q1 .
mf _ ac.05¢ sing % xf (25) it is presented at the accompanying graphs. Moreover, at
yf- - szg¢ O‘cgs¢ ly yll key moments, when the camera motion pattern alters, the

respective video frames are provided for visual confirmation
a, ¢, T,, T, correspond to scaling by a factor rotation by¢  of the obtained results.
degrees and translation @y and7), pixels along the direction In Fig. 1, the results that are obtained by applying the
of z andy axes, respectively. proposed method in a video sequence compris@ddframes

We generate conformal scaling and rotational potentialhere the camera performs pan and tilt, are presented. The
future states, when the state estimates set is populated,vhyiation of the affine coefficients responsible for translation
regulating the applied noise in each particle equivalently faccording tox andy axes, it is sketched in this graph, as the
the respective affine transform parameters. test video evolves over time. As shown, the camera pans to
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the right during the frame intervals — 107 and 250 — 352, camera motion and these periods have been characterized as
while it pans to the left at the frame interval$)8 — 249 still ones.
and 805 — 918. Moreover, during the video frame$3 — 437
and 624 — 681 the camera tilts up, while during the temporal
intervals 438 — 560 and 919 — 992 the camera tilts down.
Finally, during the intervat61 —623 camera stands still, while
from frame718 and until frame804 camera moves diagonally
up and to the right.

The lower graph in Fig. 1 presents the variation of the mix-
ture probabilities that regulate each component’s contribution
to the observation likelihood derived from the same video
stream. As it is observed the stable component’s membership
initially declines, as expected, since the model has not created
an accurate motion representation during that period. On the
other hand, the wander component adapts faster than %2 Variation of the scale factor when the camera performs zooming in
stable, as it has been designed, and as a result its contributiodout. At key frames when camera changes its motion pattern video frames
during the same temporal interval increases. In general, fe provided.
mixing probability of the stable component reaches its highest
value, at the exact moment the camera completes a distinctig. 3 presents a camera motion case for a video of

motion pattern, since at that time the stable component h@g; frames, where the camera rotates in a clockwise and
the optimum smoothed camera motion representation. On thean anti-clockwise manner, while there arevideo frame
other hand, at the same moment the wander componefiygrvals, where the camera remains stationary. These labelled
membership is assigned its lowest value. video frame groups either have been successfully detected
and characterized or they have been absorbed by preceding
or succeeding dominant camera motions. It should be noted
that according to the conformal affine transformation model,
the rotation coefficient correspondsite = sin¢. The camera
motion has been identified and classified as follows: rotation in
a clockwise manner inside the video frame intenddls- 197
(region 2 has been absorbed);5 — 615 and 625 — 660

and rotation in an anti-clockwise manner in the video frame
i ol o interval 213 — 564 (except from the labelled regions 5, 6

CE B | e and 7 which have not been absorbed). Finally, the performed

: : i L camera motion pattern has been characterized as stationary
inside the labelled video frame intervals3,4,5,6,7,8 and9.

‘—— Stable Mixing Probability |
Wander Miing Probabilty
Lost Mixing Probabilty

Components Mixing Probabilies

0 100 200 300 400 500 600 700 800 800 1000
Frame Index

Fig. 1. Variation of translation factoras andm4 according to x and y axes,
respectively. The lower graph shows the variation of the components mixing
probability as the video stream evolves. Each model component identifies a
different type of camera motion.

The next examined test video sequence contzififrames,
in which the camera zooms in and out, while there are sequen-
tial video frame temporal regions where camera remains stitlg. 3. Vvariation ofsing which declares the affine coefficient responsible
Fig. 2 depicts the variation of the obtained scale factar. for rotation. Nine regions are distinguished in which the camera remains
The proposed method successfully identified and classified fia > 2"
performed camera motion in three different patterns. During
the frame intervaB7 — 114, camera motion has been classified
as zoom in, while for the frame intervab2 — 232, it has B- Camera Motion Modelling Accuracy
been characterized as zoom out. There are three groups dh each prediction step, the system state vector defined in
sequential frame regiond ¢ 36, 115 — 152 and 232 — 237) (1), is adjusted so as to approximate the affine transform coef-
where the proposed algorithm has not detected any significéintents that better fit the motion representation tat 7'M,
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contains. On the other hand, the predicted future state de- )

termines a motion vector field which could be obtained by sof i e e
repositioning the video frame block centers, as determined by
the affine transformation and compute each block displacement
with respect to its previous position. Therefore, since the
real motion vector field is available when a new frame is
processed, the accuracy of the last prediction could be assessed
by computing the Mean Square Error (MSE) between the
estimated and the real motion vector fields:

MSE: = £ 50, (00— via)” + (6], — 0h,)°).

Vector Field Error

(26) Fig. 5. Compa(ison of t_he _produced MSE between the_ proposed _method
o " " . . . and the LS solution. In this video, the camera rotates while there exist nine
wherev; = [0, ;] andvi = [v;, v;,] correspond to sequential frame regions in which it remains still.
thei-th estimated and real motion vector at timeespectively.

The proposed method has been applied in a video sequence
containing 186 frames, where the camera zooms in with , .
variable pace, except from a temporal interval between fram\@ues' independently of the performed camera motion pattern.
181 — 186, where it remains still. Fig. 4 presents the MSE
produced by the LS solution and the proposed method. As
depicted, while the camera zooms in at a growing pace from
the beginning of the video sequence until framd® (during
this interval the scaling factor has tripled), the increase in
the scale factor value is also followed by an increase in
the generated MSE. The radical drop in the MSE at frame
181 occurs since the camera changes its motion pattern and
remains still. As depicted, the proposed method constantly
generates lower error compared with the LS solution. During IEd
the complete video sequence the average generated MSE by
the proposed method &/ SE = 0.588, while the LS solution
produces on average almost a triple value sili¢&'E = Fig. 6. MSE computed for each video in the test dataset.
1.6744.

C. Compressed Video

In order to reduce the processing time, we have applied
the proposed method directly on compressed MPEG video
streams without performing full frame decompression in ad-
vance. MPEG video streams are composed of an hierarchically
organized structure [29], [30] consisting of: sequences, Group
Of Pictures (GOP), pictures, slices, macroblocks and blocks. A
GOP consists of three different types of pictures: the I-frames
which are coded pictures using only information present in
Fig. 4. Computed MSE error produced by the LS solution and the proposite picture itself, the predicted pictures (P-frames) coded
method. with respect to the nearest previous |- or P-frame and the

bidirectionally predicted pictures (B- frames) coded using both

Fig. 5 shows the MSE obtained for the video sequeneepast and a future |- or P-frame as a reference.
presented in Fig. 3. The nine video frame temporal intervals,Since I-frames are intracoded and B-frames are coded
in which the camera remains still, are distinctive, since thHadirectionally, we can neglect them and apply our method
majority of the contained motion vectors are equal to zedirectly to the resulting P-frames exploiting the contained
and as a result, the generated error is minimal. The proposedtion vectors. As a result of this approach, significant com-
method clearly outperforms the LS solution, since the corputational gain is observed, since we essentially sub sample
puted MSE is constantly lower thar0. Moreover, the average over time. On the other hand, we expect an increase in the
MSE introduced by the LS solution l#¥ SE = 0.65847, while estimation error, especially in video sequences in which rapid
the corresponding average MSE for the proposed methodcignges in camera motion occur frequently. Fig. 7 presents a
MSFE =0.1977. comparison of the MSE obtained by applying the proposed

In Fig. 6, average MSE generated by both solutions amgethod either in the complete video stream or only in P-
computed over the complete test dataset is presented. As frames. As expected, the difference in the MSE is smaller
be seen, the proposed method clearly generates smélldt when camera moves smoothly, since there are no radical

100 120 140 160 180 200
Index
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variations in the motion vector fields across P-frames, as fiocorporation are provided. Both tracking processes have been
instance, during the frame intervals— 38 and 120 — 177. initialized to track exactly the same regions. Fig. 9a presents
On the other hand, we observe severe performance differetioe tracking results where camera motion estimation has not
between the two approaches, when the camera moves fasieen incorporated. Fig. 9b presents the obtained results where
Moreover, the average MSE computed from the uncompresseonera motion prevention has been included, while Fig. 9¢
video stream isM SE = 0.20496 while for the compressed shows the ground truth for the respective video frames. Notice
MPEG video isMSE = 0.32213. that the bounding box has been scaled up during the video
Furthermore, the time required to perform camera moti@equence since the detected camera motion is zoom in. We
estimation has been evaluated. Experiments have been dumive quantitatively measured the performance of the new
ducted on an Intel Pentiumprocessor, running 8t0 Ghz and schema by comparing the spatial overlap amount between
usingl GB of RAM. The under examination video consists ofthe highlighted by the object tracker region and the ground
237 frames, sized60 x 240 pixels, where61 of them are P- truth data with and without considering the camera motion.
frames. Since for the MPEG coder each block is of dimensidine obtained measurements for each video frame have been
8 x 8 pixels, we have applied the same settings in the blosketched in a graph, shown in Fig. 9. In the examined video
matching algorithm in order to obtain equally sized motioeequence the mean spatial overlap with respect to the ground
vector fields. The system requir@d44 seconds to process onetruth data has been increased 31y4%.
video frame or, equivalently, it processé$3 motion vector i
fields per second, which is a prohibitive amount of time for W
real time systems. However, in compressed MPEG videos of s
NTSC quality, coded in a rate &0 frames per second, there

- a — : — _—

are availables P-frames per second, which means that such W % E ﬁ
MPEG video streams can be processed almost in real time. b
(©)

Frame 1 Frame 25 Frame 50 Frame
70 Frame 82

Fig. 8. a) The tracking results where camera motion detection has not been
included. b) Tracking results of the new schema. c) Ground truth.

Fig. 7. MSE computed for the same compressed MPEG and uncompressed
video stream.

—— Object Tracking Only
—— Combined Schema

D. Incorporation of Camera Motion Estimation with Moving e B B
Object Tracking.

The effectiveness of incorporating the proposed methad , . , ,

_— . . .FIg. 9. Spatial overlap amount between tracks obtained with and without
within an object tracker in order to separate the camera moﬂaﬂ,sidering the camera motion.
from the tracked object motion, has been also investigated.
We have embedded our algorithm within the object tracker
proposed in [24], which also predicts the future position of the
tracked object. We have applied the new schema in a video V. CONCLUSION
sequence in which, while the camera zooms in, the trackedOur main aim in this work is to determine accurately the
object moves along thg axis. Moreover, since tracking ismotion parameters of the performed camera movement and
performed in each frame of the video sequence, we obtgiBt only to identify the performed 2D motion pattern. To
the motion vector fields using a block matching algorithntio so, a novel camera motion estimation method based on
Firstly, the proposed method determines the affine transfeising the motion vector field has been presented in this paper.
mation describing the camera motion and then launches thige features that distinguish our method from other proposed
object tracker. Both state vectors denote affine transformatiafimera motion estimation techniques are: 1) the integration
therefore, the generated future state estimates by the objsich novel stochastic vector field model, 2) the incorporation
tracker{#, ,}/* |, determining the position of the image regiomf the vector field model inside a particle filters framework
of interest inside the video frame, are transformed prior thejfhere an online EM algorithm for model parameters update
evaluation as{:é;t}fil = Ot{eﬁ,’t}fil. In Fig. 8, screen enables the method to estimate the future camera movement
shots of the tracking process with and without camera motiamd 3) the ability to detect, characterize and estimate the
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performed camera motion pattern. Motivated by the fact th@b] J. H. Kotecha and P. M. Djuric, “Gaussian particle filteringfFEE
camera motion could be temporarily characterized by rapidly
varying, slowly varying and stationary movement pattemﬁzl] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
we have designed the proposed model, that easily adapts to particle filters for on-line non-linear/non-gaussian bayesian tracking,”
camera motion types having possibly variable pace. Extensive
experimental results have verified that the proposed metrlgg
not only successfully characterizes the detected camera motion appearance models for visual trackint?EE Transactions on Pattern

pattern but also predicts the subsequent performed camer?
motion with minimal error.
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