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ABSTRACT

Face detection is a key problem in building automated
systemsthat perform face recognition/ verification, model-
based image coding, face tracking, and surveillance. Two
algorithmsfor face detection based on either support vec-
tor machines or maximum likelihood estimation are de-
scribed and their performance is tested on a collection
of single images from the M2VTS database that depict
one frontal face in front of a uniform background using
the false acceptance and false rejection rates as quantita-
tive figures of merit. Moreover, we demonstrate how the
maximum likelihood face detection performs, when sin-
gleimagesthat depict multiple frontal facesin front of an
nonuniform background are processed.

1. INTRODUCTION

Face detection is a considerably difficult task because it
involves locating faces with no prior knowledge about
their scales, locations, orientations, with or without oc-
clusions, and with different poses (frontal, profile) [2]. A
powerful face detection agorithm facilitates the design
and robustness of the aforementioned systems. Many ap-
proaches for face detection have already been proposed.
Detailed surveys can be found in [1, 2]. In this paper we
are interested in appearance based techniques, and par-
ticularly in those built on support vector machines and
eigenvector decomposition.

The application of support vector machines (SVM)
in frontal face detection in images was first proposed in
[3]. Besides the SVMs, eigenvalue decomposition meth-
ods constitute a popular class of appearance-based algo-
rithms for face detection. A probabilistic method based
on density estimation in a high dimensional space us-
ing an eigenvalue decomposition is proposed in [4]. An
example-based approach for locating vertically oriented
and unconcluded frontal face views at different scales by
using a number of Gaussian clusters to model the distri-
butions of face and non-face patterns is described in [5].
We are interested in applying such techniques to patterns
derived by some optimization procedure and not the raw
pixel intensities.

In this paper, two face detection methods for single
images of “head and shoulder” type that contain a uni-
form background are developed. The methods discussed
are based on SVMs and maximum likelihood detection,
respectively. Although the just mentioned task is con-
sidered to be more simple than face detection in scenes
with multiple faces in a complex background, we argue
that such a study is still useful, becauseit reveals a sort of
“upper bound” on the performanceof face detection algo-
rithms. We train and test the performance of the face de-
tection methods described on sets of single images from
M2VTS database [8]. The contribution of this paper is
two-fold. First, we propose a feature selection criterion
in maximum likelihood detection methods. Second, we
attempt an objective evaluation of the performance of the
methods discussed. More specifically, throughout the pa-
per, the false acceptance and the false detection rates are
considered as quantitative figures of merit. To measure
these rates, we address what constitutes a “successful”
detection. For this purpose, we have recorded the ground
truth bounding box for the faces using a combination of
the method described in [7] and human intervention. The
criterion for a successful face detection is the center of
the detected bounding box must be within the ground
truth bounding box and the area of intersection of the
ground truth bounding box and the detected one exceeds
the 70% of the area of the former. For a comparative
study on the performance of severa face detection algo-
rithms in scenes with multiple faces in a complex back-
ground, the interested reader may refer to [2]. However,
for the maximum likelihood face detection method we
demonstrate its performance on single images with mul-
tiple faces and complex recording conditions, such as oc-
clusion and nonuniform background.

The outline of the paper is asfollows. The SVM face
detection algorithm is described in Section 2. A proba-
bilistic face detection algorithm based on afeature extrac-
tion procedure, like the Kanade-L ucas-Tomasi algorithm
[14, 15] is presented in Section 3. Experimental results
are reported in Section 4 and conclusions are drawn in
Section 5.



2. SUPPORT VECTOR MACHINE APPROACH

The face detection approach that is based on SVMsis ap-
plied on running windows defined on the quartet image
[6]. The quartet image is a mosaic image of reduced res-
olution, where the macroscopic features of a human face
can easily be captured. A two-dimensional (2-D) rect-
angular window is defined that consists of 5 cells in the
horizontal and 6 cells in the vertical direction. The win-
dow scans the quartet image whose cell intensities have
been normalized to the interval [0, 1]. Between two suc-
cessive movements, the windows are half overlapping.
By moving the window over the quartet image, several
30-dimensional patterns are obtained that enable the de-
scription of faces appearing at different locations in the
image. By varying the cell size, we enable the descrip-
tion of faces at different scales.

Let x;, 7 = 1,2,...,1, denote the ith training pat-
tern and t; = =1 the class label assigned to it. Let
t = (t1,t2,...,%). Inthe genera case, x; are not lin-
early separable. That is, therewill be no pair (w, b) such
that

F(x) = sign(w"x + b) @

is satisfied throughout the training set, i.e., t; = f(x;),
1 =1,2,...,1, where b is an offset parameter and w =
(w1, ws, ...,w;)T is the normal vector to the separating
hyperplane w’'x + b = 0. We may relax this constraint
by introducing slack variables ¢ = (&1, 62, ..., &)1 and
solving thefollowing quadratic optimization problem sub-
ject to inequality constraints:
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subject to

where k£ and C' are control parameters that penalize the
violations of the linearly separable constraints [9]. The
solution of the optimization problem (2) and (3), (w *, b*,
£*), must be a stationary point of the objective function
[9]. To solve this optimization problem Lagrange multi-
pllers/\ = (/\1,)\2, . ,)\l)T and ¥ = (’}/1,72, . ,’}/l)T
should be introduced for the sets of constraint functions
(2) and (3), respectively. According to Theorem 9.5.1
[9, p. 219] if (w*,b*,&*) solves a convex primal prob-
lem and the objective and constraint functions are differ-
entiable, then A* and v* solve the dual Wolfe problem
which yields the so-called soft margin hyperplane [3].
For k = 1, the Lagrange multipliers that maximize the
dual Wolfe problem subject to 0 < A} < C define the
support vectors x; that are employed to yield the optimal
weight vector

l
w* = Z )\:( t; X;. (4)
i=1

The decision function implemented by the SVM is then

l

f(X) = Slgn [Z t; )\:(XTX@‘) +0b*

i=1

®)

whereb* = t; — (w*)? x;, for any support vector x;.

If the input patterns are mapped to a higher dimen-
sional feature space through some non-linear mapping,
the inner products in the feature space can be computed
by a positive definite kernel function K (x, x;) [10]. To
implement the above described algorithm, the SV M tight
Toolbox [11] has been used. To model efficiently the
non-face class in the training phase, we have used boot-
strapping, asis proposed in [5].

3. PROBABILISTIC APPROACH

A matrix that frequently appears in many problems of
computer vision, such as optical flow estimation [12],
corner detection [13] is the following:

7 _ ZW Ii EW IuIv
Z= EW IuIv EW Ig (6)

where I(u,v) denotes the image intensity at the pixel
(u,v) (i.e., grayscale vaue), I,, and I, are the partial
derivatives of the image intensity in the horizontal -u -
and the vertical direction -v-, respectively, and W isa 7
x 7 window centered on the candidate pixel. A similar
matrix to Z defined in (6) appears also in feature tracking
[14] with the difference that the gradients are applied to
the sum of a pair of images. Let Ay and A\, denote the
eigenvalues of matrix Z. In all the aforementioned ap-
plications, aleast squares problem is solved and the sum
of theeigenvalues, \; + \o, provides a direct measure of
goodness of the data. If the sum is small, a high amount
of regularization should be performed. In order for Z
to be well-conditioned, both eigenvalues must be large,
and their ratio (i.e., the condition number of Z) cannot be
large[15]. In practice, when

min()\l, )\2) >T (7)

where 7 is a predefined threshold, we accept the image
pixel under consideration as a feature. Since the algo-
rithm selects as features those pixels having two large
eigenvalues, most of the features represent corners [16].
Accordingly, the feature extraction method can be con-
ceived as afirst dimensionality reduction step that aims at
facilitating the derivation of an eigenvalue representation
of the face patterns, asis proposed in [4]. The number of
featuresthen dependson the threshold 7 in (7). A method
for the calculation of 7 based on the calculation of the
histogram of the smallest eigenvalueis proposed in [16].
Large neighborhoodslead to less features, whereas small



neighborhoods yield more features that tend to gather in
certain areas, producing poor detection results.

The training procedure starts with the feature extrac-
tion in the set of training images. The number of feature
points extracted usually differs between the training im-
ages. In order to choose a unique number of features to
be used in any training image, we recorded the number
of the extracted features per image and we selected the
minimum number of features.

A feature set is created for each of the training im-
ages. Each feature set is sorted in decreasing order of the
smallest eigenvalue and a correspondenceis assumed be-
tween the features appearing at the same place after sort-
ing in the different training images. Each image is thus
represented by the set of grayscaling values at the pixel
coordinates of the features that have been ordered using
the just described eigenvalue criterion.

The feature extraction can be seen as a transform.
Each image in the training set is mapped to a feature
space. The representation of each image in the latter
space is reduced. Let N be the number of features ex-
tracted that form the training patterns. Obvioudy, N <«
N, x N., where N,. x N, is the dimensionality of the
training face images. Let N be total number of training
images. In practice, it isconvenientto select N < N s0
that the covariance matrix has full rank. However, since
we will apply subsequently principal component analysis
and we will be restricted to the first M < Np eigen-
values, the constraint N < N is not crucial. Having
decomposed the covariance matrix of the training pat-
ternstoitsprincipal components, we can model the distri-
bution of face patterns by a multidimensional Gaussian,
P(x|Q?), asisdescribed in [4].

Given a test image, the multistage extension of the
procedure described in [4] can be applied to yield a max-
imum likelihood (ML) estimate of position and scale for
aface appearing in atest image. Let us assume that we
would like to estimate the density P(x|}) over a subim-
age K of the test image. To do so, first feature extraction
in K should be performed. Then we project the pattern
vector formed by the features to the subspace defined by
the M principal components derived during training and
we evaluate the density P(x|(2). We detect afaceif

Py ®
P(x|Q) max
where 13(x|ﬂ)max is the maximum value the density at-
tains over the test image and 6 is athreshold. The afore-
mentioned algorithm can be generalized in order to han-
dle multiple face detection. Moreover, a tracking algo-
rithm, like the Kanade-L ucas-Tomato algorithm [14, 15],
can assist to the face detection scheme by yielding a set
of featuresthat can be tracked reliably.

The proposed detection schemerequiresthe automatic
feature extraction on atraining or test image. Thisisan

additional computational effort not existing in [4]. How-
ever, this additional step makes the entire face detection
algorithm faster than the method in [4], because the di-
mensionality of the patterns on which principal compo-
nent analysisis applied is much smaller.

4. RESULTS

The proposed agorithms have been tested on single im-
ages from the European ACTS project M2VTS database
[8]. The database includes the video-sequences of 37 dif-
ferent persons in four different shots. A training set is
built from the one frontal face per person for the 37 per-
sonsin three shots. The algorithmsare trained on this set.
Onefrontal faceimage per person for the 37 personsfrom
afourth shot are used as test images. Rotations between
the four available shots by leaving one shot out are also
tested.

Two quantitative figures of merit have been used in
the assessment of the performance of each algorithm, name-
ly the false acceptancerate (FAR) and the false rgjection
rate (FRR) during the test phase. The false acceptance
rate isthe ratio of non-face examplesthat have been clas-
sified wrongly as faces, while the false rejection rate is
the ratio of face examples that have been failed to be
detected, i.e., they have been rejected as non-faces. Re-
ceiver operating characteristic (ROC) curves (i.e., plots
of FRR versus FAR) for both detection algorithms are
provided.

Let usfirst assess the performance of the SVM-based
face detection algorithm. The pattern extraction algo-
rithm described in Section 2 yields roughly 1 — 10 face
patterns when each frontal face image is processed at
several quartet cell resolutions. Accordingly, on aver-
age 200 face patterns result for each shot. When three
shots are considered, a training set of 600 face patterns
is formed. The following kernels have been employed
during the training phase: (&) Linear with C = 1000;
(b) Polynomial K(x,%) = (sxTv¢ + ¢)? with s =
¢ =1,d = 3,4,5 and 10; (c) Radia Basis Function
(RBF)K (x, %) = exp(—|[x — %|[) with = 1 and 5;
(d) Sigmoidal K (x, %) = tanh(sx? 1 + ¢) withe = 1
and s = 0.005.

The ROC curves for face detection agorithms based
on the aforementioned kernels are plotted in Figure 1.
The ROC curves have been computed on four combina-
tions of test and training sets produced by leaving one
shot out and rotating between the available shots. It is
seen that the sigmoidal kernel yields the lowest equal er-
ror rate (EER) that is approximately 4.5%.

We proceed next to the evaluation of the maximum
likelihood face detection algorithm. By varying thethresh-
old 4 in (8) an ROC curve can be obtained. Such a ROC
curve for N = 100 features is plotted aso in Figure 1.
As can be seen, a comparable EER to that of the SVM-



Figure 1: Receiver operating characteristic curves for SVM-
based and maximum likelihood face detection algorithms.

based face detection algorithm has been obtained. More-
over, the maximum likelihood face detection algorithm
has been proven robust under varying illumination con-
ditions, when multiple faces appear in a scene, and when
faces are partially occluded, as can be seen in Figure 2.

Figure2: Face detection results (a) when theillumination is not
uniform; (b) when multiple faces appear in a scene; (¢) when
aface is partially occluded; (d) when multiple occluded faces
appear in ascene.

5. CONCLUSIONS

In this paper, two methods for face detection in frontal
views have been described and their performancehas been
assessed with respect to the fal se acceptance and false re-
jection rates. Both techniques are example-based and of -
fer moreflexibility in contrast to the knowledge-based ap-
proaches. It has been demonstrated that the attain approx-
imately the same EER. Moreover, the maximum like-
lihood face detection is shown to perform satisfactorily
when the illumination is not uniform and more than one
facesthat could be partially occluded appear in a scene.
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