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ABSTRACT 
 
A novel algorithm  that can be used to boost the performance of 
face authentication methods that utilize Fisher’s criterion is 
presented. The algorithm is applied to matching error data and 
provides a general solution for overcoming the “small sample 
size” (SSS) problem, where the lack of sufficient training 
samples causes improper estimation of a linear separation hyper-
plane between the classes. Two independent phases constitute 
the proposed method. Initially, a set of locally linear 
discriminant models is used in order to calculate discriminant 
weights in a more accurate way than the traditional linear 
discriminant analysis (LDA) methodology. Additionally, 
defective discriminant coefficients are identified and re-
estimated. The second phase defines proper combinations for 
person-specific matching scores and describes an outlier removal 
process that enhances the classification ability. Our technique 
was tested on the M2VTS and XM2VTS frontal face databases. 
Experimental results indicate that the proposed framework 
greatly improves the authentication algorithm’s performance. 
 
 

1. INTRODUCTION 
 

Linear discriminant analysis is an important statistical tool for 
recognition, verification, and in general classification 
applications. In many cases, however, and in particular when 
face data is used, there is insufficient data available so as to 
carry out the LDA process in a statistically proper manner. In 
face authentication systems a test face is compared against a 
reference face and a decision is made whether the test face is 
identical to the reference face (meaning the test face is a client) 
or not (meaning the test face is an impostor). In this type of 
problems, Fisher’s linear discriminant is not expected to be able 
to discriminate well between face pattern distributions that are in 
many cases highly nonlinear (i.e. they cannot be separated 
linearly), unless a sufficiently large training set is available. 
More specifically, in face recognition or authentication systems 
LDA-based approaches often suffer from the SSS problem 
where the dimensionality of the samples is larger than the 
number of available training samples [1]. In fact, when this 
problem becomes severe, traditional LDA actually degrades the 
classification performance and shows poor generalization ability. 
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In recent years, an increasing interest has developed in the 
research community in order to improve LDA-based methods 
and provide solutions for the SSS problem. The traditional 
solution to this problem is through LDA applied in a lower-
dimensional PCA subspace so as to discard the null space of the 
within-class scatter matrix of the training data set [2]. However, 
it has been shown [3] that significant discriminatory information 
is contained in the discarded space and alternative solutions have 
been sought. Specifically, in [4] a direct-LDA algorithm is 
presented, which discards the null space of the between-class 
scatter matrix, which is claimed to contain no useful 
information, rather than discard the null space of the within-class 
scatter matrix. More recently, the authors in [1] form a mixture 
of LDA models that can be used to address the high nonlinearity 
in face pattern distributions, a problem that is commonly 
encountered in complex face recognition tasks. They present a 
machine-learning technique that is able to boost an ensemble of 
weak learners slightly better than random guessing to a more 
accurate learner. 

This paper presents a framework of two independent and 
general solutions that aim to improve the performance of LDA-
based approaches. This methodology is not restricted to face 
authentication, but is able to deal with any problem that fits into 
the same formalism. In the first step, the dimensionality of the 
samples is reduced by breaking them down and creating subsets 
of feature vectors with small dimensionality, and applying 
discriminant analysis on each subset. The resulting discriminant 
weights are normalized so as to provide the overall 
discriminatory solution. This process gives direct improvements 
to the two aforementioned problems as the non-linearity between 
the data pattern distributions is now restricted while the reduced 
dimensionality also helps mend the SSS problem. Remaining 
high nonlinearities between corresponding subsets lead to a 
number of discriminant coefficients being badly estimated due to 
the small training set. These coefficients are identified and re-
estimated in an iterative fashion, if needed. In the second stage 
the set of matching scores that correspond to each person’s 
reference photos is used in a second discriminant analysis step. 
In addition, this step is complemented by an outlier removal 
process in order to produce the final verification decision that is 
a weighted version of the sorted matching scores. 

The proposed methodology was tested on two well-
established frontal face databases, M2VTS and XM2VTS. The 
experimental results are presented and analyzed in section 4 in 
order to assess the performance of the proposed methodology.  

 



2. PROBLEM STATEMENT 
 
A widely known face verification algorithm is elastic graph 
matching [5]. The method is based on the analysis of a facial 
image region and its representation by a set of local descriptors 
(i.e. feature vectors) extracted at the nodes of a sparse grid: 
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if  denotes the output of a local operator applied to 
image f  at the thi  scale or the thi  pair (scale, orientation), x  
defines the pixel coordinates and Μ denotes the dimensionality 
of the feature vector. The grid nodes are either evenly distributed 
over a rectangular image region or placed on certain facial 
features (e.g., nose, eyes, etc.) called fiducial points. The basic 
form of the image analysis algorithm that was used to collect the 
feature vectors j  from each face is described in [6]. Let the 
superscripts r  and t  denote a test and a reference person (or 
grid) respectively. The  2L  norm between the feature vectors at 
the thl  grid node is used as a (signal) similarity measure:  
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Let tc  be a column vector comprised by the matching errors 
between a test and a reference person at all L  grid nodes, i.e.: 

 [ ]Τ= Lt CC ,,1 Kc ,       (3) 

In order to make a decision of whether a test vector corresponds 
to a client or an impostor, the following simple distance measure 
can be used, where Ι  is an 1×L  vector of ones: 
        trtD cΙ Τ=),( ,      (4)  

The first phase of the algorithm that is proposed in this paper 
introduces a general LDA-based technique that is carried out in 
the training stage and finds weights for each matching error 
vector tc  in order to enhance the discriminatory ability of the 
distance measure. 

Both the M2VTS and XM2VTS databases, and the protocols 
they were evaluated under, allow for the final decision, of 
whether a test facial image corresponds to a client or an 
impostor, to be made by processing Τ  different images of the 
reference face. That is, the test face is compared against all the 
images of the reference person contained in the database. As a 
result, we end up with Τ  matching error values, or scores; 
traditionally, the final classification decision is based solely on 
the lowest error value. The second phase of the proposed 
algorithm provides an alternative score weighting method that 
improves the final classification rate significantly. The two 
methods are independent from one another and are proposed as 
general solutions for classification problems of analogous form. 

 

3. BOOSTING LINEAR DISCRIMINANT ANALYSIS 
 

Let Cm  and Im  denote the sample mean of the class of 
matching vectors tc  that corresponds to client claims relating to 
the reference person r  (intra-class mean) and those 
corresponding to impostor claims relating to person r  (inter-
class mean), respectively. In addition, let CΝ  and IΝ  be the 
corresponding numbers of matching vectors that belong to these 
two classes and Ν  be their sum, or the total number of 
matching vectors. Let WS  and BS  be the within-class and 

between-class scatter matrices, respectively [7]. Suppose that we 
would like to linearly transform the matching vectors as such:  

     trrtD cw Τ=′ ),(      (5) 

The most known and plausible criterion is to find a projection, or 
equivalently choose rw , that maximizes the ratio of the between 
-class scatter against the within-class scatter (Fisher’s criterion): 
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For the two-class problem, as is the case of face authentication, 
Fisher’s linear discriminant, tr cw Τ

0, , which is essentially a 
specific choice of direction of the data down to one dimension, 
provides the vector that maximizes (6) and is given by: 
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3.1. Locally Linear Discriminant Analysis Model   
Our experiments revealed that the traditional Fisher’s linear 
discriminant process not only performed poorly, but also 
degraded the classification capability of the face authentication 
algorithm when training data from the M2VTS database was 
used. That is, (4) provided a much better solution than (5) after 
traditional LDA was used to determine the values of rw . This 
statistical malady can be attributed to the matching error vectors 
not being linearly separable and to the insufficient availability of 
mostly client matching error vectors, with respect to the 
dimensionality of each vector. Moreover, using nonlinear 
separating surfaces can lead to overtraining and thus to lower 
performance. Specifically, the number of client matching error 
vectors ( CΝ ) for each individual that were available in the 
training set was only 6, whereas the 8×8 grid that was used set 
the dimensionality ( L ), or number of grid nodes, at 64. The 
value of IΝ while training the algorithm using M2VTS data 
was set at 210 and using XM2VTS data at 1791. All these 
numbers are compatible with the training protocols of each 
database for authentication purposes – the Brussels protocol, 
which is used and described in [6], was applied to the M2VTS 
database and Configuration I of the Lausanne protocol [8] to the 
XM2VTS database training and testing procedures. The two 
aforementioned problems are related since a larger training data 
set can help deal more efficiently with the nonlinearity problem.  

The first thing that is done is to provide better estimation to 
Fisher’s linear discriminant by redefining (7) to: 
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so as to accommodate the prior probabilities of how well the 
mean of each class is estimated. Secondly, and for claims related 
to each reference person r , grid nodes that do not possess any 
discriminatory power are discarded – at an average 4 nodes are 
discarded. Simply, each of the L′  remaining nodes must satisfy: 

      ),(),( lrlr CI mm ≥ .       (9)  

In order to give remedy to the SSS problem each matching 
vector with dimensionality L′  is broken down to P  smaller 
dimensionality vectors, each one of length Μ , where 

( )1−Ν≤Μ C , thus forming P  subsets. The more statistically 
independent the subsets are among one another, the better the 
discriminant analysis is expected to be. Our tests revealed that 
the optimum value for  Μ  is 4. As a result, P  separate Fisher 



linear discriminant processes are carried out and each of the 
weight vectors produced is normalized so that the within group 
variance equals to one by applying:  
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where Pp ,,1K=  is the subsets’ index. This normalization 
step enables the proper merging of all weight vectors to a single 
column weight vector, '

0,rw , as such: 
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3.2. Re-estimating the Negative Discriminant Coefficients 
By meeting condition (9), all discriminant coefficients that 
correspond to the remaining grid nodes should indicate a 
constructive contribution to the overall discriminatory process. 
Thus, and since matching, or error, data are always positive, 

'
0,rw  should be a vector of L′  positive weights only. The 

exception to this is the possibility to have zero-valued weights 
that would indicate that certain grid nodes do not contribute to 
the classification process. In spite of this, it was observed that on 
an average 36.54% of the discriminant coefficients in 0,rw  and 
6.27% of the discriminant coefficients in '

0,rw  were found to be 
negative when the M2VTS training set was used. Additionally, 
24.39% of the discriminant coefficients in 0,rw  and 0.76% of 
the discriminant coefficients in '

0,rw  were found to be negative 
when the larger XM2VTS training set was used. The locally 
linear discriminant analysis model that was introduced in 3.1 is 
less susceptible to these occurrences as it settles the SSS 
problem. Any negative discriminant coefficients that remain in 

'
0,rw  are caused by the combination of large nonlinearities 

between the distribution patterns of corresponding subsets and 
the lack of a sufficiently large training sample space.  

By having the a-priory knowledge that negative discriminant 
coefficients are the direct result of a faulty estimation process 
and assuming that pQ  is the number of negative weights found 
in '

0,rw , the following two cases are considered: 
Case 1: Μ⋅≤ 5.1pQ    
All negative weights are set to zero and no further processing is 
required. The factor 1.5 is used to indicate that if the number of 
values in the final subset is not equal to more than half of its full 
capacity Μ , the corresponding linear discriminant equation 
depends on too few variables and is likely to give large 
inaccuracies to the overall discriminant solution.  
Case 2: Μ⋅> 5.1pQ  
In this case, all the grid node training data that correspond to the 
negative coefficients in '

0,rw  are collected and re-distributed 
into P′  subsets where each subset again holds Μ discriminant 
variables. In turn, P′  separate Fisher linear discriminant 
operations are carried out by following (8) and each of the 
weight vectors produced is normalized by following (10).  

Successively, all positive weights from all P′  subsets are 
collected and set as the final multipliers of tc , or discriminant 
coefficients. On the other hand, all negative weights are 
collected and once again tested against cases 1 and 2. This 
process is carried out in as many iterations as are required for 
Case 1 to apply.  Indicatively, it is stated that during the training 
stages of the M2VTS database 3 to 5 iterations are usually 
required when L′=Μ  whereas no more than 2 iterations are 
required when Μ is set to 4. For the latter value of Μ , one, at 
the most, iteration is needed when processing XM2VTS data. 

3.3. Weighting the Classification Scores 
The protocols that the authentication algorithm was tested under 
specified that a test person could be classified to be an impostor 
or a client by using three, 3=Τ , different photos of the 
reference face; thus, three tests are carried out. As a result, three 
classification scores are available for each individual, i.e. 1,rv , 

2,rv  and 3,rv . Traditionally, the test person is classified as a 
client if the minimum value out of the three, i.e. 1,rv , is below a 
set threshold, and as an impostor if it is above that threshold. In 
this work, training data are used once again to derive person 
specific weights for the Τ  scores. The motive behind this 
process is that ideally all three scores should contribute to the 
final classification decision as in certain cases the impostor’s 
photo that corresponds to a minimum score may have 
accidentally - e.g. due to a particular facial expression - had 
close similarity to a certain reference photo. In such a case, the 
remaining two reference images can be used in an effort to repair 
the false classification decision. Now the problem becomes: 
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Unfortunately, the training data which we can work with to 
derive these weights only provide two combinations since a total 
of 6 training client combinations are available for the 3 different 
images of each person. Thus, are forced to set 3,rv  to zero, 
where this would be the weight that corresponds to the largest 
matching error score, and set 2=Τ  in (12). Fisher’s modified 
linear discriminant (8) is applied and the two weights are found. 

A much larger number of impostor, rather than client, 
matching scores is available in the training set of each database 
which increases the probability that some impostor images may 
randomly give a close match to a reference photo, even closer 
than some of the client images give. Whenever this happens the 
process of estimating a separation between the two classes 
degrades significantly because of the small number of client 
training matching scores, which is as many as the number of 
training samples in 3.1. Thus, an outlier removal process is 
incorporated where the minimum impostor matching scores in 
the training set of each reference person, i.e. all 1,rv  scores that 
correspond to impostor matches, are ordered and the smallest 4% 
of these values is discarded. As a result, the linear discriminant 
process gives a more accurate separation that helps increase the 
classification performance.   
 

4. EXPERIMENTAL RESULTS 
 

The discriminant coefficient vectors w′  derived by the 
processes described in 3.1 and 3.2 have been used to weigh the 
raw matching error vectors c  that are provided by the 
morphological elastic graph matching applied to frontal face 
authentication, based on the algorithm described in [6]. 
Moreover, the procedure in 3.3 was used to calculate a more 
accurate matching score for each tested individual. The training, 
evaluation and test sets of the XM2VTS database were 
processed under the Lausanne protocol. A total of 600 (3 client 
shots x 200 clients) client claim tests and 40,000 (25 impostors x 
8 shots x 200 clients) impostor claim tests were carried out for 
the evaluation set and 400 (2 client shots x 200 clients) client 
and 112,000 (70 impostors x 8 shots x 200 clients) impostor 
claims 



 
Figure 1: ROC curves. A: M2VTS; B: XM2VTS – evaluation 
set; C: XM2VTS – test set.  

EER  (%) 
Method 

M2VTS XM2VTS – 
Evaluation Set 

XM2VTS – 
Test Set 

EGM 6.06 7.33 8.51 
LDA 8.94 5.32 5.75 

LEGM 4.37 4.67 2.51 
LLEGM 4.17 3.90 2.46 

  Table 1: Evaluation results for each process.    
 

for the test set. For the M2VTS database the Brussels protocol 
was implemented that employs the ‘leave-one-out’ and ‘rotation’ 
estimates, and a total of 5,328 client claim tests and 5,328 
impostor claim tests (1 client or impostor x 36 rotations x 4 shots 
x 37 individuals) were carried out. The M2VTS data were 
normalized so that the feature vectors would have zero mean and 
unit variance. Thresholds from the training process of each 
database were used to evaluate the authentication results, except 
for the evaluation of the XM2VTS test set, where thresholds 
from the evaluation process were used, as [8] suggests.  

Let us call the combination of the morphological elastic 
graph matching, EGM, and the weighting approach that makes 
up for the first phase of the proposed algorithm, as is described 
in Subsections 3.1 and 3.2, as LEGM. Moreover, let LLEGM be 
the second phase of the algorithm that is applied on LEGM and 
is described in Subsection 3.3. In order to evaluate the 
performance of these methods the False Acceptance (FAR) and 
False Rejection (FRR) rate measures are used. Figure 1-A shows 
a critical region of the ROC curves for the raw EGM data using 
(4), classical LDA (7) applied on the raw EGM data, LEGM and 
LLEGM evaluated on the M2VTS database. Figure 1-B shows 
the same corresponding ROC curves when the algorithms were 
evaluated on the XM2VTS evaluation set and Figure 1-C the 
corresponding ones for the XM2VTS test set. Results are 
presented in logarithmic scales. In addition, Table 1 shows the 

equal error rates (EER) for each algorithm, a common face 
authentication evaluation measure that is specified as the point 
where FAR and FRR are identical.  

When M2VTS data is used, the traditional LDA algorithm 
degrades the classification rate, having a poor generalization 
ability which stems from the largely inadequate, in terms of size, 
training set that was available. The proposed algorithm provides 
the most dramatic improvement to the XM2VTS test set 
experiments – the outlier removal process was bypassed on this 
specific set as it slightly weakened the performance. 
Furthermore, the evaluation tests on the two databases show that 
for both FAR and FRR, LEGM is indisputably a better performer 
than either EGM or LDA while LLEGM almost always provides 
additional improvement to the classification ability of LEGM.  

 
5. CONCLUSION 

 
A novel methodology is proposed in this paper that provides 
general solutions for LDA-based algorithms that encounter 
problems relating to high nonlinearity between the data pattern 
distributions, small training sets and to the SSS problem in 
particular. This methodology was tested on two well-established 
databases under their standard protocols for evaluating face 
authentication algorithms. Results indicate that the processes 
described in this paper boost the performance of the 
authentication algorithm significantly (31.2%, 46.8% and 71.1% 
drop of the EER rate in the three experimental sets). It is 
anticipated that the performance of other LDA variants may be 
enhanced by utilizing processes that stem from this framework.  
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