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ABSTRACT

This paper presents an accurate, computationally efficient, fast and
fully-automated algorithm for the alignment of 2D serially ac-
quired sections forming a 3D volume. The method accounts for
the main shortcomings of 3D image alignment: corrupted data
(cuts and tears), dissimilarities or discontinuities between slices
and missing slices. The approach relies on the determination of
inter-slice correspondences. The features used for correspondence,
are extracted by a 2D physics-based deformable model parame-
terizing the object shape. Correspondence affinities and global
constrains render the method efficient and reliable. The method
was evaluated on real images and the experimental results demon-
strated its accuracy, as reconstruction errors were smaller than 1
degree in rotation and smaller than 1 pixel in translation.

1. INTRODUCTION

Three-dimensional reconstruction of medical images (tissue sec-
tions, CT and autoradiographic slices) is now an integral part of
biomedical research. Reconstruction of such data sets into 3D vol-
umes, via the registrations of 2D sections, has gained an increasing
interest and the registration of multiple slices is of utmost impor-
tance for the correct 3D visualization and morphometric analysis
(e.g. surface and volume representation) of the structures of in-
terest. Several alignment algorithms have been proposed in that
framework. A review of general medical image registration meth-
ods is presented in [1].

The 3D alignment (reconstruction from 2D images) methods
may be classified in the following categories: fiducial marker-
based methods, feature-based methods using contours, crest lines
or characteristic points extracted from the images [2], and gray
level-based registration techniques using the intensities of the whole
image [3, 4]. Most of the above mentioned techniques do not si-
multaneously consider the two major difficulties involved in med-
ical image registration.

At first, consecutive slices may differ significantly due to dis-
tortions, discontinuities in anatomical structures, cuts and tears.
Thus, from this point of view, a registration method must be ro-
bust to missing data or outliers [4].

Also, registering the slices sequentially (the second with re-
spect to the first, the third with respect to the second, etc.) leads to
different types of misregistration. If an error occurs in the regis-
tration of a slice with respect to the preceding slice, this error will
propagate through the entire volume [3].

In this paper, a solution to the above mentioned shortcomings
is presented. A method determining correspondences between se-
rially acquired slices is proposed. The features used for correspon-
dence, are extracted by a finite element-based model parameteriz-
ing the object shape. Although, finite elements are a powerful tool

in computer vision applications, they have not yet been extensively
considered for the registration of serially acquired slices.

Our approach was motivated by the technique presented in
[5], which consists in determining correspondences between ob-
jects for recognition using eigen-decomposition analysis. How-
ever, our method determines correspondences between slices ex-
ploiting contour information obtained by the free vibrations of
a initial circular chain (physics-based modeling) [6, 7]. Modal
matching using physics-based models assist our method to be ro-
bust to missing data. Furthermore, global affinities between cor-
respondences and their filtering render our method more efficient
and reliable, overcoming major alignment problems such as dis-
tortions.

The remainder of the paper is organized as follows. The physics-
based deformable model used as the feature generator is presented
in Section 2. In Section 3, the determination of the correspon-
dences between slices is introduced. Experimental results are pre-
sented in Section 4 and conclusions are drawn in Section 5.

2. 2D PHYSICS-BASED DEFORMABLE MODELING

Each slice was separately parameterized by the amplitudes of the
vibration modes of a physics-based deformable model [6, 7]. The
model consists of 2D points sampled on a circular structure, fol-
lowing a circular chain topology [Figure 1.a]. Each model node

(a) (b)

Figure 1: Parameterization of a 2D slice of a 3D tooth germ vol-
ume. (a) The initial circular chain initialized around the object to
be parameterized. (b) The deformable model at equilibrium (25%
of the vibration modes are kept).

has a mass m and is connected to its two neighbors with springs
of stiffness k. The nodes coordinates are stacked in vector
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where N is the number of points of the chain. This physical model
is characterized by its mass matrix M, its stiffness matrix K and



its dumping matrix C, and its governing equation may be written
as [8]:

M�U+C _U+KU = F (2)

where U stands for the nodal displacements of the initial circular
chain X0. The image force vector F is based on the Euclidean
distance between the chain nodes and their nearest contour points
[9].

Since equation (2) is of order 2N , where N is the total num-
ber of nodes, it is solved in a subspace corresponding to the M
truncated vibration modes of the deformable structure [6, 10, 7].
The number of vibration modes retained in the object description,
was chosen so as to obtain a compact but adequately accurate rep-
resentation. A typical a priori value for M covering many types
of standard deformations is the quarter of the number of degrees
of freedom of the system (i.e. 25% of the modes were kept).

To solve equation (2) in the subspace corresponding to the
truncated vibration modes, the following change of basis is ap-
plied:

U = �~U =

MX
i=1

~ui�i (3)

where� is a matrix and ~U is a vector, �i is the ith column of�, ~ui
is the ith scalar component of ~U and M is the truncated number of
degrees of freedom. By choosing � as the matrix whose columns
are the eigenvectors of the eigenproblem:

K�i = !
2
iM�i (4)

and using the standard Rayleigh hypothesis [6], matrices K, M
and C are simultaneously diagonalized:

�
�
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where
2 is a diagonal matrix whose elements are the eigenvalues
!2i and I is the identity matrix.

An important advantage of this formulation is that the eigen-
vectors and the eigenvalues of a chain with circular topology have
an explicit expression [6] and they do not have to be computed
by slow eigendecomposition techniques (due to the dimensions of
matrices K and M). The eigenvalues are given by:
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and the eigenvectors are obtained by:
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where n 2 f1; 2; : : : ; Ng.
Substituting (3) into (2) and premultiplying by �T yields:

�~U+ ~C
_~U+
2 ~U = ~F (8)

where ~C = �T
C� and ~F = �T

F.
In many computer vision applications [7], when the initial and

the final state are known, it is assumed that a constant load F is
applied to the body. Thus, equation (2) is called the equilibrium
governing equation and corresponds to the static problem:

KU = F (9)

In the new basis, equation (9) is thus simplified to 2N scalar equa-
tions:

!
2
i ~ui = ~fi (10)

In equation (10), !i designates the ith eigenvalue and the scalar
~ui is the amplitude of the corresponding vibration mode (corre-
sponding to eigenvector �i). Equation (10), indicates that instead
of computing the displacements vector U from equation (9), we
can compute its decomposition in terms of the vibration modes of
the original chain.

Figure 1 illustrates the vibration modes based parameteriza-
tion of the 2D slices of a tooth germ volume. The 25% lowest
frequency modes were retained for this representation as this trun-
cated description provides a satisfactory compromise between ac-
curacy and complexity of the representation. The circular chain is
initialized around each slice [Fig. 1(a)] and the vibration ampli-
tudes are explicitly computed by equation (10), where rigid body
modes (!i = 0) are discarded and the nodal displacement may be
recovered using equation (3). The physical representation X(~U)
is finally given by applying the deformations to the initial circular
chain:

X(~U) = X0 +�~U (11)
Thus, each slice of the 3D volume is described in terms of

vibrations of an initial chain (Fig. 1(b)).

3. MODAL CORRESPONDENCES

Having approached the object contours using the physics-based
deformable model (eq. 11) the next step is to determine inter-slice
correspondences between the model parameters.

To determine correspondences, we use vector U (eq. 3), ex-
pressed as:

U = �~U =
h
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where M denotes the number of retained modes and (xi; yi) de-
scribes the displacement of the ith feature point at X and Y axis
respectively.

Thus, in order to determine the correspondences between two
slices Q and S, we build vectors UQ and US respectively and
compare these parameterized displacement vectors. The compari-
son is based on the following criteria:

3.1. Affinity Matrix

We now compute what are referred to as the affinities between the
two sets of parameterized displacement vectors (eq. 12). These
are stored in an affinity matrix ZQS , where:
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where jj � jj2 denotes the L2 norm and Q and S are the slices under
examination. The affinity measure zQSij for the ith and jth points
(of slices Q and S respectively), is zero for a perfect match and
increases as the match worsens. Using that affinity measure, we
can easily identify which features correspond to each other in the
two slices by looking for a minimum entry in each column and row
of ZQS . Because of the reduced basis matching, similarity of the
generalized features is required in both directions instead of one
direction only. In other words, a match between the ith feature
in a certain slice and the jth feature in a candidate slice can only
be valid if zQSij is the minimum value for its row, and z

QS
ji the

minimum for its column.

3.2. Outliers Rejection

A measure dQS expressing the continuity of correspondences (be-
longing to slices Q and S), is also computed:

d
QS(pQi ) =

���Order(pQi )�Order(�S(pQi ))
��� (14)



where pQi denotes the ith point of slice Q, �S(pQi ) its correspon-
dent point on slice S and j � j the L1 norm. Order(�) is a func-
tion measuring the position of a point with respect to a reference
(starting) point. Having computed dQS(pQi ) (eq. 14) for all cor-
respondences between slices Q and S, our method accepts only
correspondences verifying [11]:

d
QS(pQi ) � 1:4826 �median

k
fdQS(pQk )g (15)

3.3. Global Affinities

Let us define a set of functions of type:

F
jQ�Sj(pQi ; p

S
j ) =

�
1; if point pQi corresponds to pSj
0; if there is no correspondence

(16)
where p

Q
i is the ith point of slice Q and pSj is the jth point of

slice S. Let us also consider the set of correspondences CjQ�SjQ;S

between slices Q and S as the the union:
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whereN is the total number of the physics-based deformable model
points. Finally, we define the set of correspondences between
equidistant slices:

E
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where M is the total number of slices and n is the distance be-
tween the slices under examination. If n is equal to 1 then point
correspondences are restricted to successive slice pairs.

Global affinities exploit and combine information from all point
correspondence sets, in successive pairs E1, triplets E2, etc. By
these means any remaining fault correspondences are discarded.

More practically, assume that we have the correspondence sets
E
1 and E2. A correspondence between point pni of the nth slice

and pn+1j of slice n+ 1 is valid only if:

F
1(pni ; p

n+1
j ) � F 1(pni ; p
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k ) � F 2(pn�1k ; p

n+1
j ) = 1 (19)

where k is a point belonging to the (n-1)th slice, and is used for
the completion of the chain. If expression (19) is verified the ini-
tial correspondence between points pni and pn+1j is accepted, oth-
erwise it is discarded.

The overall correspondence establishment algorithm is sum-
marized as follows:

� deform the initial circular physics-based model on each slice
separately (eq. 9-11).

� compute correspondence affinities (eq. 13).

� eliminate outliers (eq. 14).

� determine the correspondences between successive slices
(E1, E2, etc), (eq. 18).

� for each correspondence do

– find the necessary points satisfying the global cost
function (eq. 16) and calculate expression (19) for
these points.

– if (19) is equal to zero, discard the correspondence.

– else accept the correspondence.

� end do

The next step is to determine the rigid transformation param-
eters (2D rotation and translation) aligning the respective slices.
The rotation matrix R and the translation vector T are estimated
for each slice, in order to minimize the mean square error between
the remaining corresponding points using the method described in
[12].

4. EXPERIMENTAL RESULTS

To evaluate our method, we applied the proposed algorithm to the
reconstruction of an artificially misaligned 3D human skull (Figure
2). The slices of the original 256 � 256 � 140 CT volume were

Alignment error statistics
�tx �ty ��

median 0.19 0.23 0.13
maximum 1.18 1.07 1.42
mean � s. dev 0.29 � 0.26 0.31 � 0.26 0.33 � 0.34

Table 1: A set of 140 slices of a 3D CT human skull volume
were artificially transformed using different rigid transformation
parameters. Each slice was randomly transformed using transla-
tions varying from -10 to +10 pixels and rotations varying from
-40 to +40 degrees. Different statistics on the errors for the rigid
transformation parameters are presented. Translation errors are
expressed in pixels and rotation errors in degrees.

transformed using translations varying from -10 to +10 pixels and
rotations varying from -40 to +40 degrees. The transformations
for each slice were random following a uniform distribution in or-
der not to privilege any slice [Fig. 2(a) and 2(b)]. Human skull
volume presents discontinuities, and consecutive slices may dif-
fer significantly due to anatomy but the correspondence evaluation
was proved robust to these shortcomings. Table 1 presents statis-

a b

c d

Figure 2: Reconstruction of a 3D human skull volume of 140 slices.
(a) Multiplanar view of the volume before registration. (b) Three-
dimensional view of the volume before registration. (c) Multipla-
nar view of the volume after registration. (d) Three-dimensional
view of the volume after registration.

tics on the alignment errors. As it can be seen, median and mean
translation and rotation errors are less than 1 pixel and 1 degree



respectively. Also maximum errors are slightly larger than 1 pixel
and 1 degree respectively, showing the robustness of the proposed
technique. Fig. 2(c) and 2(d) present the reconstructed volume.

Furthermore, the algorithm was applied to the reconstruction
of volumes (tooth germs) with unknown ground truth. The perfor-
mance of our method was compared with the manual alignment
accomplished by an expert physician-researcher. Figure 3 shows
the reconstruction of a tooth germ by an expert dentist-researcher
[Fig. 3(a) and 3(b)] and by our method [Fig. 3(c) and 3(d)]. It
is illustrated that human intervention fails to correctly align the
slices, whilst our method is efficient and can achieve alignment
with higher accuracy, as confirmed by dentist specialists-researchers.
In the example, the smoothness and the low curvature of the teeth
surface aligned by our algorithm is of better visual quality.

a b
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Figure 3: Reconstruction of a 3D tooth germ volume of 265 slices.
(a) Multiplanar and (b) 3D view of the volume after manual align-
ment by an expert dentist. (c) Multiplanar and (d) 3D view of the
volume after registration.

Finally, let us notice that the algorithm has a computational
complexity O(NM), where N is the number of slices and M is
the number of nodes of the deformable model. It requires approx-
imately 1 min. to reconstruct a 256 � 256 � 140 volume on a
Pentium III (700 MHz) workstation under Windows 2000 Profes-
sional without any particular code optimization.

5. CONCLUSIONS

A fast and robust algorithm for the alignment of 2D serially ac-
quired slices was presented. The contours of the slices to be reg-
istered were parameterized by a physics-based deformable model
and the model parameters were forwarded to several alignment cri-
teria. Local and global constrains were applied to make the tech-
nique efficient. At first, alignment was obtained by the computa-
tion of an affinity matrix associated with a correspondence conti-
nuity measure. The obtained results were fine-tuned by a global
affinity metric.

Furthermore, no particular registration direction is privileged
by the proposed approach and the use of a global affinity measure

eliminates error propagation. Also, the low frequency modal pa-
rameterization of the object contours makes the technique robust
to missing data or outliers.

The low computation time and the good quality of the align-
ment with respect to manual techniques makes the method a promis-
ing tool for the reconstruction of 3D anatomical structures.
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